VIII All Russian students olympiad on mathematics of higher education (ARSO) in 2022-2023

1. Find limit

$$
\lim _{n \rightarrow 0^{+}}\left(\frac{17^{n}+119^{n}}{2}\right)^{1 / n}
$$

2. Find 6 points on the plane that do not lie on a straight line such that the distance between any two of them is an integer.
3. Let $A, B \in M_{n \times n}(\mathbb{C}), a, b \in \mathbb{C} /\{0\}$ and $a \neq b$. Find $\operatorname{det}(A-B)$, if it is known that

$$
\begin{aligned}
& A B=a A+b B \\
& B A=b A+a B .
\end{aligned}
$$

4. Evaluate

$$
\int_{|z|=1} \frac{z^{n-1}}{2 z^{n}+1} d z, \quad n \in \mathbb{N}
$$

5. Let x, y be positive integer. Let $\left\{a_{n}\right\}$ be a sequence given by

$$
\begin{aligned}
& a_{1}=1, a_{2}=1+2 y, a_{3}=1+3 x+3 y, \\
& a_{n+3}=x a_{n}+y a_{n+1}+a_{n+2}, \text { for } n \geq 1 .
\end{aligned}
$$

Prove that for any prime number p, the number $a_{p}-1$ is divisible by p.
6. Let f is bounded function on $[0,2]$, satisfies

$$
f(t+h) \geq h\left(f(t)^{2}+f(t)\right)+1
$$

with every $t, h \geq 0, t+h \leq 2$. Find $f(t)$.
7. Show that exist infinitely many pairs of positive integers (m, n) such that

$$
\frac{n}{m}+\frac{m+1}{n}
$$

is also positive integer.

