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ON SOLVABILITY OF SPATIAL NONLOCAL

BOUNDARY VALUE PROBLEMS FOR SOME

ANALOGS OF THE BOUSSINESQ EQUATION

A. A. Alsykova

Abstract. Considering an analog of the Boussinesq equation, we examine spatial non-
local boundary value problems with the Samarskĭı condition and prove the existence and
uniqueness of regular solutions.

Keywords: nonlocal boundary value problem, Boussinesq equation, existence and unique-
ness of regular solutions

Assume that � is the interval (0,1) of the Ox-axis, Q is the rectangular � × (0, T )
of finite height T , and f(x, t), a(x, t), b(x, t), c(x, t), αi(t), and βi(t) (i = 1, 2) are
given functions of x ∈ � and t ∈ [0, T ].

Boundary Value Problem I. Find a solution u(x, t) to the equation

Lu(x, t) ≡ utt(x, t)− uxxtt(x, t) + a(x, t)uxx(x, t)
+b(x, t)ux(x, t) + c(x, t)u(x, t) = f(x, t) (1)

in Q satisfying {
ux(0, t) = α1(t)u(0, t) + α2(t)u(1, t), 0 < t < 1,
ux(1, t) = β1(t)u(0, t) + β2(t)u(1, t), 0 < t < 1,

(2)

u(x, 0) = ut(x, 0) = 0 for x ∈ �. (3)

Boundary Value Problem II. Find a solution u(x, t) to (1) in Q satisfy-
ing (3) as well as the condition

{
u(0, t) = α1(t)ux(0, t) + α2(t)u(1, t), 0 < t < 1,
ux(1, t) = β1(t)ux(0, t) + β2(t)u(1, t), 0 < t < 1.

(4)

Boundary Value Problem III. Find a solution u(x, t) to (1) in Q satisfy-
ing (3) as well as the condition

{
u(0, t) = α1(t)ux(0, t) + α2(t)ux(1, t), 0 < t < 1,
u(1, t) = β1(t)ux(0, t) + β2(t)ux(1, t), 0 < t < 1.

(5)

Equation (1) is an analog of the Boussinesq equation arising in the theory of
long waves and describing the waves in plasma and the longitudinal waves in a rod
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2 A. A. Alsykova

(see, for example, [11]). Solvability of the boundary value problems and initial-
boundary value problems for the equations of the form (1) was studied sufficiently
well (see [1–5]) in contrast to the nonlocal problems. We can only note the article [6]
devoted to the study of problems with integral conditions of a very particular form
and the article [7], where the problems with integral conditions over spatial variables
are treated (note that [6] and [7] contain only the existence theorems of generalized
solutions).

1. Solvability of Boundary Value Problem I

Let V be the following function space:

V =
{
v(x, t) : v(x, t) ∈ L2

(
0, T ;W 2

2 (�)
)
, vt(x, t) ∈ L2

(
0, T ;W 2

2 (�)
)
,

vtt(x, t) ∈ L2
(
0, T ;W 2

2 (�)
)}.

This space is endowed with the natural norm

‖v‖V = ‖v‖L2(0,T ;W 2
2 (�)) + ‖vt‖L2(0,T ;W 2

2 (�)) + ‖vtt‖L2(0,T ;W 2
2 (�)).

Introduce the notations:

F (x, t) = f(x, t)− a(x, t)uxx(x, t)− b(x, t)ux(x, t) − c(x, t)u(x, t).

In the proof of solvability of boundary value problems we use the inequality

v2(y, τ) ≤ δ20
1∫

0

v2
x(x, τ) dx +

(
1 +

1
δ20

) 1∫
0

v2(x, τ) dx (6)

valid for every positive number δ0 and every point y of [0, 1].

Theorem 1. Assume that

a(x, t) ∈ L∞(Q), b(x, t) ∈ L∞(Q), c(x, t) ∈ L∞(Q), (7)

αi(t) ∈ C2([0, T ]), βi(t) ∈ C2([0, T ]), i = 1, 2, (8)

α1(t)ξ2 + [α2(t)− β1(t)]ξη − β2(t)η2 ≥ 0, t ∈ [0, T ], (ξ, η) ∈ R2, (9)

λ0[α2(t) + β2(t)] �= 2. (10)

Then, for every function f(x, t) ∈ L2(Q), Boundary Value Problem I is uniquely
solvable in V .

Proof. Demonstrate that a solution to Boundary Value Problem I from V
satisfies «good» a priori estimates (below these estimates allow us to justify the
method of continuation in a parameter). Consider the equality

t∫
0

1∫
0

[uττ(x, τ) − uxxττ(x, τ) + a(x, τ)uxx(x, τ) + b(x, τ)ux(x, τ)

+c(x, τ)u(x, τ)]uττ (x, τ) dxdτ =
t∫

0

1∫
0

f(x, τ)uττ (x, τ) dxdτ.
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Integrating by parts and taking the boundary conditions and the last equality
into account, we come to the next equality

t∫
0

1∫
0

u2
ττ (x, τ) dxdτ +

t∫
0

1∫
0

u2
xττ(x, τ) dxdτ

+
t∫

0

[
α1(τ)u2

ττ (0, τ) + (α2(τ)− β1(τ))uττ (1, τ)uττ (0, τ)− β2(τ)u2
ττ (1, τ)

]
dτ

=
t∫

0

[−α1ττ (τ)u(0, τ)uττ (0, τ)− 2α1τ (τ)uτ (0, τ)uττ (0, τ)− α2ττ (τ)u(1, τ)uττ (0, τ)

−2α2τ (τ)uτ (1, τ)uττ (0, τ) + β1ττ(τ)u(0, τ)uττ (1, τ) + 2β1τ (τ)uτ (0, τ)uττ (1, τ)
+β2ττ (τ)u(1, τ)uττ (1, τ) + 2β2τ (τ)uτ (1, τ)uττ (1, τ)] dτ

+
t∫

0

1∫
0

F (x, τ)uττ (x, τ) dxdτ, (11)

where

F (x, τ) = f(x, τ) − a(x, τ)uxx(x, τ) − b(x, τ)ux(x, τ) − c(x, τ)u(x, τ).

Estimate the right-hand side of (11). The first summand is estimated by using
the Young inequality and (6), together with (7) and (8), as follows:

∣∣∣∣
t∫

0

α1ττ (τ)u(0, τ)uττ (0, τ) dτ
∣∣∣∣ ≤ δ2

t∫
0

1∫
0

[
u2
xττ(x, τ) + u2

ττ(x, τ)
]
dxdτ

+
A

δ2

t∫
0

1∫
0

[
u2
x(x, τ) + u2(x, τ)

]
dxdτ.

Here δ is an arbitrary positive number and the number A is determined by the
function α1. Involving the inequality

t∫
0

1∫
0

u2 dxdτ ≤ T 2

t∫
0

τ∫
0

1∫
0

u2
ξξ dxdξdτ,

we have

∣∣∣∣
t∫

0

α1ττ (τ)u(0, τ)uττ (0, τ) dτ
∣∣∣∣ ≤ δ2

t∫
0

1∫
0

[
u2
xττ(x, τ) + u2

ττ(x, τ)
]
dxdτ

+
AT 2

δ2

t∫
0

1∫
0

[
u2
xξξ(x, ξ) + u2

ξξ(x, ξ)
]
dxdτ.
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The remaining summands are estimated similarly. Integrating the last summand by
parts, we derive the inequality

t∫
0

1∫
0

u2
ττ(x, ξ) dxdτ +

t∫
0

1∫
0

u2
xττ(x, ξ) dxdτ

≤M1

t∫
0

τ∫
0

1∫
0

[
u2
ξξ(x, ξ) + u2

xξξ(x, ξ)
]
dxdξdτ +M2,

whereM1 andM2 are determined by the functions αi(t), βi(t), i = 0, 1, a(x, t), b(x, t),
and c(x, t).

The Gronwall lemma yields the estimate
t∫

0

1∫
0

u2
ττ dxdτ +

t∫
0

1∫
0

u2
xττ dxdτ ≤M3.

To obtain the second estimate, we multiply (1) that is written in the variables x
and τ by −uxxττ and integrate the result with respect to the variable x from 0 to 1
and the variable τ from 0 to t and so

t∫
0

1∫
0

u2
xxττ dxdτ =

t∫
0

1∫
0

uττuxxττ dxdτ −
t∫

0

1∫
0

Fuxxττ dxdτ,

where

F (x, τ) = f(x, τ) − a(x, τ)uxx(x, τ) − b(x, τ)ux(x, τ) − c(x, τ)u(x, τ).

The Young and Hölder inequalities and the first estimate imply that
t∫

0

1∫
0

u2
xxττ dxdτ ≤M4

t∫
0

τ∫
0

1∫
0

u2
xxξξ dxdξdτ +M5.

Here the constants M4 and M5 are defined by the functions αi(t), βi(t), i = 0, 1,
a(x, t), b(x, t), c(x, t), and the number T .

This inequality and the Gronwall lemma ensure the second a priori estimate
t∫

0

1∫
0

u2
xxττ dxdτ ≤M5e

M4 ≤M6.

The above estimates validate the conclusion that the norm of u(x, t) in V is
bounded; i.e.,

‖u‖V ≤M7, (12)
where the constant M7 is determined by αi(t), βi(t), i = 0, 1, a(x, t), b(x, t), c(x, t),
and the number T .

To prove solvability of the boundary value problem, we employ the method
of continuation in a parameter. Given a number λ in [0, 1], examine the following
family of boundary value problems: Find a solution u(x, t) to (1) in Q satisfying (3)
as well as the condition{

ux(0, t) = λ[α1(t)u(0, t) + α2(t)u(1, t)], 0 < t < 1,
ux(1, t) = λ[β1(t)u(0, t) + β2(t)u(1, t)], 0 < t < 1.

(2λ)
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Denote by 
 the set of numbers λ from [0, 1] for which problem (1), (2λ), (3) is
solvable in V for every f(x, t) in L2(Q). As is known, if λ is nonempty, open, and
closed then it coincides with [0, 1] (see [8]). Coincidence of 
 with [0, 1] means that
the boundary value problem (1)–(3) is solvable in V .

The set 
 is obviously nonempty, since 0 belongs to this set. To prove that 

is open, it suffices to demonstrate that if λ0 ∈ 
 then the numbers λ = λ0 + λ̃ also
belong 
 provided that the quantity |λ̃| is sufficiently small. Let v(x, t) be a given
function in V . Put

ϕ(t) = λ̃[α1(t)v(0, t) + α2(t)v(1, t)],
ψ(t) = λ̃[β1(t)v(0, t) + β2(t)v(1, t)],

u0(x, t) =
[(1−λ0β2(t))x2 − (2−λ0β2(t))x]ϕ(t) − [(1−λ0α2(t))x2 + λ0α2(t)x]ψ(t)

λ0[α2(t) + β2(t)]− 2
and

gv(x, t) = f(x, t)− Lu0(x, t).
Consider the following auxiliary problem: Find a solutionw(x, t) to the equation

Lw(x, t) = gv(x, t) (1′)

in Q satisfying (2λ0) and (3).
Since v(x, t) lies in V , we have Lu0 ∈ L2(Q) and a solution to this problem

also belongs to this space. Hence, we can define the operator 
 taking V into itself,

(w) = v.

Assume that v1(x, t) and v2(x, t) are functions in V , while w1(x, t) and w2(x, t)
are solutions to (1′), (2λ0), (3) with the respective functions gv1(x, t) and gv2(x, t).
Repeating the proof of (12), we arrive at the inequality

‖
(w1)− 
(w2)‖V ≤ |λ̃|M8‖v1 − v2‖L2(Q).

The operator 
 is contractive if the number λ̃ is so small that |λ̃|M8 ≤ 1. A fixed
point of this operator is a solution w(x, t) to the boundary value problem.

Given gw(x, t), define u(x, t) as follows:

u(x, t) = w(x, t) +
λ̃[(1− λ0β2(t))x2 − (2− λ0β2(t))x][α1(t)w(0, t) + α2(t)w(1, t)]

λ0[α2(t) + β2(t)]− 2

+
λ̃[(1− λ0α2(t))x2 + λ0α2(t)x][β1(t)w(0, t) + β2(t)w(1, t)]

λ0[α2(t) + β2(t)]− 2
.

The function u(x, t) in V is a solution to (1), (2λ), (3) for λ = λ0 + λ̃. The
latter means that the number λ0 + λ̃ belongs to 
 and 
 is open.

Demonstrate that (12) implies the closedness of 
. Assume that λm is a se-
quence of numbers from 
 such that λm → λ0 as m→∞ and um(x, t) is a sequence
of solutions to (1), (2λm), (3). Put wmk(x, t) = um(x, t) − uk(x, t). The function
wmk(x, t) meets the equalities

Lwmk = 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wmkx(0, t) = λk[α1(t)wmk(0, t) + α2(t)wmk(1, t)]
+(λm − λk)[α1(t)um(0, t) + α2(t)um(1, t)],

wmkx(1, t) = λk[β1(t)wmk(0, t) + β2(t)wmk(1, t)]
+(λm − λk)[β1(t)um(0, t) + β2(t)um(1, t)],

wmk(x, 0) = wmkt(x, 0) = 0 for x ∈ �.
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Consequently, the sequence umk(x, t) is fundamental in V . Therefore, there
exists u(x, t) ∈ V such that umk(x, t) → u(x, t) as m → ∞ in V . The function
u(x, t) is a solution to (1) satisfying (2λ0) and (3). Thus, λ0 belongs to 
. So the
limit points of 
 belong to 
, and so 
 is closed.

Hence, 
 is nonempty, open, and closed. Therefore, 
 coincides with [0, 1] and
the boundary value problem (1)–(3) is solvable in V .

2. Solvability of Boundary Value Problem II

Theorem 2. Assume that the conditions (7)–(9) of Theorem 1 hold and

λ2
0[α1(t)β2(t)− α2(t)β1(t)] + λ0[α2(t) + β1(t) + β2(t)] �= 1.

Then, for every f(x, t) ∈ L2(Q), Boundary Value Problem II is uniquely solvable
in V .

Proof. First of all, we observe that for the solutions to Problem II satisfies (12)
(we verbatim repeat the arguments of the proof of Theorem 1). Next, we use the
method of continuation in a parameter again. Let λ belong to [0, 1].

Examine the following family of boundary value problems: Find a solution
u(x, t) to (1) in Q satisfying (3) and such that

{
u(0, t) = λ[α1(t)ux(0, t) + α2(t)u(1, t)], 0 < t < 1,
ux(1, t) = λ[β1(t)ux(0, t) + β2(t)u(1, t)], 0 < t < 1.

(4λ)

Denote by 
 the set of numbers λ from [0, 1] such that (1), (4λ), (3) is solvable
in V for every function f(x, t) in L2(Q). As it was said before, if 
 is nonempty,
open, and closed then it coincides with [0, 1]. This coincidence of 
 with [0, 1] means
that the boundary value problem (1), (3), (4) is solvable in V .

Obviously, 
 is nonempty, since λ contains 0. To prove that 
 is open, it
suffices to establish that λ = λ0 + λ̃ belong to 
 together with λ0 ∈ 
 for sufficiently
small |λ̃|.

Let v(x, t) be an arbitrary function in V . Put

ϕ1(t) = λ̃[α1(t)vx(0, t) + α2(t)v(1, t)],

ψ1(t) = λ̃[β1(t)vx(0, t) + β2(t)v(1, t)],

ū0(x, t) =
[λ0(β1(t) + (1− x)β2(t))− 1]ϕ1(t)− [x+ λ0[α1(t) + (1 − x)α2(t)]ψ1(t)

λ2
0[α1(t)β2(t)− α2(t)β1(t)] + λ0[α2(t) + β1(t) + β2(t)]]− 1

.

Put ḡv(x, t) = f(x, t) − Lū0(x, t). Consider the following auxiliary problem:
Find a solution w(x, t) to the equation

Lw(x, t) = ḡv(x, t) (1′′)

in Q satisfying (4λ0) and (3).
Since v(x, t) belongs to V ; therefore, Lū0 ∈ L2(Q) and a solution to this problem

also lies in this space. Hence, we can define the operator 
 taking V into itself,

(w) = v.

Assume that v1(x, t) and v2(x, t) are two functions in V and w1(x, t) and w2(x, t)
are solutions to (1′′), (4λ0), (3) with the functions ḡv1(x, t) and ḡv2(x, t), respectively.
Repeating the proof of (12), we arrive at the inequality

‖
(w1)− 
(w2)‖V ≤ |λ̃|M9‖v1 − v2‖L2(Q).
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If λ̃ is so small that |λ̃|M9 ≤ 1 then 
 is contractive. A fixed point w(x, t) of this
operator is a solution to the boundary value problem.

Given a function ḡw(x,t), define the function u(x, t) as follows:

u(x, t) = w(x, t) +
λ̃[λ0(β1(t) + (1− x)β2(t))− 1][α1(t)wx(0, t) + α2(t)w(1, t)]
λ2

0[α1(t)β2(t)− α2(t)β1(t)] + λ0[α2(t) + β1(t) + β2(t)]]− 1

+
λ̃[x+ λ0[α1(t) + (1 − x)α2(t)][β1(t)wx(0, t) + β2(t)w(1, t)]
λ2

0[α1(t)β2(t)− α2(t)β1(t)] + λ0[α2(t) + β1(t) + β2(t)]]− 1
.

The function u(x, t) belongs to V and serves as a solution to (1), (4λ), (3) for
λ = λ0 + λ̃. The latter means that λ0 + λ̃ belongs to 
 and 
 is open.

We now prove that (12) implies the closedness of 
. Assume that λm is a se-
quence of numbers in 
 such that λm → λ0 as m → ∞ and um(x, t) is a sequence
of solutions to (1), (4λm), (3). Put wmk(x, t) = um(x, t) − uk(x, t). The functions
wmk(x, t) meet the equalities

Lwmk = 0,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wmk(0, t) = λk[α1(t)wmkx(0, t) + α2(t)wmk(1, t)]
+(λmx − λk)[α1(t)um(0, t) + α2(t)um(1, t)],

wmkx(1, t) = λk[β1(t)wmkx(0, t) + β2(t)wmk(1, t)]
+(λm − λk)[β1(t)umx(0, t) + β2(t)um(1, t)],

wmk(x, 0) = wmkt(x, 0) = 0 for x ∈ �.
Hence, the sequence umk(x, t) is fundamental in V and so there exists a function
u(x, t) ∈ V such that umk(x, t) → u(x, t) as m → ∞ in V . The function u(x, t)
satisfies (1) as well as (4λ0) and (3). Thus, λ0 belongs to 
. Since the limit points
of 
 belong to 
; therefore, 
 is closed.

Thus, 
 is nonempty, open, and closed. Hence, 
 coincides with [0, 1] and the
boundary value problem (1), (3), (4) is solvable in V .

3. Solvability of Boundary Value Problem III

Theorem 3. Assume that the conditions (7)–(9) of Theorem 1 hold and

λ0[β1(t) + β2(t)− α1(t)− α2(t)] �= 1.

Then, for every f(x, t) ∈ L2(Q), Boundary Value Problem III is uniquely solvable
in V .

Proof. Argue similarly to the proof of Theorems 1 and 2 with the only dis-
tinction in the choice of the functions

ϕ2(t) = λ̃[α1(t)vx(0, t) + α2(t)vx(1, t)],

ψ2(t) = λ̃[β1(t)vx(0, t) + β2(t)vx(1, t)],

ũ0(x, t) =
[x− 1 + λ0(β1(t) + β2(t))]ϕ2(t)− [1 + λ0[α1(t) + α2(t)]ψ2(t)

λ0[β1(t) + β2(t)− α1(t)− α2(t)]− 1
,

which are used to prove the openness of the corresponding set 
.
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A BOUNDARY VALUE PROBLEM FOR A MIXED

TYPE EQUATION WITH A SPECTRAL PARAMETER

I. E. Egorov

Abstract. In a cylindrical domain of the space Rn+1 we study Vragov’s boundary value
problem for a mixed type equation of the second order with a spectral parameter. Under
certain conditions on the coefficients, we establish the a priori estimates that allow us
to prove a unique solvability of this boundary value problem in the energy space. Some
sufficient conditions are obtained for the Fredholm solvability of the boundary value
problem in this space.

Keywords: mixed type equation, a priori estimate, inequality, equality, orthogonality
conditions

At present, there are many articles studying boundary value problems for mixed
type equations with a spectral parameter [1–7]. The most complete bibliography on
this topic can be found in [2, 5, 6]. But the most part of the results is obtained for
the modal equations of mixed type on a plane.

In this article we study a boundary value problem for a mixed type equation
with a spectral parameter in the multidimensional case. For the first time, this
problem was studied by V. N. Vragov in [3, 4, 8].

Assume that � is a bounded domain in Rn with boundary S ∈ C1, �t = �× t
for 0 ≤ t ≤ T , ST = S × (0, T ), and Q = �× (0, T ).

In the cylindrical domain Q we consider the mixed type equation

Lu− λu = f(x, t), (1)

where

Lu ≡ k(x, t)utt −
n∑

i,j=1

∂

∂xj
(aij(x)uxi) + a(x, t)ut + c(x)u

and λ is a complex number.
We suppose that the coefficients of the differential operator L are sufficiently

smooth functions in Q and satisfy the conditions

aij = aji,
n∑

i,j=1

aijξiξj ≥ ν|ξ|2, ξ ∈ Rn, ν > 0.

Introduce the sets

P±0 = {(x, 0) : k(x, 0) ≷ 0, x ∈ �}, P±T = {(x, T ) : k(x, T ) ≷ 0, x ∈ �}.

c© 2014 Egorov I. E.
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Boundary Value Problem. Find a solution to (1) in Q such that

u|ST = 0, u|t=0 = 0, ut|P+
0

= 0, ut|P−T = 0. (2)

Let CL be the class of complex functions from W 2
2 (Q) which satisfy (2). Denote

by CL∗ the class of complex functions from W 2
2 (Q) satisfying the adjoint boundary

conditions

v|ST = 0, v|
P
−
0

= 0, v|
P

+
T

= 0, [kvt + (kt − a)v]|t=T = 0, (2∗)

and

L∗v ≡ k(x, t)vtt −
n∑

i,j=1

∂

∂xi
(aij(x)vxj ) + (2kt − a)vt + (c+ ktt − at)v.

Endow the Sobolev space W 1
2 (Q) with the inner product

(u, v)1 =
∫

Q

[
uv̄ +

n∑

i=1

uxi v̄xi + utv̄t

]
dQ, ‖u‖21 = (u, u)1, u, v ∈W 1

2 (Q);

for the L2(Q) space we have

(u, v) =
∫

Q

uv̄ dQ, ‖u‖2 = (u, u), u, v ∈ L2(Q).

Assume that W̃ 1
2 (Q) is the completion of CL in the norm of the Sobolev space

W 1
2 (Q), and Ŵ 1

2 (Q) is a subspace of W 1
2 (Q) comprising the functions that satisfy

the conditions
v|ST = 0, v|

P
−
0

= 0, v|
P

+
T

= 0.

Definition 1. A function u ∈ L2(Q) is called a strong solution to (1), (2) if
there exists a sequence of functions um ∈ CL such that

lim
m→∞ ‖um − u‖ = lim

m→∞ ‖Lum − λum − f‖ = 0, f ∈ L2(Q).

Definition 2. A function u(x, t) ∈ W̃ 1
2 (Q) is called a generalized solution

to (1), (2) if
a(u, v)− λ(u, v) = (f, v) (3)

for every function v ∈ Ŵ 1
2 (Q), f ∈ L2(Q) and

a(u, v) ≡
∫

Q

[
− kutv̄t +

n∑

i,j=1

aijuxi v̄xj + (a− kt)utv̄ + cuv̄

]
dQ.

Similarly, we can define strong and generalized solutions to the adjoint bound-
ary value problem for the equation L∗v − λ̄v = g, g ∈ L2(Q) with the boundary
conditions (2∗).

In view of the equality

(Lu, v) = (u, L∗v), u ∈ CL, v ∈ CL∗ ,

the operator L with the domain CL admits the closure L = A in L2(Q). Introduce
the set

D(δ, γ, μ) =
{
λ ∈ C : Reλ ≤ μ− 1

δγ
(Imλ)2

}
.
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Lemma 1. Assume that

c(x) ≥ c0, a− 1
2
kt + γk ≥ δ > 0, γ > 0.

Then

‖u‖1 ≤ c1‖Au− λu‖, c1 > 0, (4)

for λ ∈ D(δ, γ, c0) and all u ∈ D(A− λE).

Proof. It suffices to establish (4) for functions u(x, t) from CL. Given u ∈ CL,
integrating by parts and taking account of (2), we infer

Re
∫

Q

(Lu− λu)e−2γtūt dQ =
∫

Q

e−2γt
[(
a− 1

2
kt + γk

)
|ut|2

+γ
n∑

i,j=1

aijuxiūxj + (−Reλ+ c)γ|u|2 − (Imλ) Im(uūt)
]
dQ+

1
2

∫

P+
T

ke−2γT |ut|2 dx

−1
2

∫

P−0

k|ut|2 dx+
e−2γT

2

∫

�T

[ n∑

i,j=1

aijuxi ūxj + (−Reλ+ c)|u|2
]
dx.

Next, the Cauchy inequality with ε and the Friedrichs–Poincaré inequality yield (4).
Lemma 1 is proven.

Inequality (4) implies that D(A− λE) ⊆ W̃ 1
2 (Q). Consider D∗(δ2, γ, μ1, μ2) ={

λ ∈ C : Reλ ≤ − 1
γμ1 − 1

δ2γ
e4γT (Im λ)2, Reλ ≤ −μ2

}
, δ2 > 0, μ1 > 0, μ2 ≥ 0.

Lemma 2. Assume that

a− 3
2
kt + γk ≥ δ > 0, γ > 0,

and either

k(x, 0) ≥ 0, k(x, T ) < 0, or k(x, 0) < 0, k(x, T ) > 0,

or k(x, 0) < 0, k(x, T ) < 0, or k(x, 0) ≥ 0, k(x, T ) > 0.

Then, for λ ∈ D∗(δ2, γ, μ1, μ2), we have the inequality

‖v‖1 ≤ c2‖A∗v − λ̄v‖, c2 > 0, (5)

for all v ∈ D(A∗ − λ̄E), where the parameters δ2, μ1, and μ2 depend on the case
chosen.

Proof. Given v(x, t) in CL∗ , examine the expression

I ≡ Re
∫

Q

e2γt(L∗v − λ̄v)(−ξv̄t + ηv̄) dQ,
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where ξ(t), η(t) are nonnegative infinitely differentiable functions which are chosen
appropriately below. Integrating by parts, we have

I =
∫

Q

e2γt
{[(

a− 3
2
kt + γk

)
ξ − k

(
η − 1

2
ξt

)]
|vt|2

+
(
η +

1
2
ξt + γξ

) n∑

i,j=1

aijvxi v̄xj +
[(
− Reλ

(
η +

1
2
ξt + γξ

)
+ (c+ ktt − at)η

)]
|v|2

+ξ Imλ Im(vtv̄) + [(kt − a− γk)η − kηt] Re(vtv̄)− (c+ ktt − at)ξRe(vtv̄)
}
dQ

−1
2

∫

�

ke2γtξ|vt|2 dx
∣∣∣∣
t=T

t=0
− 1

2

∫

�

e2γtξ

[ n∑

i,j=1

aij v̄xivxj − Reλ|v|2
]
dx

∣∣∣∣
t=T

t=0

+
∫

�

ke2γtηRe(vtv̄) dx
∣∣∣∣
t=T

t=0
. (6)

1. Let k(x, 0) ≥ 0 and k(x, T ) < 0. Choose a number T0 so that k(x, T ) ≤
−δ1 < 0, t ∈ [T0, T ], T0 < T .

We assume that ξ(t) = 1, t ∈ [0, T0], and ξt ≤ 0, ξ(T ) = 0. Put η(t) = − 1
2ξt+γ.

In this case Lemma 2 yields
(
a− 3

2
kt + γk

)
ξ − k

(
η − 1

2
ξt

)
≥ δ2 = min{δ, δ1γ, νγ}.

The boundary conditions (2*) and the embedding theorems validate the inequality
∣∣∣∣
∫

�T

ke2γTηRe(vtv̄) dx
∣∣∣∣ ≤ ε1

∫

Q

[
|vt|2 +

n∑

i=1

|vxi |2
]
dQ+ Cε1

∫

Q

|v|2 dQ, (7)

where ε1 = 1
2δ2. On the other hand,

∣∣∣∣
∫

�0

k(x, 0)η(0)Re(vtv̄) dx
∣∣∣∣ ≤

1
4

∫

�0

k(x, 0)|vt|2 dx+
∫

�0

k(x, 0)η2(0)|v|2 dx. (8)

From (7), (8), and (6) we see that

I ≥
∫

Q

{
δ2
8
|vt|2 +

1
2
νγ

n∑

j=1

|vxj |2 +
[
(−Reλ)γ − 1

δ2
e4γt(Im λ)2 − μ1

]
|v|2
}
dQ

+
1
2

∫

�0

(−Reλ− μ2)|v|2 dx, (9)

where
μ1 = max

Q
{(2/δ2)[|kt − a− γk|η

+|kηt|+ |c+ ktt − at|]2e4γt + e2γt|c+ ktt − at|η}+ Cε1 ,

μ2 = 2 max
�

(k(x, 0)η2(0)).

To derive the a priori estimate (5), we employ (9), as well as Friedrichs–Poincaré
and Hölder inequalities.
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2. Let k(x, 0) < 0 and k(x, T ) > 0. Take a number t0 such that

k(x, t) ≤ −δ1 < 0, t ∈ [0, t0], 0 < t0 < T.

Let ξ(t) satisfy the conditions

ξ(0) = 0, ξt ≥ 0, ξ(t) = 1, t ∈ [t0, T ].

Put ηt = 1
2ξt + γ. Involving the Cauchy inequality with ε and (6), we see that

I ≥
∫

Q

{
δ2
4
|vt|2 + νγ

n∑

j=1

|vxj |2 +
[
(−Reλ)γ − 1

δ2
e4γt(Im λ)2 − μ1

]
|v|2
}
dQ, (10)

where δ2 = min{δ, δ1γ} and μ2 = 0. This inequality ensures the a priori estimate of
Lemma 2.

3. For k(x, 0) < 0 and k(x, T ) < 0, we assume that

k(x, t) ≤ −δ1 < 0, t ∈ [0, t0] ∪ [T0, T ].

Let ξ(t) satisfy the relations

ξ(0) = 0, ξt ≥ 0, t ∈ [0, t0], ξ(t) = 1, t ∈ [t0, T0], ξt ≤ 0, t ∈ [T0, T ], ξ(T ) = 0.

Put ηt = 1
2ξt + γ for 0 ≤ t ≤ t0, η(t) = γ for t ∈ [t0, T0], and η(t) = − 1

2ξt + γ
for T0 ≤ t ≤ T . The conditions of Lemma 2 imply that

(
a− 3

2
kt + γk

)
− k
(
η − 1

2
ξt

)
≥ δ2 = min{δ, δ1γ, νγ}.

Note that (6) and (7) validate (9) without the boundary integral over �0, μ2 = 0.
Inequality (9) ensures (5).

4. Assume that k(x, 0) ≥ 0 and k(x, T ) > 0. To justify the a priori estimate of
Lemma 2, it suffices to consider the functions ξ(t) ≡ 1 and η(t) ≡ 0.

In this case (6) yields (10), where δ2 = δ, μ2 = 0, and

μ1 =
e4γT

2δ
max
Q
|c+ ktt − at|2.

Lemma 2 is proven.

Theorem 1. Assume that the conditions of Lemmas 1 and 2 are fulfilled and
λ ∈ D(δ, γ, c0) ∩D∗(δ2, γ, μ1, μ2). Then, for every f ∈ L2(Q), there exists a unique
strong solution in D(A− λE) to (1), (2).

Proof. The a priori estimate (5) implies that N(A∗ − λ̄E) = 0. As a direct
consequence, we have R(A− λE) = L2(Q). On the other hand, the a priori estimate
(4) yields R(A − λE) = R(A− λE). Hence, the equation Au − λu = f is always
solvable. The uniqueness results from Lemma 1. Theorem 1 is proven.

Note that a strong solution in D(A−λE) to (1), (2) whose existence is provided
by Theorem 1 is a generalized solution in W̃ 1

2 (Q) to (1), (2).
The boundary value problem adjoint to (1), (2) is of the form

L∗v − λ̄v = g(x, t), (x, t) ∈ Q, (1∗)

with the boundary conditions (2*).
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Theorem 2. Assume that the conditions of Lemmas 1 and 2 are fulfilled and
λ ∈ D(δ, γ, c0) ∩D∗(δ2, γ, μ1, μ2). Then, for every g ∈ L2(Q), there exists a unique
strong solution in D(A∗ − λ̄E) to (1∗), (2∗).

The proof of Theorem 2 is in line with that of Theorem 1. Note that the results
of Theorem 1 in the real case were obtained by V. N. Vragov in [8] under some
stronger requirements on the coefficients of (1) and the surface S.

Following [2], we introduce the energy classes

V 1
L (Q) = D(A− λE), V 1

L∗(Q) = D(A∗ − λ̄E)

for the operators Aλ = A− λE and A∗λ = A∗ − λ̄E.

Lemma 3. Let the conditions of Theorem 1 hold. Then
(
A−1

λ

)∗ = (A∗λ)−1.
Proof. Theorems 1 and 2 imply that

(Aλu, v) = (u,A∗λv), u ∈ V 1
L (Q), v ∈ V 1

L∗(Q).

Put ϕ = Aλu and ψ = A∗λv. In view of Theorems 1 and 2, we have the form

(ϕ, (A∗λ)−1ψ) =
(
A−1

λ ϕ, ψ
)

=
(
ϕ,
(
A−1

λ

)∗
ψ
)
, ϕ, ψ ∈ L2(Q),

and so (A∗λ)−1ψ =
(
A−1

λ

)∗
ψ, ψ ∈ L2(Q). Lemma 3 is proven.

Theorem 3. Under the conditions of Lemmas 1 and 2, the following hold:
1. The boundary value problem (1), (2) is uniquely solvable in V 1

L (Q) except at
most countably many points {λk} with the only possible limit point λ =∞. Together
with λk, the spectrum of (1), (2) contains λ̄k. For λ = λk in the spectrum of (1),
(2), the homogeneous boundary value problem (1), (2) has a nontrivial solutions
in V 1

L (Q) and to every λk, there correspond finitely many nk of linearly independent
solutions.

2. The numbers {λk} and {λ̄k} are the eigenvalues of the adjoint boundary
value problem (1∗), (2∗); moreover, λ̄k is of multiplicity nk and the corresponding
eigenfunction vkj , j = 1, nk, lies in V 1

L∗ . For (1), (2) with λ = λk to be solvable, it
is necessary and sufficient that the orthogonality conditions (f, vkj ) = 0, j = 1, nk,
be valid.

Proof. The boundary value problem (1), (2) is equivalent to the operator
equation

Aλ0u ≡ Au − λ0u = (λ− λ0)u + f. (11)

In case λ0 ∈ D(δ, γ, c0) ∩ D∗(δ2, γ, μ1, μ2), the operator Aλ0 has bounded inverse
A−1

λ0
acting from L2(Q) into V 1

L (Q) by Theorem 1. Hence, (11) is equivalent to the
equation

u = (λ − λ0)A−1
λ0
u+A−1

λ0
f. (12)

Since the embedding of V 1
L (Q) in L2(Q) is compact, we conclude that A−1

λ0
as an

operator from L2(Q) into L2(Q) is compact as well. So claim 1 of Theorem 3 is
proved.

Note that the adjoint problem (1*), (2*) is equivalent to the operator equation

v = (λ̄− λ̄0)(A∗λ0
)−1v + (A∗λ0

)−1g. (12∗)

By Lemma 3 the homogeneous equation (12*) is adjoint to the homogeneous equa-
tion (12).
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For (12) for λ = λk to be solvable, it is necessary and sufficient that
(
A−1

λ0
f, vkj

)
= 0, j = 1, nk.

Hence,

0 =
(
f,
(
A−1

λ0

)∗
vkj

)
= (f, (A∗λ0

)−1vkj ) =
1

λ̄k − λ̄0
(f, vkj ).

The proof of Theorem 3 is complete.
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A CONJUGATION PROBLEM FOR SOME HIGHER

ORDER NONCLASSICAL EQUATIONS. II

A. I. Kozhanov and E. F. Sharin

Abstract. This is a continuation of the authors’ article [1] which is devoted to solvabil-
ity of conjugate problems (generalized diffraction problems) for some nonclassical higher
order differential equations of composite type. We prove existence and uniqueness the-
orems of regular solutions to these problems.

Keywords: higher order differential equation of composite type, conjugation problem,
regular solution, existence, uniqueness

Introduction

The conjugation problems (generalized diffraction problems) for the equation

(−1)p+1D2p
t u− h(x)uxx + c(x, t)u = f(x, t) (∗)

(D2p
t = ∂2p

∂t2p , p ≥ 1) in the case of a strictly positive function h(x) continuous
everywhere but possibly one interior point of the domain are studied in [1]. In this
article we consider similar problems for the composite type equation

(−1)p+1D2p
t (u− g(x)uxx)− h(x)uxx + c(x, t)u = f(x, t) (∗∗)

in the case of a strictly positive function g(x) whereas h(x) is not necessarily positive.
Note that the necessary boundary conditions for (∗∗) are rather similar to those
for (∗) in [2–4].

The conjugation problems or the generalized diffraction problems are studied
in mathematics and mathematical modeling for a long time (see, for instance, [5–
17]). Recall the following: The problems with the conjugate (gluing) conditions
arise naturally in the theory of mixed type equations; many articles are devoted to
their study, for instance, [18–33] (actually, considerably many articles can be pointed
out). At last, we note that, besides [1], the conjugation problems for nonclassical
differential equations are studied in [34–37].

The general conjugation problem was proposed in [1]; but the conditions on
the coefficients provide four special cases which were investigated. In this article we
discuss special cases from the very beginning.

1. Statements of the Problems

Assume that � is the interval (−1, 1) of the Ox-axis and Q is the rectangle
�× (0, T ), 0 < T < +∞. Next, assume that g(x), h(x), c(x, t), and f(x, t) are given
functions defined for x ∈ � and t ∈ [0, T ], and g(x) is strictly positive for x ∈ �,

c© 2014 Kozhanov A. I. and Sharin E. F.



A Conjugation Problem 17

ai, bi, ci, and di, i = 1, 4 are given reals. Put Dk
t = ∂k

∂tk . Let L be a differential
operator whose action on a given function v(x, t) is defined as

Lv = (−1)p+1D2p
t (v − g(x))vxx − h(x)vxx + c(x, t)v

(here p ≥ 1 is a positive integer).
Put Q1 = (−1, 0)× (0, T ), Q2 = (0, 1)× (0, T ), and Q0 = Q1 ∪Q2.

Conjugation Problem I. Find a solution u(x, t) to the equation

Lu = f(x, t) (1)

in Q0 satisfying the boundary conditions

Dk
t u(x, t)

∣
∣
t=0 = 0, x ∈ (−1, 0) ∪ (0, 1), k = 0, . . . , p, (2)

Dk
t u(x, t)

∣
∣
t=T

= 0, x ∈ (−1, 0) ∪ (0, 1), k = 1, . . . , p− 1 (3)

(for p = 1, this condition is absent),

u(−1, t) = u(1, t) = 0, t ∈ (0, T ), (4)

and the conjugate conditions

u(−0, t) = a1ux(−0, t) + b1ux(+0, t), t ∈ (0, T ), (5)

u(+0, t) = c1ux(−0, t) + d1ux(+0, t), t ∈ (0, T ). (6)

Conjugation Problem II. Find a solution u(x, t) to (1) in Q0 satisfying the
boundary conditions (2)–(4), and the conjugate conditions

u(−0, t) = a2u(+0, t) + b2ux(−0, t), t ∈ (0, T ), (7)

ux(+0, t) = c2u(+0, t) + d2ux(−0, t), t ∈ (0, T ). (8)

Conjugation Problem III. Find a solution u(x, t) to (1) in Q0 satisfying the
boundary conditions (2)–(4) and the conjugate conditions

u(+0, t) = a3u(−0, t) + b3ux(+0, t), t ∈ (0, T ), (9)

ux(−0, t) = c3u(−0, t) + d3ux(+0, t), t ∈ (0, T ). (10)

Conjugation Problem IV. Find a solution u(x, t) to (1) in Q0 satisfying the
boundary conditions (2)–(4) and the conjugate conditions

ux(−0, t) = a4u(−0, t) + b4u(+0, t), t ∈ (0, T ), (11)

ux(+0, t) = c4u(−0, t) + d4u(+0, t), t ∈ (0, T ). (12)
Note that Problems II and III correspond to the classical diffraction problems,

where the gluing conditions of a solution and its gradient are imposed.
Define the space in which we study the uniqueness and existence of solutions to

Conjugation Problems I–IV. Namely, put

Vm =
{

v(x, t) : v(x, t) ∈W 2,m
2,x,t(Q1), v(x, t) ∈W 2,m

2,x,t(Q2),

vxx(x, t) ∈W 2,m
2,x,t(Q1), vxx(x, t) ∈ W 2,m

2,x,t(Q2)
}

.

Endow Vm with the norm

‖v‖Vm =
(‖v‖2

W 2,m
2,x,t(Q1)

+ ‖vxx‖2W 2,m
2,x,t(Q1) + ‖v‖2

W 2,m
2,x,t(Q2) + ‖vxx‖2W 2,m

2,x,t(Q2)

) 1
2 .

Obviously, in this case Vm becomes a Banach space.
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2. Uniqueness of Solutions

In what follows, we assume that g(−0), g(+0), h(−0), and h(+0) are finite
for g(x) and h(x). Put

h1(x) =
{

h(x) for x ∈ [−1, 0),
h(−0) for x = 0,

h2(x) =
{

h(x) for x ∈ (0, 1),
h(+0) for x = 0,

g1(x) =
{

g(x) for x ∈ [−1, 0),
g(−0) for x = 0,

g2(x) =
{

g(x) for x ∈ (0, 1),
h(+0) for x = 0,

ϕ1(x) =
h1(x)
g1(x)

, ϕ2(x) =
h2(x)
g2(x)

.

Let ϕ1(x) and ϕ2(x) be representable as

ϕ1(x) = ϕ10(x) + ϕ11(x), ϕ2(x) = ϕ20(x) + ϕ21(x).

Put

ḡ11 = max
−1≤x≤0

g1(x), ḡ21 = max
0≤x≤1

g2(x), C1 = min
Q1

c(x, t)
g1(x)

, C2 = min
Q2

c(x, t)
g2(x)

,

k1 = sup
−1≤x≤0

|ϕ11(x)|, k2 = sup
0≤x≤1

|ϕ21(x)|,

m1 = sup
−1≤x≤0

|ϕ′1(x)|, m2 = sup
0≤x≤1

|ϕ′2(x)|.

The functions v(x, t) satisfying (2) and belonging to V2p meet the inequalities
∫

Q1

v2 dxdt ≤M0

∫

Q1

(

Dp
t v
)2

dxdt,

∫

Q2

v2 dxdt ≤M0

∫

Q2

(

Dp
t v
)2

dxdt, (13)

∫

Q1

v2
t dxdt ≤M1

∫

Q1

(

Dp
t v
)2

dxdt + M2

∫

Q1

v2 dxdt, (14)

∫

Q2

v2
t dxdt ≤ N1

∫

Q2

(

Dp
t v
)2

dxdt + N2

∫

Q2

v2 dxdt, (15)

where M0 is defined only by the number T , while M1 and N1 are either arbitrary
positive numbers (in this case M2 and N2 are calculated through M1 and N1, re-
spectively, and T ) or M1 and N1 are defined by T (M2 = 0 and N2 = 0 in this
case).

Let λ0 be a number in [T,+∞). Put

A1 = 2p− 1− k1M−(λ0 − T )k1M0T −m1M0T,

A2 =
2p− 1
ḡ11

−m1M1T, A3 = C1 − m1M2T

2
,

B1 = 2p− 1− k2M0 − (λ0 − T )k2M0T −m2M0T,

B2 =
2p− 1
ḡ21

−m2N1T, B3 = C2 − m2N2T

2
.
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Theorem 1. Assume that

g1(x) ∈ C1([−1, 0]), g2(x) ∈ C1([0, 1]), 0 < ḡ01 ≤ g1(x) ≤ ḡ11

for x ∈ [−1, 0], 0 < ḡ02 ≤ g2(x) ≤ ḡ21 for x ∈ [0, 1];
(16)

h1(x) ∈ C1([−1, 0]), h2(x) ∈ C1([0, 1]); (17)

ϕ10(x) ≥ 0 for x ∈ [−1, 0], ϕ2(x) ≥ 0 for x ∈ [0, 1]; (18)

c(x, t) ∈ C1(Q), c(x, t) ≥ 0, ct(x, t) ≤ 0 for (x, t) ∈ Q; (19)

a1 ≤ 0, b1c1 ≤ 0, d1 ≥ 0, a1d1 − b1c1 ≤ 0; (20)

ϕ1(0) ≥ 0, ϕ2(0) ≥ 0, b1[ϕ1(0)− ϕ2(0)] = 0; if c1 
= 0,

then the quadratic form − a1ϕ1(0)ξ2 − 2b1ϕ2(0)ξη − b1d1ϕ2(0)
c1

η2

is nonnegative definite for (ξ, η) ∈ R2; (21)

Ai ≥ 0, Bi ≥ 0, i = 1, 3, A2
1 + A2

2 + A2
3 > 0, B2

1 + B2
2 + B2

3 > 0. (22)

Then Conjugation Problem I has at most one solution in V2p.
Proof. First, we assume that b1 
= 0, c1 
= 0, and f(x, t) is identically zero

in Q. Consider the equality
∫

Q1

λ0 − t

g(x)
Lu · ut dxdt + γ

∫

Q2

λ0 − t

g(x)
Lu · ut dxdt = 0, (23)

where γ coincides with − b1
c1

, and λ0 is as above. Integrating by parts and using (2)–
(4), we conclude from (23) that

2p− 1
2

∫

Q1

1
g(x)
(

Dp
t u
)2

dxdt +
2p− 1

2

∫

Q1

(

Dp
t ux

)2
dxdt

+
γ(2p− 1)

2

∫

Q2

1
g(x)
(

Dp
t u
)2

dxdt +
γ(2p− 1)

2

∫

Q2

(

Dp
t ux

)2
dxdt

+
1
2

∫

Q1

ϕ10(x)u2
x dxdt +

γ

2

∫

Q2

ϕ20(x)u2
x dxdt

+
∫

Q1

c(x, t)− (λ0 − t)ct(x, t)
g(x)

u2 dxdt + γ

∫

Q2

c(x, t) − (λ0 − t)ct(x, t)
g(x)

u2 dxdt

+
λ0 − T

2

0∫

−1

1
g(x)
[

Dp
t u(x, T )

]2
dx +

λ0 − T

2

0∫

−1

[

Dp
t ux(x, T )

]2
dx

+
γ(λ0 − T )

2

1∫

0

1
g(x)
[

Dp
t u(x, T )

]2
dx +

γ(λ0 − T )
2

1∫

0

[

Dp
t ux(x, T )

]2
dx

+
λ0 − T

2

0∫

−1

c(x, t)
g(x)

u2(x, T ) dx +
γ(λ0 − T )

2

1∫

0

c(x, t)
g(x)

u2(x, T ) dx
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+
T∫

0

{

−a1

2
[

Dp
t ux(−0, t)

]2 + γc1D
p
t ux(+0, t)Dp

t ux(−0, t)

+
γd1

2
[

Dp
t ux(+0, t)

]2
}

dt− a1(λ0 − T )
2

[

Dp
t ux(−0, T )

]2

+γc1(λ0 − T )Dp
t ux(+0, T )Dp

tux(−0, T ) +
γd1(λ0 − T )

2
[

Dp
t ux(+0, T )

]2

+(p− 1)
T∫

0

{−a1
[

Dp
t ux(−0, t)

]2 + (γc1 − b1)Dp
t ux(+0, t)Dp

t ux(−0, t)

+γd1
[

Dp
t ux(+0, t)

]2}
dt +

λ0 − T

2

0∫

−1

ϕ10(x)u2
x(x, T ) dx

+
γ(λ0 − T )

2

1∫

0

ϕ20(x)u2
x(x, T ) dx +

T∫

0

{

−a1ϕ1(0)
2

u2
x(−0, t)

+γc1ϕ2(0)ux(+0, t)ux(−0, t) +
γd1ϕ2(0)

2
u2
x(+0, t)

}

dt

−a1ϕ1(0)
2

u2
x(−0, T ) + γc1ϕ2(0)ux(+0, T )ux(−0, T ) +

γd1ϕ2(0)
2

u2
x(+0, T )

= −1
2

∫

Q1

ϕ11(x)u2
x dxdt −

γ

2

∫

Q2

ϕ21(x)u2
x dxdt −

∫

Q1

(λ0 − t)ϕ′1(x)uxut dxdt

−γ
∫

Q2

(λ0 − t)ϕ′2(x)uxut dxdt− λ0 − T

2

0∫

−1

ϕ11(x)u2
x(x, T ) dx

−γ(λ0 − T )
2

1∫

0

ϕ21(x)u2
x(x, T ) dx. (24)

Taking account of (13)–(15), the elementary inequalities
0∫

−1

u2
x(x, T ) dx ≤ T

∫

Q1

u2
xt dxdt,

1∫

0

u2
x(x, T ) dx ≤ T

∫

Q2

u2
xt dxdt,

and the Young inequality, we can estimate the right-hand side in (24) as follows:
[
k1M0

2
+

(λ0 − T )k1M0T

2
+

m1M0T

2

] ∫

Q1

[

Dp
t ux

]2
dxdt

+
m1M1T

2

∫

Q1

[

Dp
t u
]2

dxdt +
m1M2T

2

∫

Q1

u2 dxdt

+γ

[
k2M0

2
+

(λ0 − T )k2M0T

2
+

m2M0T

2

] ∫

Q2

[

Dp
t ux

]2
dxdt

+
γm2N1T

2

∫

Q2

[

Dp
t u
]2

dxdt +
γm2N2T

2

∫

Q2

u2 dxdt.
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This estimate, (16)–(21), and (23) yield

A1

2

∫

Q1

[

Dp
t ux

]2
dxdt +

A2

2

∫

Q1

[

Dp
t u
]2

dxdt + A3

∫

Q1

u2 dxdt

+
γB1

2

∫

Q2

[

Dp
t ux

]2
dxdt +

γB2

2

∫

Q2

[

Dp
t u
]2

dxdt + γB3

∫

Q2

u2 dxdt ≤ 0. (25)

This inequality and (22) imply that u(x, t) ≡ 0 in Q1 and u(x, t) ≡ 0 in Q2.
We assume now that b1 = 0. In this case Problem I in Q1 is a separate problem;

analyzing the equality ∫

Q1

λ0 − t

g(x)
Lu · ut dxdt = 0 (26)

for a solution u(x, t) and using the conditions of the theorem, we infer u(x, t) ≡ 0
in Q1. Condition (6) gives rise to another problem in Q2; analyzing the equality

∫

Q2

λ0 − t

g(x)
Lu · ut dxdt = 0 (27)

and involving the conditions of the theorem, we infer u(x, t) ≡ 0 in Q2.
In the case of c1 = 0, the arguments are similar.
The theorem is proven.

Theorem 2. Assume conditions (16)–(19), (22) of Theorem 1 and the condi-
tions

b2 ≤ 0, c2 ≥ 0, a2d2 ≥ 0; (28)
ϕ1(0) ≥ 0, ϕ2(0) ≥ 0, a2[ϕ1(0)− ϕ2(0)] = 0. (29)

Then Conjugation Problem II has at most one solution in V2p.
The proof of Theorem 2 is rather similar to that of Theorem 1. Namely, we

analyze (23) in which γ coincides with a2
d2

in the case of a2 
= 0 and d2 
= 0 or (26)
or (27) in the case of a2 = 0 or d2 = 0.

Theorem 3. Assume that conditions (16)–(19), (22) of Theorem 1 and the
conditions

b3 ≥ 0, c3 ≤ 0, a3d3 ≥ 0; (30)
ϕ1(0) ≥ 0, ϕ2(0) ≥ 0, d3[ϕ1(0)− ϕ2(0)] = 0 (31)

are fulfilled. Then Conjugation Problem III has at most one solution in V2p.
To demonstrate this theorem, we employ (23) where γ coincides with a3

d3
.

Theorem 4. Assume that conditions (16)–(19), (22) of Theorem 1 and the
conditions

a4 ≤ 0, b4c4 ≤ 0, d4 ≥ 0, b4c4 ≤ a4d4; (32)
ϕ1(0) ≥ 0, ϕ2(0) ≥ 0, b4[ϕ1(0)− ϕ2(0)] = 0 (33)

are fulfilled. Then Conjugation Problem IV has at most one solution in V2p.
To justify Theorems 3 and 4, we employ the same equality (23) with numbers

γ = a3
d3

and − b4
c4

, respectively, or one of the equalities (26) and (27).
Remark. The conditions (28), (30), and (32) can be weakened if we assume

additionally that
ϕ1(x) ≥ m01 > 0 for x ∈ [−1, 0], ϕ2(x) ≥ m02 > 0 for x ∈ [0, 1]

(this situation is treated in [1]).
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3. Existence of Solutions

To prove solvability of Conjugation Problems I–IV, as in [1], we apply the
method of continuation in a parameter.

Following [1], we first examine Conjugation Problem II.

Theorem 5. Assume (16)–(19), (22), (28), and (29) fulfilled. Then Conjuga-
tion Problem II is solvable in V2p for every f(x, t) in L2(Q).

Proof. Let μ be a number in [0, 1]. Examine the family of problems: Find
a solution u(x, t) to the equation

Lμu ≡ (−1)p+1D2p
t (u− g(x)uxx)− μ[h(x)uxx + c(x, t)u] = f (1μ)

in Q satisfying (2)–(4) and the conditions

u(−0, t) = μ[a2u(+0, t) + b2ux(−0, t)], t ∈ (0, T ), (7μ)

ux(+0, t) = μ[c2u(+0, t) + d2ux(−0, t)], t ∈ (0, T ). (8μ)

Note that this problem is solvable in V2p for μ = 0, since Problem (10), (2)–(4), (70),
(80) decomposes into two independent problems for ordinary differential equations in
the variables t and x whose solvability is obvious. By the method of continuation in
a parameter [38], Problem (1μ), (2)–(4), (7μ), (8μ) is solvable in V2p for all μ in [0, 1]
whenever solutions u(x, t) to this problem satisfy an a priori estimate uniform (in μ)

‖u‖V2p ≤ R0 (34)

with a constant R0 defined only by the coefficients of L, the number T , and the
norm of f(x, t) in L2(Q).

Demonstrate this estimate.
Assume that a2 
= 0 and d2 
= 0. Examine the equality

∫

Q1

λ0 − t

g(x)
Lu · ut dxdt + γ

∫

Q2

λ0 − t

g(x)
Lu · ut dxdt

=
∫

Q1

λ0 − t

g(x)
f · ut dxdt + γ

∫

Q2

λ0 − t

g(x)
f · ut dxdt

(λ0 and γ are those of the proof of Theorem 2).
Repeating the arguments of the analysis of (23) and using (2)–(4), (7μ), (8μ),

the conditions of the theorem, and the Young inequality, we arrive at the first a priori
estimate for a solution u(x, t) to Problem (1μ), (2)–(4), (7μ), (8μ) of the form

∫

Q1

(

Dp
t ux

)2
dxdt +

∫

Q2

(

Dp
t ux

)2
dxdt ≤ R1, (35)

where the constant R1 in this estimate is defined only by the coefficients of L, the
number T , and the norm of f(x, t) in L2(Q). At the next step we consider the
equality ∫

Q1

λ0 − t

g(x)
Lu · uxxt dxdt + γ

∫

Q2

λ0 − t

g(x)
Lu · uxxt dxdt

=
∫

Q1

λ0 − t

g(x)
f · uxxt dxdt + γ

∫

Q2

λ0 − t

g(x)
f · uxxt dxdt.
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Integrating by parts and using (2)–(4), (7μ), (8μ), the conditions of the theorem,
and the Young inequality we see that a solution u(x, t) to Problem (1μ), (2)–(4),
(7μ), (8μ) satisfies the estimate

∫

Q1

(Dp
t uxx)2 dxdt +

∫

Q2

(Dp
t uxx)2 dxdt ≤ R2 (36)

with the constant R2 defined by the coefficients of L, the number T , and the norm
of f(x, t) in L2(Q).

Analyzing the equality
∫

Q1

Lu ·D2p
t uxx dxdt + γ

∫

Q2

Lu ·D2p
t uxx dxdt

=
∫

Q1

f ·D2p
t uxx dxdt + γ

∫

Q2

f ·D2p
t uxx dxdt,

with the use of the conditions of the theorem, (35), (36), and the Young inequality,
we infer ∫

Q1

(

D2p
t uxx

)2
dxdt +

∫

Q2

(

D2p
t uxx

)2
dxdt ≤ R3, (37)

where the constant R3 is defined by the coefficients of L, the number T , and the
norm of f(x, t) in L2(Q).

The estimates (35)–(37) imply (34). As is mentioned above, the validity of this
estimate ensures the solvability of Problem (1μ), (2)–(4), (7μ), (8μ) for all μ in [0, 1],
in particular, for μ = 1.

So, we proved the claim for a2 
= 0 and d2 
= 0. If a2 = 0 or d2 = 0 then in one
of the rectangles Q1 or Q2 (or in Q1 and Q2) Conjugation Problem II turns into
a usual initial-boundary value problem whose solvability results from the a priori
estimate (34) and the method of continuation in a parameter (the derivation of (34)
in this case is similar to that as before but first we prove it in one of the rectangles
Q1 or Q2 and after that in the other).

The above arguments imply that, for a2 = 0 or d2 = 0, Conjugation Problem II
is also solvable in V2p.

The theorem is proven.

Theorem 6. Let (16)–(19), (21), (30), and (31) hold. Then, for every f(x, t)
in L2(Q), Conjugation Problem III is solvable in V2p.

The proof of the theorem is similar to that of Theorem 5; namely, we involve
a priori estimates and the method of continuation in a parameter.

Theorem 7. Let (16)–(22) hold. Then, for every function f(x, t) from L2(Q),
Conjugation Problem I in solvable in V2p.

Theorem 8. Let (16)–(19), (22), (32), and (33) hold. Then, for every function
f(x, t) from L2(Q), Conjugation Problem IV is solvable in V2p.

The proofs of Theorems 7 and 8 are similar to those of the corresponding the-
orems in [1]; namely, we employ Theorems 5 and 6 on solvability of Conjugation
Problems II and III.
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A NUMERICAL SOLUTION OF THE

INVERSE STEFAN PROBLEM BY

INTRODUCING A DISTRIBUTED HEAT SOURCE
E. A. Krylova

Abstract. We consider the two-phase inverse Stefan problem of reconstructing the
right-hand side of the heat equation as a function of time given its spatial distribu-
tion. We propose a new method for accounting for the heat of the phase passage by
introducing a heat source distributed in a neighborhood of the phase transition bound-
ary. An algorithm is constructed for computations based on transforming the original
problem to a boundary value problem for the loaded heat equation and present examples
of simulations.

Keywords: heat of the phase passage, distributed heat source, Stefan problem, bound-
ary value problem for a loaded equation, inverse problem, reconstruction of the right-
hand side of the heat equation, mesh problem, difference scheme

Introduction

The problems of reconstructing unknown heat sources from additional temper-
ature measurements at separate points are important in the inverse problems of
mathematical physics [1–3]. In many cases the unknown is the time dependence
of the right-hand side. To approximately solve the problems of reconstructing the
unknown right-hand side, we use various approaches that rest on regularization
methods [4].

The series of studies [5, 6] bases the numerical algorithms for solving inverse
problems approximately on transforming the original problem into a boundary value
problem for loaded heat equations in which a special setup of calculations reduces
the inverse problem to two direct problems. This method is used in [7] to numer-
ically solve the simplest spatially one-dimensional single-phase inverse problem of
reconstructing the variable intensivity of heat sources from their available spatial
distribution.

In this article we consider the problem of reconstructing the time dependence of
the right-hand side of a parabolic equation when the distribution in space is available.
This linear inverse problem belongs to the class of ill-posed problems of mathemat-
ical physics in the classical sense under some special assumptions on the points of
additional measurements: the source must act at the points of observation [5]. Bas-
ing on the method of [7], we construct a computational algorithm for approximately
solving the spatially one-dimensional two-phase inverse Stefan problem with a new
approach to accounting for the heat of the phase transition: we introduce a heat
source distributed in the neighborhood of the phase transition boundary [8, 9].

c© 2014 Krylova E. A.
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1. Statement of the Problem

The distribution of temperature and position of the phase transition boundary
is determined by the solution to the system

c1
∂T

∂t
=

∂

∂x

(
λ1
∂T

∂x

)
+ f(x, t), 0 < x < ξ(t), (1.1)

c2
∂T

∂t
=

∂

∂x

(
λ2
∂T

∂x

)
+ f(x, t), ξ(t) < x < l. (1.2)

The following conditions hold on the phase transition boundary:

T = T∗, x = ξ(t), (1.3)

λ2
∂T

∂x
− λ1

∂T

∂x
= L

dξ

dt
. (1.4)

For (1.1)–(1.4) we impose boundary conditions of the third kind:

λ1
∂T

∂x
= α(T − TC), x = 0, (1.5)

∂T

∂x
= 0, x = l. (1.6)

Moreover, we impose the initial condition

T (x, 0) = TC , 0 ≤ x ≤ l. (1.7)

In (1.1)–(1.7) we use the following notation: c is the spatial heat capacity, λ is
the heat conductivity coefficient, T∗ and TC are the temperatures of the phase tran-
sition and the surrounding medium, L is the latent heat of crystallization (melting),
α is the heat transfer coefficient, and x = ξ(t) is the equation of the phase transition
boundary. The indices 1 and 2 refer to the phases with T > T∗ and T < T∗.

The direct problem is stated as (1.1)–(1.7). In this article we consider the
inverse problem in which, apart from T (x, t), the right-hand side f(x, t) of (1.1),
(1.2) is unknown.

Assume that we can express f(x, t) as

f(x, t) = c̃η(t)ψ(x), (1.8)

where ψ(x) is a known function and η(t) is the time dependence of the source.
We reconstruct this dependence from the additional observation of T (x, t) at some
interior point 0 < x∗ < l:

T (x∗, t) = ϕ(t). (1.9)

We solve the problem of reconstructing the time dependence of the right-hand side of
the parabolic equation with known spatial distribution while imposing the following
restrictions:

(1) ψ(x∗) �= 0;
(2) ψ(x) is sufficiently smooth (ψ ∈ C2[0, 1]);
(3) to simplify exposition, ψ(x) = 0 on the boundary of the computational

domain.
The first assumption merits particular attention: a source is acting at the

point x∗ of observation. Precisely this makes the identification problem well-posed,
meaning a continuous dependence of the solution on the initial data, right-hand side,
and measurements at the interior point.
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2. The Method of Introducing a Distributed Heat Source

A number of methods are available for numerical solutions to the Stefan problem
(1.1)–(1.7). The most widely used is the method of [10, 11], where the enthalpy
function is used to reduce the Stefan problem to a boundary value problem for
the heat equation with discontinuous coefficients. Constructing a difference scheme
of end-to-end computation for equations of this type, we replace the Dirac delta
function by a delta-like function on the interval (T∗ − 	,T∗ + 	). Moreover, we
approximate the enthalpy function by various continuous functions on this interval.
Approximation by the unit Heaviside function instead of the enthalpy function is
considered in [12]. These methods assume that the phase transition of crystallization
starts at a certain temperature above the crystallization temperature.

To numerically solve the inverse Stefan problem, we propose in this article
to modify the approach to accounting for the heat of the phase transition. Our
approach describes the real process of heat release on the phase transition boundary
more precisely thanks to the introduction of a heat source [8] distributed in the
neighborhood (T∗ − 	,T∗] (toward the forming phase). To this end, we introduce
a piecewise continuous nonnegative function satisfying the following conditions:

(1) v(T ) is defined on the entire range of temperatures, is nonzero on the interval
(T∗ −	,T∗), and vanishes identically outside it;

(2) v(T∗) = 1;
(3) ∂v

∂T < 0 for T ∈ (T∗ −	,T∗).
Proposition. If v(T ) satisfies these conditions then we can replace (1.1), (1.2),

and (1.4) by the single equation (2.1) on the whole domain 0 < x < l:

c
∂T

∂t
=

∂

∂x

(
λ
∂T

∂x

)
+ L

∂v

∂t
+ f(x, t), (2.1)

where c = c1 and λ = λ1 for T > T∗, while c = c2 and λ = λ2 for T < T∗.
Proof. The proof of the proposition, by using the method of [10], appears

in [8, 9]: in [8] in the case of a one-dimensional domain and vanishing right-hand
sides of (1.1) and (1.2) (f(x, t) = 0); in [9] in the case of a two-dimensional domain
and f(x, t) �= 0.

As functions of temperature, the coefficients of (2.1) have discontinuities at
T = T∗ and are undefined at the point. Combine the last term on the right-hand
side with left-hand side. Then the effective heat capacity c−L dv

dT has discontinuities
at T = T∗ and T = T∗ +	. Using this, we rearrange (2.1) as

c̃
∂T

∂t
=

∂

∂x

(
λ̃
∂T

∂x

)
+ f, (2.2)

where the coefficients are defined on the whole range of temperatures as

c̃ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2 if T ≤ T∗ −	,
c2 − L dv

dT if T∗ −	 < T ≤ T∗,
0.5(c1 + c2)− L dv

dT if T = T∗,
c1 if T ≥ T∗,

(2.3)

λ̃ =

⎧⎪⎨
⎪⎩
λ1 if T ≤ T∗ −	,
(λ1 + λ2)/2− (λ2 + λ1)(T − T∗)/2	 if T∗ −	 ≤ T ≤ T∗ +	,

λ2 if T > T∗ +	.

(2.4)
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We approximate the heat conductivity coefficient by a continuous function.
We can also extend it by analogy with the heat capacity coefficient. Since the
temperature field is most sensitive to the value of the heat capacity coefficient, we
must extend it to correspond most precisely to the real phase transition process.
This explains our choice of the function c̃ in the above form.

Thus, the direct problem (1.1)–(1.7) reduces to (2.2) with the boundary condi-
tions (1.5) and (1.6), as well as the initial condition (1.7).

Choosing the function v(T ), we must take into account the direction of the
process: does the phase transition result from lowering or raising the temperature?
We must choose v(T ) to be nonvanishing on the domain of forming phase.

Our numerical solution of the inverse problem under consideration uses the
method of [5, 7], which amounts to reducing the inverse problem to a boundary value
problem for a loaded equation and constructing a difference scheme and a nonlocal
mesh problem to implement it.

3. Reducing the Inverse Problem to a Boundary
Value Problem for the Loaded Equation

Seek a solution to the inverse problem as

T (x, t) = θ(t)ψ(x) + ω(x, t), (3.1)

where

θ(t) =
t∫

0

η(s) ds. (3.2)

Inserting (1.8), (1.9), and (3.2) into (2.2) yields the equation for ω(x, t):

c̃
∂ω

∂t
=

∂

∂x

(
λ̃
∂ω

∂x

)
+ θ(t)

∂

∂x

(
λ̃
∂ψ

∂x

)
. (3.3)

Taking (3.2) into account, we see that (1.9) leads to the expression

θ(t) =
1

ψ(x∗)
(ϕ(t)− ω(x∗, t)) (3.4)

for the unknown θ(t). Inserting (3.4) into (3.3) yields the required loaded parabolic
equation

c̃
∂ω

∂t
=

∂

∂x

(
λ̃
∂ω

∂x

)
+

1
ψ(x∗)

(
ϕ(t)− ω(x∗, t)

)
∂

∂x

(
λ̃
∂ψ

∂x

)
. (3.5)

By the assumptions on the right-hand side along the boundary, the boundary
condition is

λ̃
∂w(0, t)
∂x

= α(w(0, t) + TC),
∂w(l, t)
∂x

= 0, 0 ≤ t ≤ t0. (3.6)

It follows from (3.2) that the auxiliary function θ(t) satisfies

θ(0) = 0, (3.7)

which enables us to use the initial condition

w(x, 0) = TC , 0 < x < l. (3.8)

Therefore, we state the inverse problem (2.2), (1.5)–(1.7) as a boundary value
problem for the loaded equations (3.5)–(3.8) with the expression (3.2), (3.4) for the
unknown time dependence of the source.
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4. The Difference Scheme

Take the uniform mesh ω with meshsize h along x. Denote by xi = ih for
i = 0, 1, . . . , N with Nh = l the nodes of this mesh and assume that v = vi = v(xi).
For simplicity, assume that the point x = x∗ of observation coincides with the interior
node corresponding to the index i = k.

To pass from one temporal layer tj = jτ , where j = 0, 1, . . . , j0 and τ > 0,
to the next layer tj+1, we use a purely implicit difference scheme for (3.5). At the
interior nodes of the spatial mesh we have

c̃
ωj+1 − ωj

τ
=
(
aωj+1

x̄

)
x

+
1
ψk

(
ϕj+1 − ωj+1

k

)
(aψx̄)x. (4.1)

For problems with sufficiently smooth coefficient λ̃ put ai = λ̃ · 0, 5(xi + xi−1).
Approximating (3.6) and (3.8), we obtain

λ̃
ωj+1

1 − ωj+1
0

h
= α
(
ωj+1

0 − TC
)
,

ωj+1
N − ωj+1

N−1

h
= 0, j = 0, 1, . . . , j0 − 1, (4.2)

ω0
i = TC , i = 1, 2, . . . , N − 1. (4.3)

From the solution to the difference problem (4.1)–(4.3), in accordance with (3.4)
define

θj+1 =
1
ψk

(
ϕj+1 − ωj+1

k

)
, j = 0, 1, . . . , j0 − 1, (4.4)

complementing these relations by the condition θ0 = 0 (see (3.7)). Taking (3.2) into
account, for the required time dependence of the right-hand side we use the simplest
numerical differentiation procedure:

ηj+1 =
θj+1 − θj

τ
, j = 0, 1, . . . , j0 − 1. (4.5)

It is necessary to dwell particularly on the questions of solving the mesh problem
in order to implement the implicit scheme under consideration.

5. The Nonlocal Mesh Problem
and Software Implementation

Even though the mesh problem on the new temporal layer is nonstandard (non-
local), the implementation of the scheme (4.1)–(4.3) encounters no particular diffi-
culties. Following the method of [5, 7], write down (4.1) at the interior nodes as

c̃
ωj+1
i

τ
− (aωj+1

x̄

)
x,i

+
1
ψk

(aψx̄)x,iωj+1
k = gji (5.1)

with a prescribed right-hand side gji and boundary conditions (4.2). Seek the solution
to (4.2), (5.1) as

ωj+1
i = yi + ωj+1

k zi, i = 0, 1, . . . , N. (5.2)
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Inserting (5.2) into (5.1) enables us to state for the auxiliary functions yi and zi the
mesh problems

c̃
yi
τ
− (ayx̄)x,i = gji , i = 1, 2, . . . , N − 1, (5.3)

λ̃
y1 − y0
h

= α(y0 − TC), λ̃
yN − yN−1

h
= 0, (5.4)

c̃
zi
τ
− (azx̄)x,i +

1
ψk

(aψx̄)x,i = 0, i = 1, 2, . . . , N − 1, (5.5)

λ̃
z1 − z0
h

= αz0, −λ̃ zN − zN−1

h
= 0. (5.6)

Then, taking (5.2) into account, we find

ωj+1
k =

yk
1− zk . (5.7)

The algorithm is guaranteed to be correct since the denominator in (5.7) never
vanishes. By the maximum principle for difference schemes, for the mesh problem
(5.5), (5.6) we establish the a priori estimate

max
0≤i≤N

|zi| ≤ τ max
0<i<N

∣∣∣∣ 1
ψk

∣∣∣∣(aψx̄)x,i.

Thus, |zi| < 1 for sufficiently small τ = O(1); that is, we must use small time steps.
We obtain the algorithm for solving our inverse problem numerically. At each

time step, successively perform the following calculations:
(1) Given the previous distribution of temperature, choose the parameter 	 to

smooth out the discontinuous coefficients c̃ and λ̃ so that the smoothing interval (T∗−
	,T∗] includes the values of temperature at least at two neighboring nodes on the
opposite sides of the phase transition boundary. If none of the values of temperature
at the nodes belongs to this interval then we will determine the temperature field
while ignoring the heat release of the phase transition.

(2) Introduce the distributed source function v(T ) satisfying the hypotheses
of the proposition and use it to determine the values of the discontinuous coeffi-
cients c̃ and λ̃ in accordance with (2.3) and (2.4).

(3) Solve the auxiliary mesh problems: (5.3), (5.4) for y and (5.5), (5.6) for z.
(4) Successively determine the values of ωj+1

k using (5.7), ωj+1
i using (5.2),

and θj+1 using (4.4).
(5) Reconstruct the unknown time dependence ηj+1 of the right-hand side us-

ing (4.5).
(6) Use (3.1) to find the temperature field for the current temporal layer and

assign it to the previous distribution of temperature.
(7) Iterate (1)–(6) until the condition

|Tδ(x, t)− T (x, t)| < δ

becomes true, where δ is the accuracy threshold, and T (x, t) is the solution to the
problem. Then proceed to the next time layer.

We used this algorithm to run simulations. In the framework of the concept of
quasireal experiments we consider the direct problem (2.2), (1.5)–(1.7) with a pre-
scribed right-hand side (1.8), where

η(t) =
{
t, if 0 < t < 0.6,
0, if t ≥ 0.6,

ψ(x) = sin
(
πx

l

)
.



32 E. A. Krylova

We consider two variants for v(T ):
(1) v(T ) = 1 + T∗−T

� ;
(2) v(T ) = exp(0.69(T∗ − T +	)/	)− 1.
We solve this problem with the following values of the parameters:

c1 = 2814 kJ/m3·K, λ1 = 6.3 kJ/m·h·K, c2 = 2016 kJ/m3·K, λ2 = 8.4 kJ/m·h·K,
T∗ = 0◦C, TC = −25◦C, L = 0.4175 · 106 kJ/m3, α = 83.5 kJ/m2·h·K, l = 0.1 m,
N = 100, k = 40, and τ = 0.0125.

To solve the inverse problem (3.1)–(3.8), we determine the additional observa-
tion function ϕ(t) from the values of T (x, t) at the point x∗ = 0.6 found as the
solution to the direct problem.

To check that the algorithm is correct, we compare the computed results for
the inverse problem with the results of the direct problem.

Table 1

Nodes 0 5 10 20 30 40 50

1 T1, ◦C −0.210 1.481 3.007 5.611 7.445 8.481 8.805

2 T2, ◦C −0.262 1.589 3.178 5.701 7.376 8.411 8.814

3 T1, ◦C −0.210 1.584 3.070 5.632 7.450 8.482 8.806

4 T3, ◦C −0.261 1.593 3.184 5.711 7.385 8.416 8.816

5 T1, ◦C −0.312 1.404 2.961 5.598 7.441 8.480 8.805

6 T4, ◦C −0.262 1.587 3.174 5.694 7.368 8.403 8.799

Table 1 shows the computed results at the nodes for j0 = 50 (t = 0.625 hours).
In the first two rows we compare the values of temperature which are obtained by
solving the direct problem (T1) and the inverse problem (T2) for the first form of
the function v(T ); in rows 3 and 4, the results of the direct problem (T1) and the
inverse problem (T3) for the second form of the function v(T ); in rows 5 and 6, the
results of the direct problem (T1) and the inverse problem (T4) for the traditional
smoothing-out method.

It is clear from the table that the values of temperature obtained using the
traditional smoothing-out method (rows 5 and 6) are below the values obtained by
the proposed method of introducing a distributed heat source. The reason is the
chosen value of the spatial heat capacity, which in the traditional smoothing-out
method is greater than the actual value.
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Fig. 1. Distribution of temperature (δ = 0.5)
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Fig. 1 depicts the distribution of the temperature field obtained by solving the
inverse problem with v(T ) = 1 + T∗−T

� at various times, where δ is the accuracy
threshold.

The data computed for various accuracy thresholds illustrates the well-posed-
ness of the inverse problem under consideration and the proposed method of ac-
counting for the heat of the phase transition. Fig. 2 depicts on the left the solution
for δ = 0.75, and on the right for δ = 0.25. As the accuracy threshold decreases, the
solution is reconstructed more precisely.
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Fig. 2. Distribution of temperature for various accuracy thresholds
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STUDYING CONTACT PARABOLIC BOUNDARY

VALUE PROBLEMS IN HÖLDER SPACES
S. V. Popov and L. Yu. Tkachenko

Abstract. We examine forward-backward parabolic equations of the second order with
gluing conditions containing functions of variables t ∈ [0, T ] with the use of the theory
of singular integral equations. Solvability is established of boundary value problems
in Hölder spaces. We also demonstrate that the Hölder classes of solutions depend
on a noninteger Hölder exponent and the signs of coefficients occurring in the gluing
conditions at the ends of the interval [0, T ] provided that some necessary and sufficient
conditions on the input data of the problem are fulfilled.

Keywords: forward-backward parabolic equation, gluing condition, well-posedness,
Hölder space, singular integral equation

In [1] there is proposed a unified approach to constructing conjugate models for
different physical processes; among them heat transfer in inhomogeneous media
(problems of diffraction type), interaction of filtration and channel flows of fluids
(filtration in a borehole), reverse flow in a boundary layer after the separation point,
etc. In particular, the solvability is established in [2–4] of boundary value problems
for forward-backward parabolic equations in Hölder spaces in domains with the in-
terface modeling opposite cocurrent flows. In this article we examine the general case
with an interface of two media, namely, the forward-backward parabolic equations
with gluing conditions containing coefficients depending on time.

In a domain Q = �× (0, T ), � ≡ R, we consider the equation

g(x)ut = uxx, g(x) = sgnx. (1)

A solution to (1) is sought in the Hölder space Hp,p/2
x t (Q±), Q± = R± × (0, T ),

p = 2l + γ, 0 < γ < 1, and it satisfies the initial conditions

u(x, 0) = ϕ1(x), x > 0, u(x, T ) = ϕ2(x), x < 0, (2)

and the gluing conditions

u(−0, t) = u(+0, t), a(t) · ux(−0, t) = ux(+0, t), (3)

where l ≥ 1 is an integer, ϕ1(x), ϕ2(x), and a(t) are given functions defined for
x ∈ R, t ∈ [0, T ].

For convenience, we replace (1) with the system of equations

u1
t = u1

xx, −u2
t = u2

xx (4)

in Q+. The initial conditions and the gluing conditions are rewritten as

u1(x, 0) = ϕ1(x), u2(x, T ) = ϕ2(x), x > 0, (5)

u1(0, t) = u2(0, t), u1
x(0, t) + a(t) · u2

x(0, t) = 0. (6)

c© 2014 Popov S. V. and Tkachenko L. Yu.
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Assume that ϕi(x) ∈ Hp(R), i = 1, 2. In this case

ω1(x, t) =
1

2
√
πt

∫

R

exp
(
− (x− ξ)2

4t

)
ϕ1(ξ) dξ,

ω2(x, t) =
1

2
√
π(T − t)

∫

R

exp
(
− (x− ξ)2

4(T − t)

)
ϕ2(ξ) dξ

(7)

are solutions to (4) satisfying (5) in R. In our method we employ the following
integral representations for solutions of the system of equations (4):

u1(x, t) =
1√
π

t∫

0

exp
(
− x2

4(t− τ)

)
(t− τ)−

1
2α(τ) dτ + ω1(x, t),

u2(x, t) =
1√
π

T∫

t

exp
(
− x2

4(τ − t)

)
(τ − t)−

1
2 β(τ) dτ + ω2(x, t).

(8)

The functions, defined by (8), meet (5) and (4).
In accord with [5, 6], the functions uk(x, t), k = 1, 2, belong to Hp,p/2

x t (Q+)
whenever the unknown densities α(t) and β(t) lie in H(p−1)/2(0, T ); in this case we
have that

α(s)(0) = β(s)(T ) = 0, s = 0, . . . , l − 1. (9)

Using (6), we arrive at the system of equations for α(t) and β(t):
⎧⎨
⎩

t∫
0

α(τ)

(t−τ)
1
2
dτ =

T∫
t

β(τ)

(τ−t)
1
2
dτ + �0(t),

α(t) + a(t)β(t) = �1(t),
(10)

where

�0(t) =
√
π(ω2(0, t)− ω1(0, t)), �1(t) = a(t) · ω2x(0, t) + ω1x(0, t).

If we invert the first equation in (10) with the use of the celebrated Abel inver-
sion formulas, we find that

⎧⎨
⎩

α(t)− 1
π

T∫
0

( τt )1/2 β(τ)
τ−t dτ = d

dt

t∫
0

�0(τ)

(t−τ)
1
2
dτ,

α(t) + a(t)β(t) = �1(t).
(11)

Put F s
1 (t) = �(s)

1 (t)− �(s)
1 (0),

F s
0 (t) =

t∫

0

�(s+1)
0 (τ)− �(s+1)

0 (0)
(t− τ) 1

2
dτ, s = 0, . . . , l − 1.

As is easily seen, F l−1
0 (t) and F l−1

1 (t) belong to the Hölder space with exponent
(1 + γ)/2; in this case F l−1

0 (t) = F l−1
1 (t) = O(t(1+γ)/2) for small t.

If we assume that α(t) and β(t) belong to H(p−1)/2(0, T ) then (11) yields

T∫

0

β(τ)
τ1/2 dτ = −π�0(0), a(0)β(0) = �1(0). (12)
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Assuming (12), we can rewrite (11) as⎧⎨
⎩

α(t)− 1
π

T∫
0

(
t
τ

)1/2 β(τ)
τ−t dτ = 2�′0(0)t1/2 + F 0

0 (t),

α(t) + a(t)β(t) − a(0)β(0) = F 0
1 (t).

(13)

Introduce the new unknowns β̄(t) = β(t)− β(0)T−t
T in (13). In this case (13) is

representable as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(t)− 1
π

T∫
0

(
t
τ

)1/2 β̄(τ)
τ−t dτ

= 2�′0(0)t1/2 + F 0
0 (t)− 4

πβ(0)F
(− 1

2 , 1,
3
2 ; t

T

)
( t
T ) 1

2 ,

α(t) + a(t)β̄(t) = a(t)β(0) t
T − β(0)[a(t) − a(0)] + F 0

1 (t).

(14)

If l > 1 then differentiate (14) to see that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α′(t)− 1
2π

(
t−

1
2

T∫
0

β̄(τ)
τ1/2(τ−t) dτ + 2t 1

2 d
dt

T∫
0

β̄(τ)
τ1/2(τ−t) dτ

)

= − 2
πβ(0)F

(− 1
2 , 1,

1
2 ; t

T

)
(tT )− 1

2 + �′0(0)t− 1
2 + 2�′′0(0)t 1

2 + F 1
0 (t),

α′(t) + a(t)β̄′(t) = a′(t)
[− β̄(t) + β(0) t

T − β(0)
]

+a(t)β(0) 1
T + �′1(0) + F 1

1 (t).

(15)

Using this system, we infer
T∫

0

β̄(τ)
τ3/2 dτ =

4√
T
β(0)− 2π�′0(0),

a(0)β′(0) + a′(0)β(0) = (a(t)β(t))′|t=0 = �′1(0).

(16)

Now (15) under the conditions (16) for β(T ) = 0 is rewritten as⎧⎨
⎩

α′(t)− 1
π

T∫
0

(
t
τ

)1/2 β′(τ)
τ−t dτ = 2�′′0(0)t

1
2 + F 1

0 (t),

α′(t) + (a(t)β(t))′ − (a(t)β(t))′|t=0 = F 1
1 (t).

(17)

Note that (17) are of the same form as (13). It is easy to check that under the
conditions⎧⎪⎨
⎪⎩

T∫
0

β(s)(τ)−β(s)(0)T−τ
T

τ3/2 dτ = 4√
T
β(s)(0)− 2π�(s+1)

0 (0),

(a(t)β(t))(s+1)|t=0 = �(s+1)
1 (0), β(s)(T ) = 0,

s = 1, . . . , l − 2, (18)

we obtain the system of equations⎧⎪⎨
⎪⎩

α(l−1)(t)− 1
π

T∫
0

(
t
τ

)1/2 β(l−1)(τ)
τ−t dτ = 2�(l)

0 (0)t
1
2 + F l−1

0 (t),

α(l−1)(t) + (a(t)β(t))(l−1) − (a(t)β(t))(l−1)|t=0 = F l−1
1 (t).

(19)

Introduce the new unknown function β̃(l−1)(t) = β(l−1)(t) − β(l−1)(0)T−t
T . In this

case (19) is rewritten as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α(l−1)(t)− 1
π

T∫
0

(
t
τ

)1/2 β̃(l−1)(τ)
τ−t dτ = 2�(l)

0 (0)t1/2

+F l−1
0 (t)− 4

πβ
(l−1)(0)F

(− 1
2 , 1,

3
2 ; t

T

)(
t
T

) 1
2 ,

α(l−1)(t) + a(t)β̃(l−1)(t) = −P (t) + P (0)− a(t)β(l−1)(0) t
T

+β(l−1)(0)(a(0)− a(t)) + F l−1
1 (t),

(20)
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where

P (t) =
l−1∑
k=1

Ck
l−1a

(k)(t)β(l−1−k)(t).

Since α(l−1)(t) and β(l−1)(t) ∈ H(1+γ)/2(0, T ), it is necessary that
T∫

0

β̃(l−1)(τ)
τ3/2 dτ =

4√
T
β(l−1)(0)− 2π�(l)

0 (0). (21)

In this case we arrive at the system of equations⎧⎪⎨
⎪⎩

α(l−1)(t)− 1
π

T∫
0

(
t
τ

)3/2 β̃(l−1)(τ)
τ−t dτ = F

l−1
0 (t),

α(l−1)(t) + a(t)β̃(l−1)(t) = F
l−1
1 (t),

(22)

where

F
l−1
0 (t) = F l−1

0 (t)− 4
π
β(l−1)(0)

[
F

(
− 1

2
, 1,

3
2
;
t

T

)
− 1
](

t

T

) 1
2

,

F
l
1(t) = F l−1

1 (t)− P (t) + P (0)− a(t)β(l−1)(0)
t

T

belong to H(1+γ)/2(0, T ) and

F
l−1

0 (t) = F
l−1

1 (t) = O(t(1+γ)/2)

for small t.
Excluding α(l−1)(t) in (22), we derive the singular equation

a(t)β̃(l−1)(t) +
1
π

T∫

0

(
t

τ

)3/2
β̃(l−1)(τ)
τ − t

dτ = Q(t) (23)

for β̃(l−1)(t), where Q(t) = F
l−1
1 (t)− F

l−1
0 (t).

We treat the singular integral equation (23) as an equation for β0(t) = β̃(l−1)(t) t−
3
2 .

Find solutions β0(t) unbounded for t = 0 (with singularity less than 1) and bounded
for t = T . To this end, we introduce the piecewise holomorphic function (see [7, 8])

�(z) =
1

2πi

T∫

0

β0(τ)
τ − z

dτ.

By Sokhotskĭı–Plemelj formulas, (23) is equivalent to the Riemann problem

�+(t) =
a(t)− i

a(t) + i
�−(t) +

Q(t)
t

3
2 (a(t) + i)

, t ∈ (0, T ),

�+(t) = �−(t), t ∈ (−∞, 0) ∪ (0,+∞),
(24)

under the additional condition �(∞) = 0. Note that G(t) = a(t)−i
a(t)+i and

logG(t) =
{

2i arg(a(t)− i) = −2πiθ, a(t) > 0,
2i arg(|a(t)|+ i) = 2πiθ, a(t) < 0,

where θ(t) = 1
π tan−1 1

|a(t)| .
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At the endpoints of the segment of integration [0, T ] we have the representation

1
2πi

T∫

0

logG(τ)
τ − z

dτ = − logG(0)
2πi

log z + γ0(z),

1
2πi

T∫

0

logG(τ)
τ − z

dτ =
logG(T )

2πi
log(z − T ) + γT (z),

where γ0(z) and γT (z) are bounded in some neighborhood of the endpoints of [0, T ].
We have the following four different cases: 1) a(0) and a(T ) are positive; 2) a(0)

and a(T ) are negative; 3) a(0) is positive and a(T ) is negative; 4) a(0) is negative
and a(T ) is positive.

In cases 1 and 2 we assume that a(t) is of the same sign for t ∈ [0, T ] and in
cases 3 and 4 that a(t) changes sigh only at one point t0 ∈ [0, T ].

Put θ1 = θ(0) and θ2 = θ(T ). In the above class, the canonical function is as
follows: in case 1

χ(z) = z−1(z − T ) exp
(
−

T∫

0

θ(τ)
τ − z

dτ

)
= z−1+θ1(z − T )1−θ2ω1(z), κ = 0,

in case 2

χ(z) = exp
( T∫

0

θ(τ)
τ − z

dτ

)
= z−θ1(z − T )θ2ω2(z), κ = 0,

in case 3

χ(z) = z−1(z − t0) exp
(
−

t0∫

0

θ(τ)
τ − z

dτ +
T∫

t0

θ(τ)
τ − z

dτ

)

= z−1+θ1(z − T )θ2ω3(z), κ = 0,

and in case 4

χ(z) = (z−T ) exp
( t0∫

0

θ(τ)
τ − z

dτ −
T∫

t0

θ(τ)
τ − z

dτ

)
= z−θ1(z−T )1−θ2ω4(z), κ = −1.

Note that ωk(z) = exp(γ0(z)) near the point z = 0 and ωk(z) = exp(γT (z)) near the
point z = T .

By the general theory [7, 8], each solution to (24) is of the form

�(z) = χ(z)�(z) (25)

and in case 4 (κ = −1) some solution exists under the additional condition
T∫

0

Q(τ)
τ

3
2χ(τ)

dτ = 0, (26)

where

�(z) =
1

2πi

T∫

0

Q(τ) dτ
τ

3
2χ(τ)(τ − z)

.
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In this case a solution to (23) is representable as

β̃(l−1)(t) = t
3
2 (�+(t)−�−(t)) =

a(t)Q(t)
1 + a2(t)

− t3/2χ(t)
π(1 + a2(t))

T∫

0

Q(τ) dτ
τ3/2χ(τ)(τ − t)

; (27)

i.e.,

β̃(l−1)(t) =
a(t)Q(t)
1 + a2(t)

+
t1/2+θ1(T − t)1−θ2ω1(t)

π(1 + a2(t))

T∫

0

Q(τ) dτ
τ1/2+θ1(T − τ)1−θ2ω1(τ)(τ − t)

(28)
in case 1,

β̃(l−1)(t) =
a(t)Q(t)
1 + a2(t)

+
t3/2−θ1(T − t)θ2ω2(t)

π(1 + a2(t))

T∫

0

Q(τ) dτ
τ3/2−θ1(T − τ)θ2ω2(τ)(τ − t)

(29)

in case 2,

β̃(l−1)(t) =
a(t)Q(t)
1 + a2(t)

+
t1/2+θ1(T − t)θ2ω3(t)

π(1 + a2(t))

T∫

0

Q(τ) dτ
τ1/2+θ1(T − τ)θ2ω3(τ)(τ − t)

(30)

in case 3, and

β̃(l−1)(t) =
a(t)Q(t)
1 + a2(t)

+
t3/2−θ1(T − t)1−θ2(t− t0)ω4(t)

π(1 + a2(t))

×
T∫

0

Q(τ) dτ
τ3/2−θ1(T − τ)1−θ2(τ − t0)ω4(τ)(τ − t)

(31)

in case 4. Since Q(t) belongs to H(1+γ)/2(0, T ), the functions β̃(l−1)(t) of the for-
mulas (28)–(31) satisfy the Hölder condition with exponent 1+γ

2 at all points of the
contour (0, T ). Examine their behavior at the endpoints of the contour. By the
formula describing the behavior of the Cauchy-type integral at the endpoints of the
integration contour [8, p. 76], we can easily check that β̃(l−1)(0) = β̃(l−1)(T ) = 0.

Next, to complete the study of their behavior at the endpoints of the contour, we
apply the Muskheleshvili–Tersenov lemma [8, pp. 82–86; 2, pp. 14–17]. This lemma
in case 1 implies that if θ1+θ2 ≥ 1

2 then β̃(l−1)(t) in (28) satisfies the Hölder condition
with exponent 1+γ

2 for 0 < γ < 1 − 2θ2, with exponent 1 − θ2 for 1 − 2θ2 < γ < 1,
and with exponent 1− θ2− ε for γ = 1−2θ2. Moreover, if θ1 + θ2 < 1

2 then β̃(l−1)(t)
satisfies the Hölder condition with exponent 1+γ

2 for 0 < γ < 2θ1, with exponent
1
2 + θ1 for 2θ1 < γ < 1, and with exponent 1

2 + θ1 − ε for γ = 2θ1.
In cases 2 and 3 the inequality θ2 < 1+γ

2 in (29) and (30) imply that β̃(l−1)(t)
satisfies the Hölder condition with exponent θ2. If we additionally assume that

T∫

0

Q(τ)
τ

3
2 (T − τ)χ(τ)

dτ = 0, (32)

then β̃(l−1)(t) satisfies the Hölder condition with exponent 1+γ
2 for all 0 < γ < 1.
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In case 4 the function β̃(l−1)(t) in (31) satisfies the Hölder condition with ex-
ponent 1+γ

2 for 0 < γ < 1− 2θ2, with exponent 1− θ2 for 1− 2θ2 < γ < 1, and with
exponent 1− θ2 − ε for γ = 1− 2θ2.

Thus, under the conditions (12), (16), (18), and (21) of the form
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T∫
0

β(τ)
τ1/2 dτ = −π�0(0),

T∫
0

β(s)(τ)−β(s)(0)T−τ
T

τ3/2 dτ = 4√
T
β(s)(0)− 2π�(s+1)

0 (0),

s = 0, 1, . . . , l− 1, β(k)(T ) = 0, k = 0, 1, . . . , l − 2,

(33)

we obtain a function β(t) from the Hölder space such that

(a(t)β(t))(s)|t=0 = �(s)
1 (0), s = 0, 1, . . . , l − 1, β(l−1)(T ) = 0. (34)

The values of β(s)(0) in (33) are uniquely defined by (34) and the values of β(s)(t)
with the use of the Taylor formula

β(s)(t) =
l−2∑
k=s

β(k)(0)
(k − s)!

tk−s+
1

(l − 2− s)!

t∫

0

(t−τ)l−2−sβ(l−1)(τ) dτ, s = 0, 1, . . . , l−2.

In this case the conditions β(k)(T ) = 0 hold for k = 0, 1, . . . , l − 2 if and only if

0 =
l−2∑
k=s

β(k)(0)
(k − s)!

T k−s +
1

(l − 2− s)!

T∫

0

(T − τ)l−2−sβ(l−1)(τ) dτ, s = 0, 1, . . . , l−2.

(35)
Inserting the above functions β(s)(t) in the first l conditions in (33), we infer
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(l−2)!

T∫
0
τ l−3/2 dτ

1∫
0
(1− σ)l−2β(l−1)(στ) dσ

= −
l−2∑
k=0

β(k)(0)Tk+1/2

k!(k−1/2) − π�0(0),

1
(l−2−s)!

T∫
0
τ l−s−5/2 dτ

1∫
0
(1 − σ)l−2−sβ(l−1)(στ) dσ

= −
l−2∑
k=s

β(k)(0)Tk−s−1/2

(k−s)!(k−s−1/2) − 2π�(s+1)
0 (0), s = 0, . . . , l − 1.

(36)
Note that β(l−1)(t) can be determined from (27).

Therefore, we have proved the following theorems:

Theorem 1. Assume that ϕ1, ϕ2 ∈ Hp, p = 2l + γ, a(t) ∈ C l−1([0, T ]), and
a(t) > 0 for t ∈ [0, T ]. Then, under the 2l conditions (35) and (36), there exists
a unique solution to (1), satisfying (2) and (3) from the space

1) Hp,
x

p/2
t if 0 < γ < min{2θ1, 1− 2θ2};

2) Hq,
x

q/2
t , q = 2l + min{2θ1, 1− 2θ2} if min{2θ1, 1− 2θ2} < γ < 1;

3) Hq−ε,
x

(q−ε)/2
t if γ = min{2θ1, 1− 2θ2}, where the positive constant ε is arbi-

trarily small.
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Theorem 2. Assume that ϕ1, ϕ2 ∈ Hp, p = 2l + γ, a(t) ∈ C l−1([0, T ]),
a(0) < 0, a(T ) > 0, and a(t) changes sign at one point. Then under the 2l + 1
conditions (26), (35), and (36), there exists a solution to (1) satisfying (2) and (3)
from the space

1) H
p,
x

p/2
t if 0 < γ < 1− 2θ2;

2) Hq,
x

q/2
t , q = 2l + 1− 2θ2, if 1− 2θ2 < γ < 1;

3) Hq−ε,
x

(q−ε)/2
t if γ = 1−2θ2, where the positive constant ε is arbitrarily small.

Theorem 3. Assume that ϕ1, ϕ2 ∈ Hp, p = 2l + γ, a(t) ∈ C l−1([0, T ]) and
a(t) < 0 for t ∈ [0, T ] or a(0) > 0, a(T ) < 0, and a(t) changes sign at one point.
Then under the conditions (32), (35), (36) (thus we have 2l + 1 conditions) there
exists a solution to (1) satisfying (2) and (3) from H

p,
x

p/2
t .

Remark 1. Under the conditions (35) and (36) (2l), a solution to (1)–(3)
obtained in Theorem 3 belongs to the wider space Hp−1,

x
(p−1)/2
t (Q±).

Remark 2. Solutions to (1)–(3) in Theorems 1–3 depend on the index κ of
the Riemann problem (24) provided that a(t) changes sign at an arbitrary number
of points t ∈ [0, T ].
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THE EQUILIBRIUM PROBLEM

FOR A VISCOELASTIC BODY

WITH A THIN RIGID INCLUSION
T. S. Popova

Abstract. We consider the equilibrium problem for a two-dimensional viscoelastic body
with a thin rigid inclusion. The differential statement of the problem involves an integral
condition accounting for the action of external forces on the rigid-hand part. We give
an equivalent statement with variational inequality and use it to establish the unique
solvability of the original problem. The additional properties of the solutions enable us
to simplify the interpretation of the integral condition.

Keywords: viscoelastic body, thin rigid inclusion, variational method, quasistatic prob-
lem

Consider a two-dimensional viscoelastic body occupying in its natural undeformed
state some domain � ⊂ R2 with smooth boundary � and denote by u = (u1, u2) the
displacement of the points of the body.

Introduce the relations among the components of small deformation and stress
tensors as

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, σij = aijklεkl(u), i, j = 1, 2.

Here and henceforth we assume summation over repeated indices. The coefficients
aijkl for i, j, k, l = 1, 2 are the components of a positive definite elasticity tensor
enjoying the symmetry properties

aijkl = ajikl = aklij ,

aijklξklξij ≥ c0|ξ|2, ξij = ξji, c0 = const > 0.
In order to state the quasistatic problem for the equations describing a viscoelastic
medium, put

w(t, x) = u(t, x) +
t∫

0

u(τ, x) dτ, t ∈ (0, T ). (1)

Inserting (1) into εij(w(t, x)), we obtain the relations for σij(t, x):

σij(t, x) = aijkl(x)εkl(w(t, x)) = aijkl(x)εkl(u(t, x)) +
t∫

0

aijkl(x)εkl(u(τ, x)) dτ.

Therefore, at x ∈ � we have

σij(t) = aijklεkl(t) +
t∫

0

aijklεkl(τ) dτ, t ∈ (0, T ).

These equations correspond to the law σ̇ = Aε̇ + Aε characterizing the viscoelastic
state of the body, where v̇ stands for differentiation with respect to time.

c© 2014 Popova T. S.
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We use (1) in the equilibrium equations as well:

−∂σij(t, x)
∂xj

= fi(t, x), i = 1, 2,

where f = (f1, f2) is the vector of external forces, while we find σij(t, x) from the
formulas above.

Therefore, in contrast to the equilibrium equations used together with Hooke’s
law (the elastic state), in our problem we cannot calculate the components of de-
formation and stress tensors locally with respect to t since they depend on the full
history of forces.

Some quasistationary boundary value problems for equations using relations
similar to (1) were studied in [1–4].

The viscoelastic body under consideration has a thin rigid inclusion whose
form is determined by a curve γ ⊂ � which is smooth nonclosed and has no self-
intersections. Denote by ν = (ν1, ν2) the unit normal vector to γ and put �γ = �\ γ̄.

Suppose that we extend γ to intersect � so that �γ is divided in two subdomains
�1 and �2 with Lipschitz boundaries; furthermore, mes(� ∩ ∂�i) �= 0 for i = 1, 2.

In the framework of this model, the concept of rigid inclusion is described as
follows: We introduce the space of infinitesimal rigid displacements R(γ) (cp. [5]):

R(γ) = {ρ = (ρ1, ρ2) | ρ(x) = Bx + C, x ∈ γ},

where B =
(

0 b
−b 0

)
and C = (c1, c2) with b, c1, c2 = const, and the space

Rγ = {ρ ∈ L2(0, T ;R(γ)) | ρ(t, x) = B(t)x + C(t) on γ × (0, T )},
where B(t) is the skew-symmetric matrix whose entries are functions independent

of x: B(t) =
(

0 b(t)
−b(t) 0

)
and C(t) = (c1(t), c2(t)).

Say that a viscoelastic body has a thin rigid inclusion whenever the functions u
on γ × (0, T ) coincide with some element of Rγ :

u = ρ0 on γ × (0, T ), ρ0 ∈ Rγ .

Consider the differential statement of the equilibrium problem for a two-dimen-
sional viscoelastic body with a thin rigid inclusion without delamination.

In the cylinder Q = �×(0, T ) find the functions u such that u = ρ0 on γ×(0, T ),
with ρ0 ∈ Rγ , and simultaneously in the cylinder Qγ = �γ × (0, T ) find σij , for
i, j = 1, 2, satisfying

−∂σij(t, x)
∂xj

= fi(t, x), i = 1, 2, on Qγ , (2)

σij(t, x) = aijkl(x)εkl(w(t, x)), i, j = 1, 2, on Q, (3)
u(t, x) = 0 on � × (0, T ), (4)∫

γ

[σij(t, x)νj ]ρ̄i(x) dγ = 0, ρ̄ ∈ R(γ), for almost all t ∈ (0, T ). (5)

Here (2) amounts to the equilibrium equations for a prescribed external load f ,
and (3) describes the viscoelastic state. In these equations the components of σ

and ε depend on w, that is, involve integrals of the form
∫ t
0 u(τ, x)dτ . The boundary
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condition (4) determines the clamping of the body along its boundary. Condition (5)
accounts for the vector of surface forces on the curve of rigid inclusion.

The solvability of problems concerning rigid inclusions in elastic bodies, as well
as the properties of their solutions, were studied in [5–10].

Consider the bilinear form

b(u, ū) =
∫
�

aijklεkl(u)εij(ū) d�

and the function space

Hγ = {v = (v1, v2) ∈ L2(0, T ;H1(�)) | v = 0
on � × (0, T ), v = ρ on γ × (0, T ), ρ ∈ Rγ}.

Denote by V the dual space of Hγ . Introduce the linear operator � : Hγ → V with

(�u, ū) =
T∫

0

b(w, ū) dt, ū ∈ Hγ .

Observe that in our notation

b(w, ū) = b

(
u +

t∫
0

u dτ, ū

)
=
∫
�

aijkl(x)εkl
(
u(t, x) +

t∫
0

u(τ, x) dτ
)
εij(ū(t, x)) d�.

Theorem. If f(t, x) ∈ H1(0, T ;L2(�)) and aijkl(x) ∈ L∞(�) for i, j, k, l = 1, 2
then problem (2)–(5) has a unique solution u(t, x) ∈ Hγ and σij(t, x) ∈ L2(Qγ)
satisfying ut(t, x) ∈ L2(0, T ;H1(�)).

To prove this theorem, we firstly establish a lemma on the existence of the unique
solution to the problem with the operator �. Then we verify that this problem is
an equivalent statement of (2)–(5). The unique solvability of our boundary value
problem would follow. Note that [11–16] describe variational methods and their
applications to elasticity and viscoelasticity.

Lemma 1. The following problem

u ∈ Hγ , (�u, v) =
T∫

0

∫
�

fv d�dt, v ∈ Hγ (6)

has the unique solution u(t, x).
Proof. First of all, observe that Korn’s inequality [17]∫

�

εij(v)εij(v) d� ≥ c1‖v‖2H1
0(�), v ∈ H1

0 (�),

with a constant c1 independent of v, yields

b(u, u) ≥ c2‖u‖2H1
0(�), u ∈ H1

0 (�). (7)

Calculating

(�u, u)=
T∫

0

b (w, u) dt=
T∫

0

b

(
u +

t∫
0

u dτ, u

)
dt=

T∫
0

b(u, u) dt+
1
2
b

( T∫
0

u dt,

T∫
0

u dt

)
,
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in view of (7) we obtain
(�u, u) ≥ ‖u‖2Hγ

. (8)

Consequently,
(�u, u)
‖u‖Hγ

→ +∞, ‖u‖Hγ → +∞;

i.e., � is a coercive operator. Since � is also monotone and continuous, we conclude
that � is pseudomonotone. This implies [16] that (6) has a solution. Since the
operator is strictly monotone, the solution is unique.

Let us now deduce an additional property of solutions to (6), namely, the ex-
istence of the derivative ut(t, x) in �. This will enable us to consider (6) on the
cross-sections of the cylinder Q for fixed t ∈ (0, T ). Integration over τ from 0 to the
current time t persists in the statement on the cross-sections.

Lemma 2. If f ∈ H1(0, T ;L2(�)) then the derivative ut ∈ L2(0, T ;H1(�)) of
the solution to (6) exists.

Proof. Expand (6) as

T∫
0

∫
�

aijklεkl(w(t))εij(v(t)) d�dt =
T∫

0

∫
�

f(t) v(t) d�dt, v ∈ Hγ . (9)

For convenience, we suppress the dependence of functions on x in what follows.
Put

H1,0
γ (�) = {v ∈ H1(�) | v = 0 on � , v = ρ on γ, ρ ∈ R(γ)}.

Take α > 0 and consider the function

v(θ) =
{

v̄ − u(t), θ ∈ (t− α, t + α),
0, θ �∈ (t− α, t + α),

where v̄ ∈ H1,0
γ (�) is a fixed element. Inserting v(θ) into (9) and dividing the result

by 2α, we obtain

1
2α

t+α∫
t−α

∫
�

aijklεkl(w(t))εij(v̄ − u(t)) d�dt =
1
2α

t+α∫
t−α

∫
�

f(t)(v̄ − u(t)) d�dt.

Hence,∫
�

aijklεkl(w(t))εij(v̄ − u(t)) d� =
∫
�

f(t)(v̄ − u(t)) d� for almost all t ∈ (0, T )

(10)
as α→ 0. Therefore,

b(w(t), v̄ − u(t)) =
∫
�

f(t)(v̄ − u(t)) d�. (11)

Suppose that v̄ = u(t + h). Then

b(w(t), u(t + h)− u(t)) =
∫
�

f(t)(u(t + h)− u(t)) d�. (12)
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Now examine (11) at t + h, taking u(t) as v̄. We obtain

b(w(t + h), u(t)− u(t + h)) =
∫
�

f(t + h)(u(t)− u(t + h)) d�. (13)

Put

dhv(t) =
v(t + h)− v(t)

h
, dτhv(t) =

1
h

t+h∫
t

v(τ)dτ, h > 0.

Adding up (12) and (13), we have

b
(
dhu(t) + dτhu(t), dhu(t)

)
=
∫
�

dhf(t) dhu(t) d�.

Hence,

b(dhu(t), dhu(t)) =
∫
�

dhf(t) dhu(t) d�− b
(
dτhu(t), dhu(t)

)
. (14)

Observe that
b(dhu(t), dhu(t)) ≥ c3‖dhu(t)‖2H1

0 (�). (15)

Therefore, (14) yields

c3‖dhu(t)‖2H1
0 (�) ≤

1
λ
‖dhf(t)‖2L2(�) + λ‖dhu(t)‖2L2(�)

+
1
λ

∥∥dτhu(t)
∥∥2
H1

0 (�) + λ‖dhu(t)‖2H1
0 (�).

For sufficiently small λ > 0 there exists a constant c4 > 0 such that

‖dhu(t)‖2H1
0(�) ≤ c4

(‖dhf(t)‖2L2(�) +
∥∥dτhu(t)

∥∥2
H1

0 (�)

)
. (16)

Integrate (16) over t from 0 to T − h:

T−h∫
0

‖dhu(t)‖2H1
0 (�) dt ≤ c4

( T−h∫
0

‖dhf(t)‖2L2(�) dt +
T−h∫
0

∥∥dτhu(t)
∥∥2
H1

0 (�) dt

)
. (17)

Observe that all smooth functions v(t, x) satisfy

T−h∫
0

∥∥dτhv(t)∥∥2L2(�) dt ≤
T∫

0

‖v(t)‖2L2(�) dt. (18)

Taking this into account, we infer from (17) that

T−h∫
0

∥∥dτhu(t)
∥∥2
H1

0 (�) dt ≤ c4

( T−h∫
0

‖dhf(t)‖2L2(�) dt +
T∫

0

‖u(t)‖2H1
0(�) dt

)
. (19)

Since ft(t) ∈ L2(Q), we can look at (18) with v = ft:

T−h∫
0

∥∥dτhft(t)∥∥2L2(�) dt ≤
T∫

0

‖ft(t)‖2L2(�) dt.
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Then
T−h∫
0

‖dhf(t)‖2L2(�) dt =
T−h∫
0

∥∥∥∥f(t + h)− f(t)
h

∥∥∥∥
2

L2(�)
dt

=
T−h∫
0

∥∥∥∥ 1
h

t+h∫
t

fτ (τ) dτ
∥∥∥∥

2

L2(�)
dt =

T−h∫
0

∥∥dτhft(t)∥∥2L2(�) dt ≤
T∫

0

‖ft(t)‖2L2(�) dt.

Consequently, (19) yields
T−h∫
0

‖dhu(t)‖2H1
0 (�) dt ≤ c4

( T∫
0

‖ft(t)‖2L2(�) dt +
T∫

0

‖u(t)‖2H1
0(�) dt

)
.

Suppose that h0 is sufficiently small, but h0 ≥ h. Then
T−h0∫
0

‖dhu(t)‖2H1
0 (�) dt ≤ c4

( T∫
0

‖ft(t)‖2L2(�) dt +
T∫

0

‖u(t)‖2H1
0 (�) dt

)
.

Passing to the limit as h→ 0, we obtain
T−h0∫
0

‖ut(t)‖2H1
0 (�) dt ≤ c4

( T∫
0

‖ft(t)‖2L2(�) dt +
T∫

0

‖u(t)‖2H1
0(�) dt

)
.

Since h0 ≥ 0 is arbitrary, it follows that

‖ut(t)‖2L2(0,T ;H1(�)) ≤ c4(‖ft(t)‖2L2(Q) + ‖u(t)‖2L2(0,T ;H1(�))). (20)

Therefore, the derivative ut(t, x) exists; moreover, taking v = u in (9), we obtain
T∫

0

∫
�

aijklεkl(w(t))εij(u(t)) d�dt =
T∫

0

∫
�

f(t)u(t) d�dt.

By (7),

‖u(t)‖2
L2(0,T ;H1,0

γ (�)) ≤
1
λ
‖f(t)‖2L2(Q) + λ‖u(t)‖2

L2(0,T ;H1,0
γ (�))

and, for small λ > 0,

‖u(t)‖2
L2(0,T ;H1,0

γ (�)) ≤ c5‖f(t)‖2L2(Q).

Then (20) yields

‖ut(t)‖2L2(0,T ;H1(�)) ≤ c(‖ft(t)‖2L2(Q) + ‖f(t)‖2L2(Q)).

The claim of the lemma follows.

To complete the proof of the theorem, we verify that problem (2)–(5) is equiv-
alent to (6).

Proof of the theorem. According to Lemma 2, we can consider (6) for fixed
t ∈ (0, T ):

b(w, v) =
∫
�

fv d�
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with w = w(t, x), v = v(t, x), and f = f(t, x). Rearrange the last equation as∫
�

σijεij(v) d� =
∫
�

fv d�. (21)

Here, as above, we find σij using (1), i.e., it involves integration from 0 to t. Insert
v ∈ C∞0 (�), with v = ρ on γ and ρ ∈ R(γ), into (21) and integrate by parts. Then
for this t ∈ (0, T ) the equations

−∂σij(t, x)
∂xj

= fi(t, x)

hold in the distribution sense.
Take v ∈ H1,0

γ (�). Integrating (21) by parts yields∫
γ

[σijνj ] vi dγ = 0, v ∈ H1,0
γ (�),

that is, v = ρ̄ on γ and ρ̄(x) ∈ R(γ) for fixed t ∈ (0, T ). We have∫
γ

[σij(t, x)νj ]ρ̄i(x) dγ = 0, ρ̄ ∈ R(γ), for almost all t ∈ (0, T ).

Conversely, multiplying (2) by v ∈ H1,0
γ (�) and integrating by parts, we see

that (5) implies (6).
Thus, requiring sufficient smoothness of solutions, we know that problems (2)–

(5) and (6) are equivalent. Let us show how to give precise meaning to (5), even
though the functions σijνj are not defined on γ pointwise.

Extend γ to an intersection with � as indicated in the beginning of the article.
Denote the extended curve by �; then γ ⊂ �.

Use the Green’s formula [5, 18]

−
〈
∂σij

∂xj
, ūi

〉
D

= 〈σij , εij(ū)〉D − 〈σijnj , ūi〉 1
2 ,∂D

, (22)

valid for all functions σij(x) with ∂σij(x)
∂xj

∈ L2(D) for i, j = 1, 2 and ū ∈ H1(D),
where D is a domain with Lipschitz boundary, and n = (n1, n2) is the unit vector of
outer normal to ∂D. The brackets 〈·, ·〉 1

2 ,∂D
stand for the duality between the space

H
1
2 (∂D) and its dual H− 1

2 (∂D).
Observe that (22) holds in both cases D = �i for i = 1, 2 for the outer normal

ni =
(
ni

1, n
i
2
)

to ∂�i.

Introduce the space H
1
2
00(�) equipped with the norm

‖v‖001
2 ,�

=
(
‖v‖21

2 ,�
+
∫
�

v2

r
d�

) 1
2

,

where ‖v‖21
2 ,�

is the norm in H
1
2 (�) and r(x) = dist(x, ∂�).

Assume that v is defined on � and denote by v̄ the extension of v by 0 to ∂�i:

v̄ =
{

v on �,

0 on ∂�i \ �.
Then v̄ ∈ H

1
2 (∂�i) if and only if v ∈ H

1
2
00(�).
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Fix t ∈ (0, T ). Using (22), we infer from (21) that

−
〈
∂σij

∂xj
, vi

〉
�1

+
〈
σijn

1
j , vi
〉

1
2 ,∂∂�1

−
〈
∂σij

∂xj
, vi

〉
�2

+
〈
σijn

2
j , vi
〉

1
2 ,∂�2

= 〈f, v〉�.

By (2), we obtain 〈
σijn

1
j , vi
〉

1
2 ,∂�1

+
〈
σijn

2
j , vi
〉

1
2 ,∂�2

= 0.

Denoting by H
− 1

2
00 (�) the dual space of H

1
2
00(�), we can express this relation as

〈[σijνj ], vi〉001
2 ,�

= 0, v ∈ H1,0
γ (�), (23)

where the brackets 〈·, ·〉001
2 ,�

stand for the duality between the spaces H
− 1

2
00 (�) and

H
1
2
00(�).

Thus, (5) holds for almost all t ∈ (0, T ) in the sense of (23).
The proof of the theorem is complete.
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A MODIFIED BOUNDARY VALUE

PROBLEM FOR STRONGLY DEGENERATE

NONCLASSICAL DIFFERENTIAL EQUATIONS

N. R. Spiridonova

Abstract. We show that the strongly generalized nonclassical differential equations of
higher order of the form

2p∑

k=0

αk(t)D2p−k
t u(x, t) −Au(x, t) = f(x, t)

become well posed on releasing part of the boundary of the domain from boundary value
conditions.

Keywords: boundary value problem, nonclassical differential equations, generalized
equations, elliptic operator

Assume that � is a bounded domain in Rn with smooth (for simplicity, infinitely
differentiable) boundary � , Q = � × (0, T ) is a cylinder, 0 < T < +∞, aij(x)
(i, j = 1, 2, . . . , n), a0(x), αk(t) (k = 0, 1, . . . , 2p), and f(x, t) are given functions of
x ∈ �, t ∈ [0, T ], and p > 1 is an integer. Denote by Dl

t the derivative ∂l/∂tl and let
A and L be the differential operators whose action on a function v(x, t) is defined as

Av =
∂

∂xi
(aij(x)vxj ) + a0(x)v

(here and in what follows, the repeated indices imply summation from 1 to n),

Lv =
2p∑

k=0

αk(t)D2p−k
t v −Av;

below the operator A is assumed to be elliptic on �.
In Q we consider the equation

Lu = f(x, t) (1)
where the unknown function is u(x, t). For these equations in [1–3], the statements
of boundary value problems are proposed and the existence and uniqueness theorems
are proven for generalized and regular solutions. The main condition of these articles
is the condition

(−1)p−1[2α2p−1(t) + (1− 2p)α′2p(t)] ≥ δ0 > 0 for t ∈ [0, T ].
In this article we consider the situation when this condition fails and demon-

strate that in some case we should change the statement of the problem as compared
with that of [1–3], namely, we should reject some part of boundary conditions.

Let us proceed with the arguments and constructions for the case of p = 2.
Consider the equation

Lu = α0(t)D4
t u + α1(t)D3

t u + α2(t)D2
t u + α3(t)Dtu−Au = f(x, t). (2)

c© 2014 Spiridonova N. R.
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Boundary Value Problem I. Find a solution u(x, t) to (2) in Q satisfying

u(x, t)|S = 0, (3)

Dk
t u
∣∣
t=0 = 0, k = 0, 1, 2. (4)

Boundary Value Problem II. Find a solution u(x, t) to (2) in Q satisfy-
ing (3) and (4) and such that

Dtu|t=T = 0. (5)
Define the anisotropic Sobolev space

V =
{
v(x, t) : v(x, t) ∈ L2(0, T ;W 2

2 (�)), Dk
t v ∈ L2(Q), k = 1, 4

}
.

Introduce the notations:

h1(t) =
3
2
α′0(t)− α1(t), h2(t) = −1

2
α′′′0 (t) +

1
2
α′′1 (t)− 1

2
α′2(t) + α3(t),

h3(t) =
3
2
α′′0 (t)− α′1(t) +

1
2
α2(t), hT = α′′0(T )− α′1(T ) + α2(T ),

h̃1(t) = h1(t)(λ − t)− 3
2
α0(t), h̃2(t) = h2(t)(λ − t) + h3(t).

Lemma 1. Assume that u(x, t) is a solution to Problem I in V and

f(x, t), ft(x, t) ∈ L2(Q), (6)

aij(x) ∈ C2(�), i, j = 1, . . . , n, a0(x) ∈ C(�), (7)
aij(x) = aji(x), i, j = 1, . . . , n, aij(x)ξiξj ≥ k0|ξ|2 for x ∈ �, k0 > 0, ξ ∈ Rn, (8)

a0(x) ≤ −a0 < 0, (9)
α0(t), α3(t) ∈ C3([0, T ]), α1(t), α2(t) ∈ C2([0, T ]), (10)

α0(t) < 0 for t ∈ [0, T ), (11)
α0(T ) = α′0(T ) = α1(T ) = 0, hT ≥ 0, (12)

h1(t) ≥ 0, h2(t) ≥ 0, h3(t) ≥ 0, t ∈ [0, T ]. (13)
Then
∫

Q

h̃1(t)
(
D2

tu
)2

dxdt+
∫

Q

h̃2(t)(Dtu)2 dxdt+
∫

Q

u2 dxdt+
n∑

i=1

∫

Q

u2
xi
dxdt ≤M1, (14)

n∑

i=1

∫

Q

[
h̃1(t)

(
D2

t uxi

)2 + h̃2(Dtuxi)
2] dxdt +

∫

Q

(Au)2 dxdt ≤M2, (15)

where the constants M1 and M2 are determined by the functions f(x, t), α0(t)–α3(t),
aij(x), i, j = 1, 2, . . . , n, a0(x), and the number T .

Proof. To justify the first estimate, we multiply (2) by (λ − t)Dtu, λ > T ,
and integrate the result over Q. We find that
∫

Q

Lu(λ− t)Dtu dxdt =
∫

Q

α0(t)D4
t u(λ− t)Dtu dxdt +

∫

Q

α1(t)D3
t u(λ− t)Dtu dxdt

+
∫

Q

α2(t)D2
t u(λ− t)Dtu dxdt +

∫

Q

α3(t)Dtu(λ− t)Dtu dxdt

+
∫

Q

Au(λ− t)Dtu dxdt =
∫

Q

f(λ− t)Dtu dxdt.
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Integrating and taking account of (3), (4), and (12), we arrive at the equality
∫

Q

[(
3
2
α′0(t)− α1(t)

)
(λ− t)− 3

2
α0(t)

](
D2

tu
)2

dxdt

+
∫

Q

[(
− 1

2
α′′′0 (t) +

1
2
α′′1 (t)− 1

2
α′2(t) + α3(t)

)
(λ− t) +

3
2
α′′0 (t)− α′1(t)

+
1
2
α2(t)

]
(Dtu)2 dxdt− 1

2

∫

Q

a0(x)u2 dxdt

+
1
2

∫

Q

aij(x)uxiuxj dxdt +
λ− T

2

∫

�

[α′′0 (T )− α′1(T ) + α2(T )](Dtu(x, T ))2 dx

+(λ− T )
∫

�

aij(x)uxj (x, T )uxi(x, T ) dx− λ− T

2

∫

�

a0(x)(u(x, T ))2 dx

=
∫

Q

f(λ− t)Dtu dxdt.

Applying the Young inequality and the above notations, we infer
∫

Q

[
h1(t)(λ − t)− 3

2
α0(t)

](
D2

tu
)2

dxdt +
∫

Q

[h2(t)(λ − t) + h3(t)](Dtu)2 dxdt

−1
2

∫

Q

a0(x)u2 dxdt +
1
2

∫

Q

aij(x)uxiuxj dxdt +
(λ− T )hT

2

∫

�

(Dtu(x, T ))2 dx

+(λ− T )
∫

�

aij(x)uxj (x, T )uxi(x, T ) dx− λ− T

2

∫

�

a0(x)u2(x, T ) dx

≤ δ̃2
1

2

∫

Q

u2 dxdt +
1

2δ̃2
1

∫

Q

(λ− t)2(Dtf)2 dxdt +
δ̃2
2

2

∫

Q

u2 dxdt +
1

2δ̃2
2

∫

Q

f2 dxdt

+
(λ− T )δ̃2

3

2

∫

�

u2(x, T ) dx +
1

2δ̃2
3

∫

�

f2(x, T, ) dx,

where δ̃1, δ̃2, and δ̃3 are arbitrary positive numbers. Choosing them small and
employing (6)–(13), we arrive at (14).

To obtain the second estimate, we multiply (2) by −(λ − t)Aut, λ > T , and
integrate the result over Q. Thus,

−
∫

Q

Lu(λ− t)Aut dxdt = −
∫

Q

α0(t)D4
t u(λ− t)Aut dxdt

−
∫

Q

α1(t)D3
t u(λ− t)Aut dxdt−

∫

Q

α2(t)D2
t u(λ− t)Aut dxdt

−
∫

Q

α3(t)Dtu(λ− t)Aut dxdt +
∫

Q

Au(λ− t)Aut dxdt = −
∫

Q

f(λ− t)Aut dxdt.
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Integrating by parts, taking account of (3), (4), and (12), and applying the
Young inequality and the above notations we arrive at the inequality

∫

Q

[
h1(t)(λ − t)− 3

2
α0(t)

](
D2

tuxi

)2
dxdt +

∫

Q

[h2(t)(λ − t) + h3(t)](Dtuxi)
2 dxdt

+
1
2

∫

Q

(Au)2 dxdt +
(λ− T )

2

∫

∂Q

(Au(x, T ))2 ds

≤ δ̃2
4
2

∫

Q

(Au)2 dxdt +
1

2δ̃2
4

∫

Q

(λ− t)2f2
t dxdt +

δ̃2
5

2

∫

Q

(Au)2 dxdt +
1

2δ̃2
5

∫

Q

f2 dxdt

+
(λ− T )δ̃2

6
2

∫

∂Q

(Au(x, T ))2 ds +
1

2δ̃2
6

∫

∂Q

f2(x, T ) ds,

where δ̃4, δ̃5, and δ̃6 are arbitrary positive numbers. Choosing them small, we
establish (15).

The lemma is proven.

Lemma 2. Assume that u(x, t) is a solution to Problem I in V , the conditions
of Lemma 1 hold, and

α4
3(t) ≤ K1α

2
2(t), α4

2(t) ≤ K2α
2
3(t)α

2
1(t), (α′2(t))

2 ≤ K3α
2
3(t),

α4
1(t) ≤ K4α

2
2(t)α

2
0(t), (α′1(t))

2 ≤ K5α
2
2(t), Ki ≥ 0, i = 1, . . . , 5.

(16)

Then
∫

Q

α2
0(t)
(
D4

tu
)2

dxdt ≤M3, (17)

where the constant M3 is defined by the function f(x, t) and the numbers K1–K5.

Proof. Multiply (2) by α0(t)D4
tu. In result we have

∫

Q

α2
0(t)
[
D4

t u
]2

dxdt =
∫

Q

f(x, t)α0(t)D4
t u dxdt +

∫

Q

Auα0(t)D4
tu dxdt

−
∫

Q

α1(t)D3
t uα0(t)D4

tu dxdt−
∫

Q

α2(t)D2
t uα0(t)D4

t u dxdt

−
∫

Q

α3(t)Dtuα0(t)D4
tu dxdt.

Estimate the summands on the right-hand side with the use of the Young inequality.
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We have

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt ≤ δ2
0

2

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt +
1

2δ2
0

∫

Q

f2(x, t) dxdt

+
δ2
0

2

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt +
1

2δ2
0

∫

Q

[Au]2 dxdt +
δ2
1

2

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt

+
1

2δ2
1

∫

Q

α2
1(t)
[
D3

t u
]2

dxdt +
δ2
2

2

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt +
1

2δ2
2

∫

Q

α2
2(t)
[
D2

tu
]2

dxdt

+
δ2
3

2

∫

Q

α2
0(t)
[
D4

t u
]2

dxdt +
1

2δ2
3

∫

Q

α2
3(t)
[
Dtu
]2

dxdt,

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt ≤ δ2
0

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt +
1

2δ2
0

∫

Q

f2(x, t) dxdt

+
1

2δ2
0

∫

Q

[Au]2 dxdt +
δ2
1 + δ2

2 + δ2
3

2

∫

Q

α2
0(t)
[
D4

t u
]2

dxdt

+
1

2δ2
1
I1 +

1
2δ2

2
I2 +

1
2δ2

3
I3. (18)

Estimate the integral I3 as follows:

I3 =
∫

Q

α2
3(t)[Dtu]2 dxdt = −

∫

Q

α2
3(t)uD

2
t u dxdt− 2

∫

Q

α3(t)α′3(t)uDtu dxdt

≤ δ2
4

2

∫

Q

α4
3(t)
[
D2

tu
]2

dxdt +
1

2δ2
4

∫

Q

u2 dxdt + δ2
5

∫

Q

α2
3(t)[Dtu]2 dxdt

+
1
δ2
5

∫

Q

[α′3(t)]
2u2 dxdt,

(
1− δ2

5
) ∫

Q

α2
3(t)[Dtu]2 dxdt ≤ δ2

4

∫

Q

α4
3(t)
[
D2

tu
]2

dxdt

+
(

1
δ2
4

∫

Q

u2 dxdt +
2
δ2
5

∫

Q

[α′3(t)]
2u2 dxdt

)
.

Fix δ2
5 = 1

2 . From (16) it follows that

∫

Q

α2
3(t)[Dtu]2 dxdt ≤ δ2

4K1

∫

Q

α2
2(t)
[
D2

tu
]2

dxdt + C(δ4), (19)

where the constant C(δ4) is determined by the number δ4 and the functions α3(t)
and u(x, t).
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Estimate I2 as follows:

I2 =
∫

Q

α2
2(t)
[
D2

tu
]2

dxdt = −
∫

Q

α2
2(t)D

3
t uDtu dxdt− 2

∫

Q

α2(t)α′2(t)D
2
t uDtu dxdt

= −
∫

Q

α2
1(t)D

3
t u

α2
2(t)

α2
1(t)

Dtu dxdt− 2
∫

Q

α2(t)D2
t uα

′
2(t)Dtu dxdt

≤ δ2
6

2

∫

Q

α2
1(t)
[
D3

tu
]2

dxdt +
1

2δ2
6

∫

Q

α4
2(t)

α2
1(t)

[Dtu]2 dxdt

+
δ2
7

2

∫

Q

α2
2(t)
[
D2

t u
]2

dxdt +
1

2δ2
7

∫

Q

[α′2(t)]
2[Dtu]2 dxdt,

(
2− δ2

7
) ∫

Q

α2
2(t)
[
D2

tu
]2

dxdt ≤ δ2
6

∫

Q

α2
1(t)
[
D3

tu
]2

dxdt

+
1

δ2
6(t)

∫

Q

α4
2(t)

α2
1(t)

[Dtu]2 dxdt +
1
δ2
7

∫

Q

[α′2(t)]
2[Dtu]2 dxdt.

Let δ7 = 1. From (16) it follows that

∫

Q

α2
2(t)
[
D2

tu
]2

dxdt ≤ δ2
6

∫

Q

α2
1(t)
[
D3

tu
]2

dxdt

+
K2

δ2
6

∫

Q

α2
3(t)[Dtu]2 dxdt + K3

∫

Q

α2
3(t)[Dtu]2 dxdt.

Employing (19), we find that

∫

Q

α2
2(t)
[
D2

tu
]2

dxdt ≤ δ2
6

∫

Q

α2
1(t)
[
D3

tu
]2

dxdt

+
K2

δ2
6

[
δ2
4K1

∫

Q

α2
2(t)
[
D2

tu
]2

dxdt + C(δ4)
]

+K3

[
δ2
4K1

∫

Q

α2
2(t)
[
D2

tu
]2

dxdt + C(δ4)
]

or

∫

Q

α2
2(t)
[
D2

tu
]2

dxdt ≤ δ2
6

∫

Q

α2
1(t)
[
D3

tu
]2

dxdt

+
(
K2

δ2
6

+ K3

)
K1δ

2
4

∫

Q

α2
2(t)
[
D2

tu
]2

dxdt + C1(δ4, δ6). (20)
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Estimate I1 as follows:

I1 =
∫

Q

α2
1(t)
[
D3

tu
]2

dxdt = −
∫

Q

α2
1(t)D

4
t uD

2
tu dxdt

−2
∫

Q

α1(t)α′1(t)D
3
t uD

2
tu dxdt = −

∫

Q

α0(t)D4
t u

α2
1(t)

α0(t)
D2

t u dxdt

−2
∫

Q

α1(t)D3
t uα

′
1(t)D

2
tu dxdt,

∫

Q

α2
1(t)
[
D3

tu
]2

dxdt ≤ δ2
8

2

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt +
1

2δ2
8

∫

Q

α4
1(t)

α2
0(t)
[
D2

tu
]2

dxdt

+δ2
9

∫

Q

α2
1(t)
[
D3

t u
]2

dxdt +
1
δ2
9

∫

Q

[α′1(t)]
2[D2

tu
]2

dxdt,

(
1− δ2

9
) ∫

Q

α2
1(t)
[
D3

tu
]2

dxdt ≤ δ2
8

2

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt

+
1

2δ2
8

∫

Q

α4
1(t)

α2
0(t)
[
D2

tu
]2

dxdt +
1
δ2
9

∫

Q

[α′1(t)]
2[D2

tu
]2

dxdt.

Fix δ2
9 = 1

2 . From (16) it follows that
∫

Q

α2
1(t)
[
D3

tu
]2

dxdt ≤ δ2
8

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt

+
(
K4

δ2
8

+ 4K5

)∫

Q

α2
2(t)
[
D2

tu
]2

dxdt. (21)

Estimating the first summand on the right-hand side of (20) with the use of (21),
we arrive at the inequality

∫

Q

α2
2(t)
[
D2

t u
]2

dxdt ≤ δ2
6

[
δ2
8

∫

Q

α2
0(t)
[
D4

t u
]2

dxdt

+
(
K4

δ2
8

+ 4K5

)∫

Q

α2
2(t)
[
D2

tu
]2

dxdt

]
+
(
K2

δ2
6

+ K3

)
K1δ

2
4

∫

Q

α2
2(t)
[
D2

tu
]2

dxdt

+C1(δ4, δ6) = δ2
6δ

2
8

∫

Q

α2
0(t)
[
D4

t u
]2

dxdt +
[(

K4

δ2
8

+ 4K5

)
δ2
6

+
(
K2

δ2
6

+ K3

)
K1δ

2
4

] ∫

Q

α2
2(t)
[
D2

tu
]2

dxdt + C1(δ4, δ6),

(
1− (K4 + 4K5δ2

8)δ4
6 + (K2 + K3δ2

6)K1δ2
4δ

2
8

δ2
6δ

2
8

)∫

Q

α2
2(t)
[
D2

t u
]2

dxdt

≤ δ2
6δ

2
8

∫

Q

α2
0(t)
[
D4

t u
]2

dxdt + C1(δ4, δ6),
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∫

Q

α2
2(t)
[
D2

t u
]2

dxdt ≤
(

δ4
6δ

4
8

δ2
6δ

2
8 − (K4 + 4K5δ2

8)δ4
6 − (K2 + K3δ2

6)K1δ2
4δ

2
8

)

×
∫

Q

α2
0(t)
[
D4

t u
]2

dxdt + C2(δ4, δ6, δ8). (22)

Estimate (21) with the help of (22) as follows:
∫

Q

α2
1(t)
[
D3

tu
]2

dxdt ≤ δ2
8

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt +
(
K4

δ2
8

+ 4K5

)

×
[(

δ4
6δ

4
8

δ2
6δ

2
8 − (K4 + 4K5δ2

8)δ4
6 − (K2 + K3δ2

6)K1δ2
4δ

2
8

)

×
∫

Q

α2
0(t)
[
D4

t u
]2

dxdt + C2(δ4, δ6, δ8)
]
,

∫

Q

α2
1(t)
[
D3

tu
]2

dxdt

≤
(
δ2
8 +

(K4 + 4K5δ2
8)δ4

6δ
2
8

δ2
6δ

2
8 − (K4 + 4K5δ2

8)δ4
6 − (K2 + K3δ2

6)K1δ2
4δ

2
8

)

×
∫

Q

α2
0(t)
[
D4

t u
]2

dxdt + C3(δ4, δ6, δ8). (23)

Next, we estimate (19) with the use of (22) as follows:
∫

Q

α2
3(t)[Dtu]2 dxdt ≤

(
K1δ2

4δ
4
6δ

4
8

δ2
6δ

2
8 − (K4 + 4K5δ2

8)δ4
6 − (K2 + K3δ2

6)K1δ2
4δ

2
8

)

×
∫

Q

α2
0(t)
[
D4

t u
]2

dxdt + C4(δ4, δ6, δ8). (24)

Turning back to (18) and applying (22)–(24), we have
∫

Q

α2
0(t)
[
D4

tu
]2

dxdt ≤ δ2
0

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt

+
1

2δ2
0

∫

Q

f2(x, t) dxdt +
1

2δ2
0

∫

Q

(Au)2 dxdt +
δ2
1 + δ2

2 + δ2
3

2

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt

+
1

2δ2
1

[(
δ2
8 +

(K4 + 4K5δ2
8)δ4

6δ
2
8

δ2
6δ

2
8 − (K4 + 4K5δ2

8)δ4
6 − (K2 + K3δ2

6)K1δ2
4δ

2
8

)∫

Q

α2
0(t)
[
D4

tu
]2

dxdt

+C3(δ4, δ6, δ8)
]

+
1

2δ2
2

[(
δ4
6δ

4
8

δ2
6δ

2
8 − (K4 + 4K5δ2

8)δ4
6 − (K2 + K3δ2

6)K1δ2
4δ

2
8

)

×
∫

Q

α2
0(t)
[
D4

tu
]2

dxdt + C2(δ4, δ6, δ8)
]

+
1

2δ2
3

[(
K1δ2

4δ
4
6δ

4
8

δ2
6δ

2
8 − (K4 + 4K5δ2

8)δ4
6 − (K2 + K3δ2

6)K1δ2
4δ

2
8

)

×
∫

Q

α2
0(t)
[
D4

t u
]2

dxdt + C4(δ4, δ6, δ8)
]
.
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Assume that δ1 = δ2 = δ3, δ6 = δ2
8 , and δ4 = δ4

8 . In this case we find that
∫

Q

α2
0(t)
[
D4

tu
]2

dxdt ≤ δ2
0

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt +
3δ2

1

2

∫

Q

α2
0(t)
[
D4

tu
]2

dxdt

+
1

2δ2
1

[
δ2
8 +

(K4 + 4K5δ2
8)δ10

8 + δ12
8 + K1δ20

8

δ6
8 − (K4 + 4K5δ2

8)δ8
8 − (K2 + K3δ4

8)K1δ10
8

]∫

Q

α2
0(t)
[
D4

tu
]2

dxdt

+
1

2δ2
1

[C2(δ8) + C3(δ8) + C4(δ8)] +
1

2δ2
0

∫

Q

f2(x, t) dxdt +
1

2δ2
0

∫

Q

(Au)2 dxdt.(25)

Choose δ8 so small that
1− (K1K2 + K4)δ2

8 >
1
2
. (26)

We have
1

δ6
8(1 − (K4 + 4K5δ2

8)δ2
8 − (K2 + K3δ4

8)K1δ4
8)

<
2
δ6
8
.

Thus,

δ2
8 +

(K4 + 4K5δ2
8)δ10

8 + δ12
8 + K1δ20

8

δ6
8 − (K4 + 4K5δ2

8)δ8
8 − (K2 + K3δ4

8)K1δ10
8

< δ2
8 +

2(δ10
8 + δ12

8 + δ20
8 )

δ6
8

< 7δ2
8 .

Fix δ2
0 = 1

6 and δ2
1 = 1

9 . From (25) and (26) we obtain that

δ8 = min
{

1
3
√

21
;

1√
2(K1K2 + K4)

}
.

Denote C0(δ8) =
( 1

3 + 63
2 δ2

8
)
. In this case we infer

∫

Q

α2
0(t)
[
D4

t u
]2

dxdt ≤ C0(δ8)
∫

Q

α2
0(t)
[
D4

tu
]2

dxdt +
9
2

[C2(δ8) + C3(δ8) + C4(δ8)]

+3
∫

Q

f2(x, t) dxdt + 3
∫

Q

(Au)2 dxdt.

Since C0(δ8) < 1, in view of (15) we justify the required estimate (17).
The lemma is proven.

Corollary. Under the conditions of Lemma 2, a solution u(x, t) to Problem I
in V satisfies the estimates

∫

Q

[
α2

1(t)
(
D3

t u
)2 + α2

2(t)
(
D2

tu
)2 + α2

3(t)(Dtu)2
]
dxdt ≤M4, (27)

n∑

i,j=1

∫

Q

u2
xixj

dxdt ≤M5, (28)

where the constants M4 and M5 are defined by the function f(x, t) and the numbers
K1–K5.

Define the Sobolev space

V0 =
{
v(x, t) : v(x, t) ∈ L2

(
0, T ;W 2

2 (�)
)
, |αk(t)|D4−k

t v ∈ L2(Q), k = 1, 3
}
.
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Theorem 1. Let the conditions of Lemma 2 hold. Then there exists a solution
u(x, t) to Problem I in V0.

Proof. Assume that ε is a positive number and Lεu is an operator of the form

Lεu = (α0(t)− ε)D4
tu + α1(t)D3

t u + α2(t)D2
t u + α3(t)Dtu−Au− εAut.

Consider the following family of problems: Find a solution u(x, t) to

Lεu = f(x, t)

satisfying (3) and (4) and such that

Dtu|t=T = 0, x ∈ �.

It follows from [1–3] that this problem has a solution uε(x, t) from V . The
functions {uε(x, t)} satisfy the estimates

∫

Q

(
h̃1(t) +

3
2
ε

)(
D2

t u
)2

dxdt +
∫

Q

h̃2(t)(Dtu)2 dxdt +
∫

Q

u2 dxdt

+(1 + ε)
n∑

i=1

∫

Q

u2
xi
dxdt ≤M6, (14ε)

n∑

i=1

∫

Q

[(
h̃1(t) +

3
2
ε

)(
D2

tuxi

)2 + h̃2(Dtuxi)
2
]
dxdt +

∫

Q

(Au)2 dxdt

+ε

∫

Q

(λ− t)(Aut)2 dxdt ≤M7, (15ε)

∫

Q

α2
0(t)
(
D4

tu
)2

dxdt + ε

∫

Q

α0(t)
(
D4

t u
)2

dxdt + ε2
∫

Q

(Aut)2 dxdt ≤M8, (16ε)

∫

Q

[
α2

1(t)
(
D3

t u
)2 + α2

2(t)
(
D2

tu
)2 + α2

3(t)(Dtu)2
]
dxdt ≤M9, (27ε)

n∑

i,j=1

∫

Q

u2
xixj

dxdt ≤M10. (28ε)

We can validate these estimates with arguments of Lemmas 1 and 2 (also see the
corollary to Lemma 2). Since every Hilbert space is reflexive [4], the estimates
obtained imply that there exists a sequence of positive integers {ml} and a function
u(x, t) such that u(x, t) ∈ V0 and as l →∞ we have

uεml (x, t)→ u(x, t), u
εml
xi (x, t)→ uxi(x, t), u

εml
xixj (x, t)→ uxixj(x, t), i, j = 1, n,

|αk(t)|D4−k
t u

εml
t (x, t)→ |αk(t)|D4−k

t ut(x, t), k = 1, 3,

εmlD
4
tu

ml(x, t)→ 0, εmlAu
ml
t (x, t)→ 0

converges weakly as ml → ∞ in L2(Q). These convergences imply that u(x, t) is
a solution to (2)–(4) in V0.

The theorem is proven.
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Assume that αk(t) (k = 0, 3) are the functions (T − t)pk with pk ≥ 0 integers.
As is easily seen, we can find numbers pk such that the conditions of Lemma 2 hold
but the condition of [1–3] fails.

Introduce the notations:

ϕ1(t) = (α0(t)α1(t))′ + 2α0(t)α2(t), ϕ2(t) = (α0(t)α2(t))′′ + 3(α0(t)α3(t))′,

ϕ3(t) = (α0(t)α3(t))′′′.

Lemma 3. Assume that u(x, t) is a solution to Problem I in V , the conditions
of Lemma 1 hold, and

ϕ1(t) ≤ 0, ϕ2(t) ≥ 0, ϕ3(t) ≤ 0, α1(0) ≥ 0, α′′0 (T )α3(T ) ≥ 0. (29)

Then
∫

Q

α2
0(t)
(
D4

tu
)2

dxdt +
∫

Q

|ϕ1(t)|
(
D3

t u
)2

dxdt+

+
∫

Q

ϕ2(t)
(
D2

tu
)2

dxdt +
∫

Q

|ϕ3(t)|(Dtu)2 dxdt ≤M11, (30)

where the constant M11 is defined by the functions f(x, t) and α0(t)–α3(t).

Proof. Multiplying (2) by α0(t)D4
t u, we obtain the equality

∫

Q

α2
0(t)
(
D4

tu
)2

dxdt +
∫

Q

α0(t)α1(t)D3
t uD

4
tu dxdt +

∫

Q

α0(t)α2(t)D2
t uD

4
tu dxdt

+
∫

Q

α0(t)α3(t)DtuD
4
tu dxdt−

∫

Q

α0(t)AuD4
t u dxdt =

∫

Q

f(x, t)α0(t)D4
t u dxdt.

Integrating by parts and involving the Young inequality and the conditions of Lem-
ma 1, we arrive at the inequality

∫

Q

α2
0(t)
(
D4

t u
)2

dxdt − 1
2

∫

Q

[(α0(t)α1(t))′ + 2α0(t)α2(t)]
(
D3

t u
)2

dxdt

+
1
2

∫

Q

[(α0(t)α2(t))′′ + 3(α0(t)α3(t))′]
(
D2

tu
)2

dxdt− 1
2

∫

Q

(α0(t)α3(t))′′′(Dtu)2 dxdt

−1
2

∫

�

α0(0)α1(0)
(
D3

tu(x, 0)
)2

dx +
1
2

∫

�

α′′0 (T )α3(T )(Dtu(x, T ))2 dx

≤ δ2
0

2

∫

Q

α2
0(t)
(
D4

tu
)2

dxdt +
1

2δ2
0

∫

Q

(Au)2 dxdt

+
δ2
1

2

∫

Q

α2
0(t)
(
D4

tu
)2

dxdt +
1

2δ2
1

∫

Q

f2(x, t) dxdt,

where δ0 and δ1 are arbitrary positive numbers. Choosing these constants sufficiently
small and taking (15) into account, we establish (30). The lemma is proven.
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Theorem 2. Let the conditions of Lemma 3 hold. Then there exists a solution
u(x, t) to Problem I in V0.

Proof. Use the method of ε-regularization as in the proof of Theorem 1.

We turn to solvability of Boundary Value Problem II. Assume now that

α0(t) ≤ 0 for t ∈ (0, T ), α0(0) < 0, α0(T ) < 0. (31)

Lemma 4. Assume that u(x, t) is a solution to Problem II in V satisfying
(6)–(10), (13), and (31). Then (14) and (15) are fulfilled.

Proof. Argue by analogy with the proof of Lemma 1.

Lemma 5. Assume that u(x, t) is a solution to Problem II in V satisfying the
conditions of Lemma 4 as well as the conditions

|ϕ1(t)| ≤ C1α
2
1(t), ϕ2(t) ≤ C2α

2
2(t), |ϕ3(t)| ≤ C3α

2
3(t), Ci ≥ 0, i = 1, 3,

α0(T )α1(T )ξ2 − 2α0(T )α2(T )ξη − [(α0(T )α2(T ))′ + α0(T )α3(T )]η2 ≥ 0,

α0(0) ≥ 0, (ξ, η) ∈ R2.

(32)

Then the estimate
∫

Q

α2
0(t)
(
D4

tu
)2

dxdt +
∫

Q

α2
1(t)
(
D3

tu
)2

dxdt

+
∫

Q

α2
2(t)
(
D2

tu
)2

dxdt +
∫

Q

α2
3(t)(Dtu)2 dxdt ≤M12 (33)

is fulfilled, where M12 is defined by the functions f(x, t), α0(t)–α3(t) and the numbers
C1–C3.

Proof. Multiply (2) by α0(t)D4
tu. Integrating by parts and involving the

Young inequality, we arrive at the inequality
∫

Q

α2
0(t)
(
D4

t u
)2

dxdt − 1
2

∫

Q

[(α0(t)α1(t))′ + 2α0(t)α2(t)]
(
D3

t u
)2

dxdt

+
1
2

∫

Q

[(α0(t)α2(t))′′ + 3(α0(t)α3(t))′]
(
D2

tu
)2

dxdt− 1
2

∫

Q

(α0(t)α3(t))′′′(Dtu)2 dxdt

+
1
2

∫

�

α0(T )α1(T )
(
D3

tu(x, T )
)2

dx− 1
2

∫

�

α0(0)α1(0)
(
D3

tu(x, 0)
)2

dx

−
∫

�

α0(T )α2(T )D2
tu(x, T )D3

tu(x, T ) dx− 1
2

∫

�

(α0(T )α2(T ))′
(
D2

t u(x, T )
)2

dx

−1
2

∫

�

α0(T )α3(T )
(
D2

tu(x, T )
)2

dx ≤ δ2
0

2

∫

Q

α2
0(t)
(
D4

t u
)2

dxdt

+
1

2δ2
0

∫

Q

(Au)2 dxdt +
δ2
1

2

∫

Q

α2
0(t)
(
D4

tu
)2

dxdt +
1

2δ2
1

∫

Q

f2(x, t) dxdt,

where δ0 and δ1 are arbitrary positive numbers. Choosing these numbers small and
taking (15) and (32) into account, we obtain (33).

The lemma is proven.
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Theorem 3. Let the conditions of Lemma 5 hold. Then there exists a solution
u(x, t) to Problem II in V0.

Proof. Argue by analogy to the proof of Theorem 1.

REFERENCES

1. Vragov V. N. On the theory of boundary-value problems for mixed-type equations in space //
Differentsial′nye Uravneniya. 1977. V. 13, N 6. P. 1098–1105.

2. Vragov V. N. On the statement and solvability of boundary-value problems for a higher-order
mixed-composite type equation // Mathematical Analysis and Related Questions [in Russian].
Novosibirsk: Nauka, 1978. P. pp. 5–13.

3. Egorov I. E. and Fedorov V. E. Higher-Order Nonclassical Equations of Mathematical Physics
[in Russian]. Novosibirsk: Vychisl. Tsentr Sibirsk. Otdel. Ros. Akad. Nauk, 1995.

4. Trenogin V. A. Functional Analysis [in Russian]. Moscow: Nauka, 1980.

February 14, 2014

N. R. Spiridonova
North-Eastern Federal University
Institute of Mathematics and Informatics, Yakutsk, Russia
nariya@yandex.ru



Yakutian Mathematical Journal
January—March, 2014. Vol. 21, No. 1

UDC 517.956

ON SOME NONLOCAL PROBLEMS

FOR THIRD ORDER EQUATIONS

WITH MULTIPLE CHARACTERISTICS
A. R. Khashimov and A. M. Turginov

Abstract. We consider two boundary value problems for an equation of the third or-
der with multiple characteristics and a nonlocal condition in time. In order to prove
uniqueness, we use the method of energy integrals. By the method of potentials, the
Green’s function is constructed and employed to prove the unique solvability of the prob-
lems in question. The influence is studied of the boundary conditions on smoothness of
solutions.

Keywords: third order equations with multiple characteristics, Green’s function, the
method of energy integrals, boundary value problem, nonlocal condition, integral equa-
tion

1. Introduction

In the article [1] a method of constructing fundamental solutions for equations
with multiple characteristics was elaborated, and the fundamental solutions for the
equations

Lu ≡ ∂3u

∂x3 −
∂u

∂t
= 0, (1)

Lu ≡ ∂3u

∂x3 −
∂2u

∂t2
= 0 (2)

were constructed. At the beginning of the 1960s, Cattabriga following the article
by Del Vecchio [1] constructed the potential theory for the above equations [2, 3].
Further, a series of boundary value problems for (1) and (2) with local and nonlocal
boundary conditions was considered in [2–13].

In the present article we consider the problems:
I. Find a regular solution u(x, t) ∈ Ku to (1) in the domain � = {(x, t) : 0 <

x < 1, 0 < t ≤ T } satisfying the conditions

u(x, 0) = μu(x, T ), μ = const, 0 ≤ x ≤ 1, (3)

u(0, t) = ϕ1(t), ux(0, t) = ϕ2(t), ux(1, t) = ψ(t), 0 ≤ t ≤ T. (4)

Here Ku =
{
u(x, t) : u(x, t) ∈ C3,1

x,t (�) ∩ C2,0
x,t (�), uxt ∈ C(�)

}
.

II. Find a regular solution u(x, t) ∈ Ku to (1) in the domain � = {(x, t) : 0 <
x < 1, 0 < t ≤ T } satisfying the conditions

u(x, 0) = μu(x, T ), μ = const, 0 ≤ x ≤ 1, (5)

uxx(0, t) = ϕ1(t), ux(0, t) = ϕ2(t), ux(1, t) = ψ(t), 0 ≤ t ≤ T. (6)

c© 2014 Khashimov A. R. and Turginov A. M.
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Here K̃u =
{
u(x, t) : u(x, t) ∈ C4,1

x,t (�) ∩ C3,1
x,t (�), uxt ∈ C(�)

}
.

Note that the nonlocal problem for the equation

Lu ≡ ∂3u

∂x3 +
∂u

∂t
+ γu = 0

is studied with the other boundary conditions in [14], where to prove solvability of
the problem the authors used the method of parabolic regularization and the method
of continuation in a parameter.

At this article we use the methods of potentials.
The fundamental solutions to (1) are of the form (see [3])

U(x− ξ; t− τ) = (t− τ)− 1
3 f

(
x− ξ

(t− τ) 1
3

)
, x �= ξ, t > τ, (7)

V (x− ξ; t− τ) = (t− τ)− 1
3ϕ

(
x− ξ

(t− τ) 1
3

)
, x > ξ, t > τ. (8)

Here

f(z) =
∞∫

0

cos(λ3 − λz) dλ, −∞ < z <∞,

ϕ(z) =
∞∫

0

(exp(−λ3 − λz) + sin(λ3 − λz)) dλ, z > 0,

z = (x − ξ)(t− τ)− 1
3 .

The functions U(x − ξ; t − τ) and V (x − ξ; t − τ), f(z), and ϕ(z) meet the
relations (see [3])

f ′′(z) +
1
3
zf(z) = 0, ϕ′′(z) +

1
3
zϕ(z) = 0, (9)

∞∫

−∞
f(z) = π,

0∫

−∞
f(z) =

π

3
,

∞∫

0

f(z) =
2π
3
,

∞∫

0

ϕ(z) = 0, (10)

lim
(x,t)→(a−0,t)

t∫

τ

Uξξ(x− a; t− τ)α(ξ, τ) dτ =
π

3
α(t), (11)

lim
(x,t)→(a+0,t)

t∫

τ

Uξξ(x − a; t− τ)α(ξ, τ) dτ = −2π
3
α(t), (12)

lim
(x,t)→(a+0,t)

t∫

τ

Vξξ(x− a; t− τ)α(ξ, τ) dτ = 0, (13)

fn(z) ∼ c+n z
2n−1

4 sin
(

2
3
z

3
2

)
as z →∞, (14)

ϕn(z) ∼ c+n z
2n−1

4 sin
(

2
3
z

3
2

)
as z →∞, (15)

fn(z) ∼ c−n |z|
2n−1

4 exp
(
− 2

3
|z| 32
)

as z → −∞. (16)
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2. The Main Results

Theorem 1. Let 0 ≤ μ2 ≤ exp{−T }. Then Problems I and II have at most
one solution.

Proof. First, we prove that Problem I has a unique solution. Let Problem I
have two solutions u1(x, t) and u2(x, t). Assigning v(x, t) = u1(x, t) − u2(x, t), we
obtain the following problem for v(x, t):

Lv ≡ ∂3v

∂x3 −
∂v

∂t
= 0, (x, t) ∈ �, (17)

v(x, 0) = μv(x, T ), 0 ≤ x ≤ 1, (18)

v(0, t) = 0, vx(0, t) = 0, vx(1, t) = 0, 0 ≤ t ≤ T. (19)

Consider the identity

1∫

0

T∫

0

Lv vxt exp{−t} dxdt = 0. (20)

Integrating by parts in (20) and accounting for the homogeneous boundary condi-
tions (18), (19), we see that

−1
2

1∫

0

T∫

0

v2
xx(x, t) exp{−t} dxdt− 1

2

T∫

0

v2
t (1, t) exp{−t}dt

−1
2

1∫

0

v2
xx(x, T ){exp{−T } − μ2} dx = 0. (21)

Hence, vxx(x, t) = 0 in � and vt(1, t) = 0 for t ∈ [0, T ].
Let μ2 < exp{−T }. In this case vxx(x, T ) = 0 and so vx(x, T ) = const, x ∈

[0, 1]. Since
vx(0, t) = vx(1, t) = 0, t ∈ [0, T ],

we have
vx(0, 0) = vx(0, T ) = 0.

Therefore, vx(x, T ) = const = 0 for x ∈ [0, 1].
Next,

vx(x, T ) = 0⇒ v(x, T ) = const⇒ v(x, 0) = const, x ∈ [0, 1].

Since v(0, t) = 0 ⇒ v(0, 0) = 0, v(x, 0) = const = 0 for x ∈ [0, 1]. Moreover, we
have vt(1, t) = 0 for t ∈ [0, T ] ⇒ v(1, t) = const for t ∈ [0, T ] and v(0, 0) = 0; thus
v(1, t) = 0, t ∈ [0, T ].

We arrive at the well-known first boundary value problem for v(x, t); i.e.,

Lv ≡ ∂3v

∂x3 −
∂v

∂t
= 0, (x, t) ∈ �,

v(x, 0) = 0, x ∈ [0, 1], v(0, t) = 0, vx(0, t) = 0, v(1, t) = 0, t ∈ [0, T ].

In view of [3] this problem is uniquely solvable.
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Consider the case of μ2 = exp{−T }. From (20) it follows that vxx(x, t) = 0 and
so vx(x, t) = δ1(t) for t ∈ [0, T ]. Since vx(0, t) = vx(1, t) = 0 for t ∈ [0, T ], δ1(t) = 0
for t ∈ [0, T ].

The equality vx(x, t) = 0 implies that v(x, t) = δ2(t) for t ∈ [0, T ]. Since
v(0, t) = 0 for t ∈ [0, T ], δ2(t) = 0 for t ∈ [0, T ].

Since v(x, t) = 0 is continuous, we find that v(x, t) = 0 in �.
Consider Problem II. Let Problem II have two solutions u1(x, t) and u2(x, t).

Putting v(x, t) = u1(x, t) − u2(x, t), we arrive at the homogeneous problem of the
form similar to (2) for v(x, t). Put ω(x, t) = υx(x, t). Differentiating (1), we infer

Lω ≡ ∂3ω

∂x3 −
∂ω

∂t
= 0, (x, t) ∈ �,

ω(x, 0) = μω(x, T ), 0 ≤ x ≤ 1,

ω(0, t) = 0, ωx(0, t) = 0, ω(1, t) = 0, 0 ≤ t ≤ T.
Integrating the identity

1∫

0

T∫

0

Lω ω exp{−t} dxdt = 0,

we find that ω(x, t) = 0 for (x, t) ∈ �, ωx(1, t) = 0 for all t ∈ [0, T ], and ω(x, T ) = 0
for x ∈ [0, 1].

Integrating the identity

1∫

0

T∫

0

Lω ω exp{−x} dxdt = 0,

we have that ωx(x, t) = 0 for all (x, t) ∈ �. In this case υx(x, t) = 0 and υxx(x, t) = 0
for all (x, t) ∈ �.

Consider the identity

1∫

0

T∫

0

Lυ υ exp{−t} dxdt = 0.

Integrating it, we establish that υ(x, t) = 0 for all (x, t) ∈ �.
Now we prove the existence theorem for solutions to Problem I.

Theorem 2. Assume that 0 ≤ μ2 ≤ exp{−T }, ψ(t) ∈ C1([0, T ]), ϕ2(t) ∈
C1([0, T ]), and ϕ1(t) ∈ C2([0, T ]). Then there exists a solution to (1), (3), and (4).

Proof. Examine the following auxiliary problem:
Find a function u(x, t) ∈ Ku that is a regular solution to the equation

Lu ≡ ∂3u

∂x3 −
∂u

∂t
= 0 (22)

in the domain � = {(x, t) : 0 < x < 1, 0 < t ≤ T } and satisfies the conditions

u(x, 0) = τ(x), (23)
u(0, t) = ϕ1(t), ux(0, t) = ϕ2(t), ux(1, t) = ψ(t). (24)
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The method for constructing the Green’s function for (22)–(24) was developed
in [4]. If we apply it to (22)–(24) then, taking (9)–(13) into account, we obtain
a solution to the problem in the form

πu(x, t) = −
t∫

0

Gξ(x− 1; t− τ)ψ(τ) dτ −
t∫

0

Gξξ(x− 0; t− τ)ϕ1(τ) dτ

+
t∫

0

Gξ(x− 0; t− τ)ϕ2(τ) dτ +
1∫

0

G(x− ξ; t− 0)τ(ξ) dξ, (25)

where G(x − ξ; t − τ) = U(x − ξ; t − τ) −W (x − ξ; t − τ). Here W (x − ξ; t − τ) is
a solution to the problem

M(W ) ≡ −∂
3W

∂x3 −
∂W

∂t
= 0,

U |ξ=1 = W |ξ=1, Uξξ|ξ=1 = Wξξ|ξ=1, U |ξ=0 = W |ξ=0,

W |τ=T = 0.
Put u(x, T ) = α(x). Passing to the limit as t→ T and involving (25), we have

πα(x) = −
T∫

0

Gξ(x− 1;T − τ)ψ(τ) dτ −
T∫

0

Gξξ(x− 0;T − τ)ϕ1(τ) dτ

+
T∫

0

Gξ(x− 0;T − τ)ϕ2(τ) dτ + μ

1∫

0

{G(x− ξ;T − 0)α(ξ) dξ. (26)

So, we have obtained a Fredholm integral equation of the second kind where
the unknown function is α(x); i.e.,

α(x) =
1∫

0

K(x, ξ)α(ξ)dξ + F (x), (27)

where
K(x, ξ) ≡ μG(x − ξ;T − 0),

F (x) ≡ −
T∫

0

Gξ(x− 1;T − τ)ψ(τ) dτ −
T∫

0

Gξξ(x − 0;T − τ)ϕ1(τ) dτ

+
T∫

0

Gξ(x − 0;T − τ)ϕ2(τ) dτ .

In view of (14)–(16), we can easily justify the following relations for K(x, ξ)
and F (x):

|K(x, ξ)| < C

|x− ξ| 14 , F (x) ∈ C3([0, 1]).

By the uniqueness of solutions to (1), (3), (4), the integral equation (27) has the
unique solution.

Similarly, we can prove the following existence theorem for Problem II.

Theorem 3. Assume that 0 ≤ μ2 ≤ exp{−T }, ψ(t) ∈ C1([0, T ]), ϕ2(t) ∈
C2([0, T ]), and ϕ1(t) ∈ C2([0, T ]). Then there exits a solution to (1), (5), (6).
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ON SOLVABILITY OF SOME CONJUGATION

PROBLEMS FOR ELLIPTIC EQUATIONS

N. N. Shadrina

Abstract. We study a general boundary value problem for a linear elliptic equation.
Existence and uniqueness theorems are proven under the corresponding boundary con-
ditions and the conjugate conditions on the interface between two media.

Keywords: boundary value problem, conjugate condition, elliptic equation

Assume that � is a bounded domain of the space Rn with smooth (for simplicity,
infinitely differentiable) boundary � , Q = � × (−1, 1), Q− = � × (−1, 0), and
Q+ = � × (0, 1). We assume next that p(x, y), c(x, y), f(x, y), αi(x), and βi(x)
(i = (1, 4)) are given functions defined for x ∈ �, y ∈ [−1, 1], the function p(x, y)
is strictly positive for (x, y) ∈ Q and can have discontinuity of the first kind on the
plane y = 0, (α1(x), α2(x), α3(x), α4(x)) and (β1(x), β2(x), β3(x), β4(x)) are some
linearly independent vector-functions for every fixed x ∈ �, while B1 and B2 are
linear operators taking u(x, y) into (Biu)(x) (its properties are described below).
Let L be a differential operator such that, for a given v(x, y),

Lv ≡ �xv +
∂

∂y
(p(x, y)vy) + c(x, y)v,

where

�x =
n∑

i=1

∂2

∂x2
i

.

The Conjugation Problem. Find a solution u(x, y) to the equation

Lu = f(x, y) (1)

in the cylinders Q− and Q+ satisfying the boundary condition

u(x, y)|S = 0 (2)

on the lateral boundary, the boundary conditions

u(x,−1) = 0, u(x, 1) = 0, x ∈ �, (3)

on the bases, and also the conjugate conditions

α1(x)u(x,−0) + α2(x)u(x,+0) + α3(x)uy(x,−0) + α4(x)uy(x,+0) +B1u = 0, (4)

β1(x)u(x,−0) + β2(x)u(x,+0) + β3(x)uy(x,−0) + β4(x)uy(x,+0) +B2u = 0 (5)

on the interface between Q− and Q+, where x ∈ �.
The problem (1)–(5) in a particular case coincides with the well-studied classical

diffraction problem (see, for instance, [1–3]). This problem was not studied earlier in

c© 2014 Shadrina N. N.
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the general form as in our article. Note that the conjugation (diffraction) problems
arise in mathematical models of many processes in physics, mechanics, biology, etc.,
where a process takes place in two or more adjacent substances with different physical
characteristics (from the last articles we point out only [4, 5]).

The linear independence condition for the vectors (αi(x)) and (βi(x)) (i = (1, 4))
means that at every point x in � one of the second order minors of the matrix

(
α1(x) α2(x) α3(x) α4(x)
β1(x) β2(x) β3(x) β4(x)

)

is different from zero.
Below we assume that one of the following minors does not vanish:

�1(x) = α3(x)β4(x)− α4(x)β3(x), �2(x) = α1(x)β2(x) − α2(x)β1(x),

�3(x) = α1(x)β4(x)− α4(x)β1(x), �4(x) = α2(x)β3(x) − α3(x)β2(x).

Moreover, we suppose the following:

Condition A. If there exists a point x0 in � such that �i(x0) �= 0 for one of
the numbers i = 1, 2, 3, 4 then �i(x) �= 0 for all x in � and the same number i.

Under Condition A the conjugation problem (1)–(5) can be stated as one of the
following problems.

Problem I. Find a solution u(x, y) to (1) in Q− and Q+ such that (2) and (3)
hold and

uy(x,−0) = a1(x)u(x,−0) + a2(x)u(x,+0) + a3(x)B1u+ a4(x)B2u, x ∈ �,
uy(x,+0) = b1(x)u(x,−0) + b2(x)u(x,+0) + b3(x)B1u+ b4(x)B2u, x ∈ �.

Problem II. Find a solution u(x, y) to (1) in Q− and Q+ such that (2) and (3)
hold and

u(x,−0) = a1(x)uy(x,−0) + a2(x)uy(x,+0) + a3(x)B1u+ a4(x)B2u, x ∈ �,
u(x,+0) = b1(x)uy(x,−0) + b2(x)uy(x,+0) + b3(x)B1u+ b4(x)B2u, x ∈ �.

Problem III. Find a solution u(x, y) to (1) in Q− andQ+ such that (2) and (3)
hold and

u(x,−0) = a1(x)u(x,+0) + a2(x)uy(x,−0) + a3(x)B1u+ a4(x)B2u, x ∈ �,
uy(x,+0) = b1(x)u(x,+0) + b2(x)uy(x,−0) + b3(x)B1u+ b4(x)B2u, x ∈ �.

Problem IV. Find a solution u(x, y) to (1) in Q− and Q+ such that (2) and (3)
hold and

u(x,+0) = a1(x)u(x,−0) + a2(x)uy(x,+0) + a3(x)B1u+ a4(x)B2u, x ∈ �,
uy(x,−0) = b1(x)u(x,−0) + b2(x)uy(x,+0) + b3(x)B1u+ b4(x)B2u, x ∈ �.
Note that a1(x), a2(x), a3(x), a4(x), b1(x), b2(x), b3(x), and b4(x) here are

calculated directly although the initial functions αi(x), βi(x), i = 1, 4. Obviously,
Problems III and IV are of the same type. So we can examine only one of these
problems, namely, Problem III. Moreover, we assume in these problems that the
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function a1(x)b2(x)− a2(x)b1(x) can vanish and even identically for x ∈ �. Finally,
we define the function space required. Denote by V the set of functions

V =
{
v(x, y) : v(x, y) ∈ W 2

2 (Q−) ∪W 2
2 (Q+)

}
.

Before stating Theorem 1, introduce some additional notations. Put

ā3 = max
�

(p(x,+0)|a3(x)|), ā4 = max
�

(p(x,−0)|a4(x)|),

b̄3 = max
�

(p(x,+0)|b3(x)|), b̄4 = max
�

(p(x,−0)|b4(x)|),

A1 =
γ0(m11b̄3 +m12b̄4) +m11ā 3 +m12ā 4

2δ20
+
δ20γ0(b̄3 + b̄4)

2
,

A2 =
γ0(m21b̄3 +m22b̄4) +m21ā 3 +m22ā 4

2δ20
+
δ20(ā 3 + ā 4)

2
,

A3 =
γ0(m31b̄3 +m32b̄4) +m31ā 3 +m32ā 4

2
,

A4 =
γ0(m41b̄3 +m42b̄4) +m41ā 3 +m42ā 4

2
,


(ξ, η) = [γ0b2(x)p(x,+0)−A1]ξ2 + [γ0b1(x)p(x,+0)− a2(x)p(x,−0)]ξη

−[a1(x)p(x,−0) +A2]η2

(here γ0 and δ0 are some positive constants whose exact values are specified below).
Let us discuss the uniqueness questions for solutions to Problems I–III.

Theorem 1. Assume that

p(x, y) ∈ C1(Q−), p(x, y) ≥ p1 > 0, (x, y) ∈ Q−, (6)

p(x, y) ∈ C1(Q+), p(x, y) ≥ p2 > 0, (x, y) ∈ Q+, (7)

‖Biv‖2L2(�) ≤ m1i‖v(x,+0)‖2L2(�) +m2i‖v(x,−0)‖2L2(�)

+m3i‖v‖2L2(Q−) +m4i‖v‖2L2(Q+), v(x, y) ∈ V, i = 1, 2, (8)

c(x, y) ≤ −c0 ≤ 0, (x, y) ∈ Q±, (9)

∃γ0 > 0 ∃δ0 > 0 : 
(ξ, η) ≥ 0, (η, ξ) ∈ R2,

c(x, y) +A3/δ
2
0 ≤ 0, c(x, y) +A4/δ

2
0 ≤ 0, x ∈ �, y ∈ [−1, 1]. (10)

Then Problem I has at most one solution in V .

Proof. It suffices to demonstrate that if the right-hand side of (1) is identically
zero then so is the solution; i.e., u(x, y) ≡ 0.

Consider the equality

−
∫

Q−

uLu dxdy − γ0

∫

Q+

uLu dxdy = 0

and extract nonnegative summands.
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Integrating by parts, we infer

−
∫

Q−

uLu dxdy − γ0

∫

Q+

uLu dxdy

=
n∑

i=1

∫

Q−

u2
xi
dxdy + γ0

n∑

i=1

∫

Q+

u2
xi
dxdy −

∫

Q−

c(x, y)u2 dxdy

−γ0

∫

Q+

c(x, y)u2 dxdy +
∫

Q−

p(x, y)u2
y dxdy + γ0

∫

Q+

p(x, y)u2
y dxdy

+
∫

∂Q−

p(x, y)u · uyνy dS + γ0

∫

∂Q+

p(x, y)u · uyνy dS. (11)

Transform the two last summands of (11) on using the conjugate condition as follows:∫

∂Q−

p(x, y)u · uyνy dS + γ0

∫

∂Q+

p(x, y)u · uyνy dS

= −
∫

�

p(x,−0)u(x,−0)uy(x,−0) dx+ γ0

∫

�

p(x,+0)u(x,+0)uy(x,+0) dx

=
∫

�

γ0b2(x)p(x,+0)u2(x,+0) dx

+
∫

�

[γ0b1(x)p(x,+0)− a2(x)p(x,−0)]u(x,+0)u(x,−0) dx

−
∫

�

p(x,−0)a1(x)u2(x,−0)] dx

+
∫

�

[γ0b3(x)p(x,+0)u(x,+0)− a3(x)p(x,−0)u(x,−0)]B1u dx

+
∫

�

[γ0b4(x)p(x,+0)u(x,+0)− a4(x)p(x,−0)u(x,−0)]B2u dx.

Employing the above notations and (8), we see that
n∑

i=1

∫

Q−
u2
xi
dxdy + γ0

n∑

i=1

∫

Q+
u2
xi
dxdy

+
∫

Q−

p(x, y)u2
y dxdy + γ0

∫

Q+

p(x, y)u2
y dxdy +

∫

�

[γ0b2(x)p(x,+0) +A1]u2(x,+0) dx

+
∫

�

[γ0b1(x)p(x,+0)− a2(x)p(x,−0)]u(x,+0)u(x,−0) dx

−
∫

�

[p(x,−0)a1(x) −A2]u2(x,−0) dx−
∫

Q−

[c(x, y)−A3/δ
2
0 ]u

2(x, y) dxdy

−γ0

∫

Q+

[c(x, y)−A4/δ
2
0 ]u

2(x, y) dxdy ≤ 0.
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Hence,
n∑

i=1

∫

Q−
u2
xi
dxdy + γ0

n∑

i=1

∫

Q+
u2
xi
dxdy +

∫

Q−

p(x, y)u2
y dxdy + γ0

∫

Q+

p(x, y)u2
y dxdy

−
∫

Q−

c(x, y)u2 dxdy − γ0

∫

Q+

c(x, y)u2 dxdy ≤ 0. (12)

As an obvious result, u(x, y) ≡ 0 in Q. The theorem is proven.
To state Theorem 2, we introduce the notations:

A11 =
γ0(b̄3 + b̄4)

2
, A21 =

ā 3 + ā4

2
,

A5 =
γ0(m11b̄3 +m12b̄4) +m11ā3 +m12ā4

2
,

A6 =
γ0(m21b̄3 +m22b̄4) +m21ā 3 +m22ā4

2
,


1(ξ, η) =
[
γ0b2(x)p(x,+0)−A11δ

2
1
]
ξ2 + [γ0b1(x)p(x,+0)− a2(x)p(x,−0)]ξη

−[a1(x)p(x,−0) +A21δ
2
1
]
η2.

Theorem 2. Assume the conditions (6)–(9) as well as the conditions

∃γ0 > 0 ∃δ1 > 0 : 
1(η, ξ) ≥ 0, (η, ξ) ∈ R2,

p1 −A5/δ
2
1 > 0, p2 −A6/δ

2
1 > 0,

c(x, y) +A3/δ
2
1 ≤ 0, c(x, y) +A4/δ

2
1 ≤ 0, x ∈ �, y ∈ [−1, 1].

Then Problem II has at most one solution in V .
Proof. As in the proof of Theorem 1, it suffices to prove that u(x, y) ≡ 0

whenever the right-hand side of (1) is identically zero. The conjugate conditions, (8),
and the obvious inequalities∫

�

u2(x,−0) dx ≤
∫

Q−

u2
y(x, y) dxdy,

∫

�

u2(x,+0) dx ≤
∫

Q+

u2
y(x, y) dxdy (13)

imply that
n∑

i=1

∫

Q−
u2
xi
dxdy + γ0

n∑

i=1

∫

Q+
u2
xi
dxdy

+
∫

Q−

[
p(x, y) +A5/δ

2
1
]
u2
y dxdy + γ0

∫

Q+

[
p(x, y) +A6/δ

2
1
]
u2
y dxdy

+
∫

�

[
γ0b2(x)p(x,+0) +A11δ

2
1
]
u2
y(x,+0) dx

−
∫

�

[
p(x,−0)a1(x) +A21δ

2
1
]
u2
y(x,−0) dx

−
∫

�

[γ0b1(x)p(x,+0)− a2(x)p(x,−0)]u(x,+0)uy(x,−0) dx

−
∫

Q−

[
c(x, y) +A3/δ

2
1
]
u2(x, y) dxdy − γ0

∫

Q+

[
c(x, y) +A4/δ

2
1
]
u2(x, y) dxdy ≤ 0.
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Hence, (12) holds and so u(x, y) ≡ 0 in Q. The theorem is proven.
Put


2(ξ, η) =
[
γ0b2(x)p(x,+0)−A11δ

2
2
]
ξ2 + [γ0b1(x)p(x,+0)− a2(x)p(x,−0)]ξη

−[a1(x)p(x,−0) +A21δ
2
2
]
η2.

Theorem 3. Assume the conditions (6)–(9) as well as the conditions

∃γ0 > 0 ∃δ2 > 0 : 
2(η, ξ) ≥ 0, (η, ξ) ∈ R2,

p1 −A5/δ
2
2 > 0, p2 −A6/δ

2
2 > 0,

c(x, y) +A3/δ
2
2 ≤ 0, c(x, y) +A4/δ

2
2 ≤ 0, x ∈ �, y ∈ [−1, 1].

Then Problem III has at most one solution in V .
Proof. Arguing as in the proof of Theorem 1, taking (8) into account, we see

that
n∑

i=1

∫

Q−
u2
xi
dxdy + γ0

n∑

i=1

∫

Q+
u2
xi
dxdy

+
∫

Q−

[
p(x, y) +A5/δ

2
2
]
u2
y dxdy + γ0

∫

Q+

[
p(x, y) +A6/δ

2
2
]
u2
y dxdy

+
∫

�

[
γ0b2(x)p(x,+0) +A11δ

2
2
]
u2
y(x,+0) dx

−
∫

�

[
p(x,−0)a1(x) +A21δ

2
2
]
u2
y(x,−0) dx

−
∫

�

[
γ0b1(x)p(x,+0)− a2(x)p(x,−0)

]
u(x,+0)uy(x,−0) dx

−
∫

Q−

[
c(x, y) +A3/δ

2
2
]
u2(x, y) dxdy − γ0

∫

Q+

[
c(x, y) +A4/δ

2
2
]
u2(x, y) dxdy ≤ 0.

Therefore, (12) is fulfilled and so u(x, y) ≡ 0 in Q. The theorem is proven.
Before stating the next theorem, we introduce the new notations:

ã3 = max�(|a3(x)|), ã4 = max�(|a4(x)|),
b̃3 = max�(|b3(x)|), b̃4 = max�(|b4(x)|).

Theorem 4 (of existence). Assume the conditions (6)–(10) as well as the con-
ditions

c(x, y) ∈ (Q), ai(x) ∈ C2(�), i = 1, 2. (14)

Then there exist operators B̃i such that

∂

∂xj
(Biv) = Bivxj + B̃iv,

‖B̃iv‖2L2(�) ≤ m̃1i‖v(x,+0)‖2L2(�) + m̃2i‖v(x,−0)‖2L2(�)

+m̃3i‖v‖2L2(Q−) + m̃4i‖v‖2L2(Q+), v(x, y) ∈ V, i = 1, 2, (15)
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for all v(x, y) ∈ V , and there exist positive numbers δ01–δ04 such that

2− (1 + ã2
3
)
δ201 −

(
1 + ã2

4
)
δ202 − m̃21

(
ã2
3

δ201
+
γ0b̃23
δ203

)
− m̃32

(
ã2
4

δ202
+
γ0b̃24
δ04

)
> 0,

2− (1 + b̃23
)
δ203 −

(
1 + b̃24

)
δ204 − m̃12

(
ã2
4

δ202
+
γ0b̃24
δ204

)
− m̃11

(
ã2
3

δ201
+
γ0b̃23
δ01

)
> 0.

(16)

Then, for every function f(x, y) from L2(Q), there exists a solution u(x, y) in V to
Problem I.

Proof. We apply the method of continuation in a parameter. Let λ be a num-
ber in [0, 1]. Consider the following family of boundary value problems:

Problem Iλ. Find a solution u(x, y) to (1) in Q− and Q+ such that (2) and (3)
hold and

uy(x,−0) = λ[a1(x)u(x,−0) + a2(x)u(x,+0) + a3(x)B1u+ a4(x)B2u],
uy(x,+0) = λ[b1(x)u(x,−0) + b2(x)u(x,+0) + b3(x)B1u+ b4(x)B2u].

(17)

Denote by � the set of numbers λ from the segment [0, 1] for which Problem Iλ
is solvable in V . In accord with the theorem about the method of continuation in
a parameter [6], � coincides with [0, 1] if � is nonempty, open, and closed (in the
topology of the metric space X = [0, 1]). The coincidence of � with [0, 1] means that
Problem I1, i.e., the initial problem I, is solvable in V .

Since 0 belongs to � [7], � is nonempty.
The set � is clopen if all solutions to Problem Iλ from V satisfy the a priori

estimate
‖u‖V ≤ R0

with a constant K independent of u(x, y) and λ. Show that this estimate is valid.
Consider the equality

−
∫

Q−

uLu dxdy − γ0

∫

Q+

uLu dxdy = −
∫

Q−

uf(x, y) dxdy − γ0

∫

Q+

uf(x, y) dxdy. (18)

Integrating by parts, we have

n∑

i=0

∫

Q−

u2
xi
dxdy + γ0

n∑

i=0

∫

Q+

u2
xi
dxdy −

∫

Q−

c(x, y)u2 dxdy − γ0

∫

Q+

c(x, y)u2 dxdy

+
∫

Q−

p(x, y)u2
y dxdy + γ0

∫

Q+

p(x, y)u2
y dxdy +

∫

∂Q−

p(x, y)u · uyυy dS

+γ0

∫

∂Q+

p(x, y)u · uyυy dS = −
∫

Q−

uf(x, y) dxdy − γ0

∫

Q+

uf(x, y) dxdy.

Taking the inequality
∫

Q−

u2(x, y) dxdy ≤
∫

Q−

u2
y(x, y) dxdy,

∫

Q+

u2(x, y) dxdy ≤
∫

Q+

u2
y(x, y) dxdy
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into account, applying to the right-hand side the Young inequality, and using (16)
of Problem Iλ and the conditions of the theorem, we see that

n∑

i=1

∫

Q−
u2
xi
dxdy + γ0

n∑

i=1

∫

Q+
u2
xi
dxdy +

∫

Q−

p(x, y)u2
y dxdy

+γ0

∫

Q+

p(x, y)u2
y dxdy + λ

∫

�

[γ0b2(x)p(x,+0) +A1]u2(x,+0) dx

+λ
∫

�

[γ0b1(x)p(x,+0)− a2(x)p(x,−0)]u(x,+0)u(x,−0) dx

−λ
∫

�

[p(x,−0)a1(x) −A2]u2(x,−0) dx

−
∫

Q−

[
c(x, y) +A3/δ

2
0
]
u2(x, y) dxdy − γ0

∫

Q+

[
c(x, y) +A4/δ

2
0
]
u2(x, y) dxdy

≤ 1
2δ2

∫

Q−

f2 dxdy +
γ0

2δ2

∫

Q+

f2 dxdy +
δ2

2

∫

Q−

u2
y dxdy +

γ0δ2

2

∫

Q+

u2
y dxdy.

From (6)–(9) it follows that

k

{
n∑

i=1

∫

Q−

u2
xi
dxdy +

∫

Q−

u2
y dxdy +

n∑

i=1

∫

Q+

u2
xi
dxdy +

∫

Q+

u2
y dxdy

}

≤ K
(∫

Q−

f2(x, y) dxdy +
∫

Q+

f2(x, y) dxdy
)
,

where k = min
(
1, p0

2 , γ,
γ0p0

2

)
> 0 and K = max

( 1
2p0

, γ0
2p0

)
.

Hence, the first estimate is of the form

‖u‖2W 1
2 (Q−) + ‖u‖2W 1

2 (Q+) ≤ K1

( ∫

Q−

f2(x, y) dxdy +
∫

Q+

f2(x, y) dxdy
)
. (19)

To establish the second a priori estimate, we examine the equality
∫

Q−

uyyLu dxdy + γ0

∫

Q+

uyyLu dxdy =
∫

Q−

uyyf(x, y) dxdy + γ0

∫

Q+

uyyf(x, y) dxdy.

(20)
Integrating by parts, we infer that

n∑

i=1

∫

Q−

u2
xiy dxdy + γ0

n∑

i=1

∫

Q+

u2
xiy dxdy −

n∑

i=1

∫

�

uxiy(x,−0)uxi(x,−0) dx

+γ0

n∑

i=1

∫

�

uxiy(x,+0)uxi(x,+0) dx+
∫

Q−

pu2
yy dxdy + γ0

∫

Q+

pu2
yy dxdy

=
∫

Q−

f(x, y)uyy dxdy + γ0

∫

Q+

f(x, y)uyy dxdy −
∫

Q−

pyuyuyy dxdy
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−γ0

∫

Q+

pyuyuyy dxdy −
∫

Q−

c(x, y)uuyy dxdy − γ0

∫

Q+

c(x, y)uuyy dxdy. (21)

Transform the third and forth summands of the right-hand side of (21) with the use
of (17) as follows:

−
∫

�

uxiy(x,−0)uxi(x,−0) dx+ γ0

∫

�

uxiy(x,+0)uxi(x,+0) dx

= λ

∫

�

[
γ0b2(x)u2

xi
(x,+0) + [γ0b1(x) − a2(x)]uxi(x,−0)uxi(x,+0)

−a1(x)u2
xi

(x,−0)− (uxi(x,−0)u(x,−0)a1xi(x)− uxi(x,−0)u(x,+0)a2xi(x)
]
dx

−λ
∫

�

(
uxi(x,−0)

∂

∂xi
(B1u)a3(x) − uxi(x,−0)B1ua3xi(x)

−uxi(x,−0)
∂

∂xi
(B2u)a4(x)− uxi(x,−0)B2ua4xi(x)

+γ0

(
uxi(x,+0)u(x,−0)b1xi(x) + uxi(x,+0)u(x,+0)b2xi(x)

+uxi(x,+0)
∂

∂xi
(B1u)b3(x) + uxi(x,+0)B1ub3xi(x)

+uxi(x,+0)
∂

∂xi
(B2u)b4(x) + uxi(x,+0)B2ub4xi(x)

))
dx.

All but first summands on the right-hand side are estimated by the Young inequal-
ity, inequality (13) applied to the derivatives uxi(x,−0) and uxi(x,+0), and the
conditions (8) and (15) on B1 and B2. Next, the summands on the right-hand side
of (20) are estimated by the Young inequality and the first estimate. In result, we
find that
∫

�

(
γ0u

2
xi

(x,+0)b2(x) + uxi(x,−0)uxi(x,+0)[γ0b1(x)− a2(x)] − u2
xi

(x,−0)a1(x)
)
dx

+
p1

2

∫

Q−

u2
yy dxdy +

γ0p2

2

∫

Q+

u2
yy dxdy +

n∑

i=1

∫

Q−

u2
xiy

(
1− (1 + ã2

3)δ201
2

− (1 + ã2
4)δ202

2

−m̃21

[
ã2
3

δ201
+
γ0b̃23
δ203

]
− m̃32

[
ã2
4

δ202
+
γ0b̃24
δ04

])
dxdy +

n∑

i=1

∫

Q+

u2
xiy

(
1− (1 + b̃23)δ203

2

− (1 + b̃24)δ204
2

− m̃12

[
ã2
4

δ202
+
γ0b̃24
δ204

]
− m̃11

[
ã2
3

δ201
+
γ0 − b̃23
δ01

])
dxdy

≤ δ
[ ∫

Q−

u2
yy dxdy + γ0

∫

Q+

u2
yy dxdy

]
+M.

The condition (16) yields
∫

Q−

u2
yy dxdy +

n∑

i=1

∫

Q−

u2
xiy dxdy + γ0

∫

Q+

u2
yy dxdy + γ0

n∑

i=1

∫

Q+

u2
xiy dxdy ≤M1.
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The third a priori estimate
n∑

i,j=1

∫

Q−

u2
xixj

dxdy + γ0

n∑

i,j=1

∫

Q+

u2
xixj

dxdy ≤M2

follows obviously from the first two estimates and the second main inequality for
elliptic operators [7]. These three estimates ensure the desired estimate

‖u‖V ≤ R0, (22)

which means that Problem Iλ is solvable in V for all λ in [0, 1]; i.e. for λ = 1 as
well. In this case the initial problem I is solvable in V . The theorem is proven.

Remark. A solution u(x, y) to Problem I meets the relations uxiy(x,−0) ∈
L2(�) and uxiy(x,+0) ∈ L2(�), i = 1, . . . , n. This fact is a consequence of the
conjugate conditions where every summand on the right-hand side has a generalized
derivative with respect to xi.

Given x in � and the variables ξ and η, define the quadratic form of the variables
(ξ, η) as


3(x, ξ, η) = −a1(x)ξ2 + [γ1b1(x)− a2(x)]ξη + γ1b2(x)η2,

where γ1 is a positive number whose role will be elucidated below.

Theorem 5 (of existence). Assume the conditions (6)–(9), (14), and (15) as
well as the conditions

a1(x) ≤ 0, b2(x) ≥ 0, a1(x)b2(x)− a2(x)b1(x) ≤ 0, x ∈ �,
∃γ1 > 0 : 
3(x, ξ, η) ≥ ϕ1(x)ξ2 + ϕ2(x)η2, ϕ1(x) ≥ 0, ϕ2(x) ≥ 0, x ∈ �,

|a2xi(x)| ≤ C
√
ϕ1(x), |b1xi(x)| ≤ C

√
ϕ2(x), C = const, x ∈ �, i = 1, . . . , n.

Assume further that there exist positive numbers δ01–δ04 such that

2− (1 + ã2
3
)
δ201 −

(
1 + ã2

4
)
δ202 − m̃21

(
ã2
3

δ201
+
γ1b̃23
δ203

)
− m̃32

(
ã2
4

δ202
+
γ1b̃24
δ04

)
> 0,

2− (1 + b̃23
)
δ203 −

(
1 + b̃24

)
δ204 − m̃12

(
ã2
4

δ202
+
γ1b̃24
δ204

)
− m̃11

(
ã2
3

δ201
+
γ1b̃23
δ01

)
> 0.

Then, for every function f(x, y) from L2(Q), there exists a solution u(x, y) to Prob-
lem II in V .

Proof. First, we consider the case aj(x) ≡ 0, bj(x) ≡ 0, j = 3, 4. Let ε be
a positive number. Put

a1ε(x) = a1(x)− ε, b2ε(x) = b2(x) + ε.

Examine the following problem: Find a solution u(x, y) to (1) in the cylin-
ders Q− and Q+ satisfying (2), (3), and such that

u(x,−0) = a1ε(x)uy(x,−0) + a2(x)uy(x,+0), x ∈ �,
u(x,+0) = b1(x)uy(x,−0) + b2ε(x)uy(x,+0), x ∈ �. (23)

Since a1ε(x)b2ε(x) − a2(x)b1(x) is strictly negative in �, from (22) and (23) it
follows that

uy(x,−0) = ã1ε(x)u(x,−0) + ã2ε(x)u(x,+0), x ∈ �,
uy(x,+0) = b̃2ε(x)u(x,−0) + b̃2ε(x)u(x,+0), x ∈ �, (24)
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i.e., we arrive at the conditions of Problem I. In accord with Theorem 4 the problem
in question has a solution uε(x, y) in V . Demonstrate that the family {uε(x, y)}
satisfies the estimates that allow us to pass to the limit as ε → 0. We omit the
index ε here.

Solutions to (1)–(3), (23) satisfy (19) (the proof repeats verbatim the proof of
the same estimate in Theorem 4). Next, transforming (20) to the form (21), we sep-
arately examine the third and forth summands. Using the conjugate conditions (23),
we infer

−
n∑

i=1

∫

�

uxiy(x,−0)uxi(x,−0) dx+ γ1

n∑

i=1

∫

�

uxiy(x,+0)uxi(x,+0) dx

=
n∑

i=1

∫

�

[
γ1b2(x)u2

xi,y(x,+0) + [γ1b1(x) − a2(x)]uxi,y(x,−0)uxi,y(x,+0)

−a1(x)u2
xi,y(x,−0)

]
dx+

∫

�

[
1
2
�a1(x)u2

y(x,−0)− 1
2
γ1�b2(x)u2

y(x,+0)

−
n∑

i=1

a2xi(x)uy(x,+0)uxiy(x,−0) + γ1

n∑

i=1

b1xi(x)uy(x,−0)uxiy(x,+0)

+ε
n∑

i=1

(
u2
xiy(x,−0) + γ1u

2
xiy(x,+0)

)
]
dx.

In result, we arrive at the equality
n∑

i=1

∫

�

[
b2(x)γ1u

2
xiy(x,+0) + [γ1b1(x) − a2(x)]uxiy(x,−0)uxiy(x,+0)

−a1(x)u2
xiy(x,−0)

]
dx+

p1

2

∫

Q−

u2
yy dxdy +

γ1p2

2

∫

Q+

u2
yy dxdy

+
n∑

i=1

∫

Q−

u2
xiy dxdy + γ1

n∑

i=1

∫

Q+

u2
xiy dxdy + ε

n∑

i=1

∫

�

[
u2
xiy(x,−0) + γ1u

2
xiy(x,+0)

]
dx

=
∫

�

[
− 1

2
�xa1(x)u2

y(x,−0) +
1
2
�xb1(x)u2

y(x,+0)
]
dx

+
n∑

i=1

∫

�

[
a2xiuy(x,+0)uxiy(x,−0) + γ1b1xiuy(x,+0)uxiy(x,−0)

]
dx

+
∫

Q−

c(x, y)uyyu dxdy − γ1

∫

Q+

c(x, y)uyyu dxdy.

Applying the Young inequality and using the conditions of the theorem and the
integral inequalities of the form (13), we obtain the estimate

∫

Q−

u2
yy dxdy +

n∑

i=1

∫

Q−

u2
xiy dxdy +

∫

Q+

u2
yy dxdy +

n∑

i=1

∫

Q+

u2
xiy dxdy

+ε
n∑

i=1

∫

�

(
u2
xiy(x,−0) + u2

xiy(x,+0)
)
dx ≤M3. (25)
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Now the third a priori estimate
n∑

i,j=1

∫

Q−

u2
xixj

dxdy +
n∑

i,j=1

∫

Q+

u2
xixj

dxdy ≤M4 (26)

is an obvious consequence of the first two estimates and the second main inequality
for elliptic operators [7].

The estimates (19), (25), and (26), the reflexivity of Hilbert spaces, and the
embedding theorems (see [7, 8]) imply that there exist a sequence of numbers {εm},
a sequence of functions {um(x, y)} (um(x, y) = uεm(x, y)) from the family {uε(x, y)},
and a function u(x, y) such that εm → 0, um(x, y) → u(x, y) weakly in W 2

2 (Q−)
and W 2

2 (Q+),

um(x,−0)→ u(x,−0), um(x,+0)→ u(x,+0), umy(x,−0)→ uy(x,−0),

umy(x,+0)→ uy(x,+0), εmumy(x,−0)→ 0,

εmumy(x,+0)→ 0 almost everywhere in �

as m→∞. Hence, the limit function u(x, y) satisfies (1) in Q− and Q+, where (2),
(3), and the conjugate conditions are those of Problem II.

In the case of nonzero functions a3(x), b3(x), a4(x), and b4(x) the proof is
similar to the above proof (some arguments are more cumbersome). The theorem is
proven.

Given x ∈ � and variables ξ and η, define the quadratic form 
4(x, ξ, η) of
variables (ξ, η) as follows:


4(x, ξ, η) = −a2(x)ξ2 + [γ2b2(x)− a1(x)]ξη + γ2b1(x)η2,

where γ2 is a positive number whose role is elucidated below.

Theorem 6 (of existence). Assume the conditions (6)–(9), (14), (17), as well
as the conditions

a2(x) ≤ 0, x ∈ �,
∃γ2 > 0 : 
4(x, ξ, η) ≥ ψ1(x)ξ2 + ψ2(x)η2, ψ1(x) ≥ 0, ψ2(x) ≥ 0, x ∈ �̄,

|a1xi(x)| ≤ C
√
ψ1(x), |b1xi(x)| ≤ C

√
ψ2(x), C = const, x ∈ �, i = 1, . . . , n.

Assume further that there exist positive numbers δ01–δ04 such that

2− (1 + ã2
3
)
δ201 −

(
1 + ã2

4
)
δ202 − m̃21

(
ã2
3

δ201
+
γ2b̃23
δ203

)
− m̃32

(
ã2
4

δ202
+
γ2b̃24
δ04

)
> 0,

2− (1 + b̃23
)
δ203 −

(
1 + b̃24

)
δ204 − m̃12

(
ã2
4

δ202
+
γ2b̃24
δ204

)
− m̃11

(
ã2
3

δ201
+
γ2b̃23
δ01

)
> 0.

Then, for every function f(x, y) from L2(Q), there exists a solution u(x, y) to Prob-
lem III in V .

Proof. As in the proof of Theorem 5, we study first the case of aj(x) ≡ 0 and
bj(x) ≡ 0, j = 3, 4. Put

a2ε(x) = a2(x) − ε, ε > 0.

Consider the problem of finding a solution to (1) such that (2) and (3) hold and

u(x,−0) = a1(x)uy(x,+0) + a2ε(x)uy(x,−0), x ∈ �,
uy(x,+0) = b1(x)uy(x,+0) + b2(x)uy(x,−0), x ∈ �. (27)
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We can pass to the relations of the form (24) which are the conditions of Problem I.
This problem has a solution uε(x, y) in V and the first a priori estimate (19) holds
for uε(x, y).

To justify further estimates, we examine (21). The conjugate condition (27)
yields

n∑

i=1

∫

�

[
γ2b1(x)u2

xi
(x,+0) + [γ2b2(x) − a1(x)]uxiy(x,−0)uxi(x,+0)

−a2(x)u2
xiy(x,−0)

]
dx+

p1

2

∫

Q−

u2
yy dxdy +

γ2p2

2

∫

Q+

u2
yy dxdy

+
n∑

i=1

∫

Q−

u2
xiy dxdy +

n∑

i=1

∫

Q+

u2
xiy dxdy + ε

n∑

i=1

∫

�

u2
xiy(x,−0) dx

=
∫

�

[
− 1

2
�xa2(x)u2

y(x,−0) +
1
2
�xb1(x)u2

y(x,+0)
]
dx

+
n∑

i=1

∫

�

[a1xiu(x,+0)uxiy(x,−0) + γ2b2xiuy(x,−0)uxiy(x,+0)] dx

+
∫

Q−

c(x, y)uyyu dxdy − γ2

∫

Q+

c(x, y)uyyu dxdy.

Applying the Young inequality and using the conditions of the theorem and the
integral conditions of the form (13), we arrive at the estimate

∫

Q−

u2
yy dxdy +

n∑

i=1

∫

Q−

u2
xiy dxdy +

∫

Q+

u2
yy dxdy +

n∑

i=1

∫

Q+

u2
xiy dxdy

+ε
n∑

i=1

∫

�

u2
xiy(x,−0) dx ≤M5. (28)

The third a priori estimate
n∑

i,j=1

∫

Q−

u2
xixj

dxdy +
n∑

i,j=1

∫

Q+

u2
xixj

dxdy ≤M6 (29)

is an obvious consequence of the first two estimates and the second main inequality
for elliptic operators [7].

The estimates (19), (28), and (29) imply that we can choose convergent subse-
quences {εm} and {um(x, y)} and there exists a function u(x, y) which is a solution
to (1) satisfying (2), (3), and the conjugate conditions of Problem III. The proof of
the theorem is complete.

As examples of the operators B1 and B2 with the required properties, we can
take integral operators taking a function υ(x, y) into the functions

(Biυ)(x) =
∫

�

K1i(x, ξ)υ(ξ,+0) dξ +
∫

�

K2i(x, ξ)υ(ξ,−0) dξ

+
∫

Q−

N1i(x, ξ, η)υ(ξ, η) dξdη +
∫

Q+

N2i(x, ξ, η)υ(ξ, η) dξ,
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where K1i(x, ξ), K2i(x, ξ), N1i(x, ξ, η), and N2i(x, ξ, η), i = 1, 2, are given.
The conditions on these kernels sufficient for the fulfillment of the conditions of

Theorems 1–6 can be easily found on using the Hölder inequality.
Remark. The operator �x in the problem under study can be replaced with

a general elliptic operator of x1, . . . , xn of order 2m (m > 0 is an integer) comple-
mented with the corresponding collection of boundary conditions on S).
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MODELING THE BOUNDARY

EFFECT IN A CYLINDRICAL SHELL

UNDER CREEP CONDITIONS
Yu. M. Volchkov

Abstract. We study the distributions of deformation velocities and stress in neighbor-
hoods of the ends of a shell (the boundary effect) using Rabotnov’s two-layer shell model.
We solve the system of ordinary differential equations using an iterative procedure and
compare solutions for a shell of finite length and a semi-infinite shell.

Keywords: boundary effect, cylindrical shell, creep, iterative procedure

Introduction

Rabotnov proposed in [1] a two-layer shell model to solve elastic-plastic defor-
mation problems. The model is generalized in [2, 3] to the case of deformations of
shells under creep conditions. In addition, [3] pointed out a class of shells for which
the application of the two-layer model cannot lead to large errors when we solve
concrete problems. This class of shells is described by the so-called technical theory
of shells which includes the theory of axially symmetric deformations of a circular
cylindrical shell, the theory of long cylindrical shells, and the theory of pure bending
of curvilinear pipes. Application of the two-layer shell model enabled the develop-
ment of an efficient numerical method for solving the problems of the stressed and
deformed state of shells under creep conditions. In the mechanics of deformable
solids, the creep of a material means the property that its deformation may increase
with time even under constant stress. Some generalizations of the two-layer model
to the case of shells reinforced by edges appeared in [4, 5].

In this article we study the distribution of deformation velocities and stress in
neighborhoods of the ends of the shell (the boundary effect). Information on the
distributions of deformation velocities and stress in the boundary effect zone enables
us to suitably choose test functions while solving problems concerned with critical
time with the use of the variational principle [6].

1. Rabotnov’s Two-Layer Shell Model

Constructing a simplified theory of shells, we replace the real shell of thickness
2H by a two-layer model. This shell consists of two layers of thickness δ each with
the distance between their midpoints equal to 2h (Fig. 1). Assume that the layers are
connected to each other so that the link transmits the shifting force but is unaffected
by stretching forces and torques. Therefore, the layers deform in accordance with
the Kirchhoff–Love hypothesis. As the reference surface we take a surface lying
between the layers. Since the base layers are thin, we can neglect the change in
the deformation within the limits of their thickness. We can guarantee that the

c© 2014 Volchkov Yu. M.
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Fig. 1. Two-layer model of shell

condition δ � h holds by choosing appropriate constants in the law of creep for the
real shell and the two-layer model [3].

We establish the dependence between the parameters δ and h of the model and
the thickness 2H of the real shell basing on the requirement that the behavior of
the model and that of the real shell coincide in two cases: for a zero-momentum
stressed state and for cylindrical bending. Say, for the case of a power law creep
with exponent equal to n, these dependences are [2]

h = H, δ =
(

n

1 + 2n

) n
n+1

H. (1)

As n varies from 1 to∞, the quantity h changes in the interval 1 ≤ h ≤ H/√3. The
value n =∞ corresponds to the case of ideal plasticity.

In the case of axially symmetric buckling of a circular cylindrical shell under
the action of interior pressure and compressing axial force, the problem reduces to
the following system of differential equations in dimensionless variables:

m′′ − u
(

1
ω+ +

1
ω+

)
− 2√

3
τ + 2p = 0, (2)

u′′ + (m+ τ)ω+ − (m+ τ)ω− = 0, (3)

(ω±)
2n
n−1 = u2 +m2(ω±)2, (4)

where

ω± =
σ∗v±

ε∗s±
, u =

ε2
ε∗
, m =

√
3

4
M11

hδσ∗
, p = − qnR

2δσ∗
, τ =

√
3

4
T11

δσ∗
,

while ε2 is the velocity of hoop deformation of creep, M11 is the longitudinal torque,
qn is the interior pressure, T11 is the longitudinal compressing force, v+, s+ and
v−, s− are the intensivities of the creep velocity and stress in the upper and lower
base layers respectively, ε∗ and σ∗ are characteristic quantities with the dimensions
of creep velocity and stress respectively; the primes indicate differentiation with
respect to the dimensionless longitudinal coordinate ξ = x/b, with b2 = 4/(

√
3Rh),

and R is the radius of the cylindrical shell.
Equation (4) determines ω± as functions of u and m.
When u and m vary independently, (2)–(4) are the Euler equations for the

functional

N =
l∫

0

[
u′m′+

1
2
ψ(ω+)+

1
2
ψ(ω−)−(m+τ)2ω+−(m−τ)2ω−+2

(
τ√
3
−p
)
u

]
dξ, (5)
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where

ψ(ω) =
1
ε2∗

∫
d(v2)
ω

and l = L/b is the dimensionless length of the shell; for an elastic shell, b is the size
of the boundary effect zone.

2. An Iterative Procedure for Solving
the Boundary Value Problem on the

Creep Deformation of a Cylindrical Shell

We must supplement (2)–(4) with boundary conditions whose form depends on
the method of fixing the ends of the shell. If both ends are rigidly restrained then
the boundary conditions are

u(0) = u′(0) = u(l) = u′(l) = 0. (6)

If both ends are hinged then the boundary conditions

u(0) = m(0) = u(l) = m(l) = 0 (7)

express the vanishing of displacement and momentum. Other kinds of boundary
conditions are possible.

Let us also write down boundary conditions for a semi-infinite shell. On the
left edge of the shell we can impose conditions (6) or (7). At infinity the shell
is in the zero-momentum state. Consequently, m(∞) = 0 and u(∞) = u∞. Put
ω+(∞) = ω−(∞) = ω∞. By (4),

2u∞
ω∞

= 2
(
p− τ√

3

)
, (ω∞)2n/(n−1) = u2

∞ + (τω∞)2.

Consequently,

u∞ =
(
p− τ√

3

)
ω∞ =

[(
p− τ√

3

)
+ τ2
]2n/(n−1)

. (8)

Rearrange (2) and (3) as

m′′ − 2
u

ω∞
=
ω∞ − ω+

ω+ω∞
u+

ω∞ − ω−
ω−ω∞

u+ 2
(
τ√
3
− p
)
, (9)

u′′ + 2mω∞ = m(ω∞ − ω+) +m(ω∞ − ω−)− τ(ω+ − ω−). (10)

Assuming that the right-hand sides of (9) and (10) are known functions of ξ and
integrating the system subject to the appropriate boundary conditions, we obtain

u = [A− J1(ξ)]δ(ξ) + [J2(ξ)−B]γ(ξ) + [C − J3(ξ)]β(ξ)

+[D + J4(ξ)]α(ξ) − τ√
3
ω∞ + pω∞, (11)

m =
1
ω∞
{[[A− J1(ξ)]γ(ξ)− [J2(ξ)−B]δ(ξ)

−[C − J3(ξ)]α(ξ) + [D + J4(ξ)]β(ξ)]}, (12)
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where

J1(ξ) =

ξ∫
0

[F+α(ξ) + F−β(ξ)] dξ, J2(ξ) =

ξ∫
0

[F+β(ξ) − F−α(ξ)] dξ,

J3(ξ) =

ξ∫
0

[F+γ(ξ)− F−β(ξ)] dξ, J4(ξ) =

ξ∫
0

[F+δ(ξ) + F−γ(ξ)] dξ,

F± =
1
4

{[
ω∞ − ω+

ω+ +
ω∞ − ω−

ω−

]
u± (ω+ − ω∞)(m+ τ) ± (ω− − ω∞)(m− τ)

}
,

α(ξ) = exp(−ξ) sin ξ, β(ξ) = exp(−ξ) cos ξ, γ(ξ) = exp(ξ) sin ξ, δ(ξ) = exp(ξ) cos ξ.

The constants A, B, C, and D depend on the form of boundary conditions. For (6)
the constants are defined as

B = −D, A = −r − c, C =
(β(ξ) − δ(ξ))�1(ξ) − (α(ξ)− γ(ξ))�2(ξ)

δ(ξ)
,

D =
(β(ξ) − δ(ξ))�2(ξ) + (α(ξ) + γ(ξ))�1(ξ)

δ(ξ)
,

δ(ξ) = (β(ξ) − δ(ξ))2 + (α(ξ) + γ(ξ))2,
�1(ξ) = r(δ − 1) + J1(l)δ − J2(l)γ + J3(l)β − J4(l)α,

�2(ξ) = rγ + J1(l)γ + J2(l)δ − J3(l)α− J4(l)β, r =
(
p− τ√

3

)
ω∞.

For a semi-infinite shell with hinged left end the constants are

A = J1(∞), B = J2(∞), C = −J1(∞)− r, D = −J2(∞).

For a semi-infinite shell the integrals J1(∞) and J2(∞) make sense provided that
|u− u∞| → 0 and |m| → 0 not slower than exp(−ξ) as ξ →∞.

We solve (11) and (12) using iterations. As the initial approximation to the
functions u and m we take the expressions resulting from (11) and (12) when we
put ω± = ω∞, u = u∞, and m = 0 in the right-hand sides. Then we find from (4)
the initial approximation to ω±. To find a root of (4), we use Newton’s method.
Inserting the initial approximation to u and m into the right-hand side of (11) and
(12), we find the first approximation. The process then repeats.

3. The Boundary Effect in a Semi-Infinite
Cylindrical Shell Loaded by Interior Pressure

Assume that a circular cylindrical shell is loaded by the interior pressure p and
τ = 0. Assume that the edges of the shell for ξ = 0 are clamped. Since τ = 0, it
follows from (4) that

ω+ = ω− = ω (13)
and the function ω is determined from

ω2n/(n−1) = u2 +m2ω2. (14)

Then (9) and (10) become

m′′ − 2
u

ω∞
= 2

ω∞ − ω
ωω∞

u− 2p, (15)

u′′ + 2mω∞ = 2m(ω∞ − ω), (16)
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where ω∞ = pn−1.
Changing the variables

u = pnū, m = pm, ω = pn−1ω,

we rearrange (14)–(16) as

ω2n/(n−1) = ū2 +m2ω2, (18)

m′′ − 2
ū

ω∞
= 2

ω∞ − ω
ωω∞

ū− 2, (19)

ū′′ + 2mω∞ = 2m(ω∞ − ω). (20)

In the new variables ω∞ = ū∞ = 1, and the only remaining parameter of the problem
is the creep exponent n.

Replace (19) and (20) with integral equations (11) and (12), which we should
simplify according to (13). Also, replace pω∞ with 1. We have

F± =
ω∞ − ω

2

(
ū

ω
±m
)
.

For the initial approximation we obtain the expressions

ū0 = 1− exp(−ξ)(cos ξ − sin ξ), m0 = − exp(−ξ)(cos ξ − sin ξ).

To determine ω, we use Newton’s method:

ωk+1 = ωk +
(1/4)ū2

k +m2
kω

2
k − ω2n/(n−1)

k

(2n/(n− 1))ω(n+1)/(n−1)
k − 2m2

kω
2
k

.

We use these formulas to determine ω at the points of the interval under consider-
ation from the prescribed values of ū and m. For ξ = 0 we can find from (14) the
value of ω in terms of m as

ω(0) = (m(0))n−1.

At the subsequent points of the interval we take as the initial approximation to ω
the solution to (14) at the previous point. The process of successive approximations
continues until the inequality |ωk+1 − ωk| ≤ 0.00001 becomes valid. Since the ini-
tial approximation at every point differs little from the exact value, three to four
approximations turn out sufficient to satisfy the last inequalities. To calculate the
integrals J1(∞) and J2(∞), we replace the semi-infinite interval by ξ ∈ [0, 7]. As
a consequence, the values of ū, m, and ω differ from their values at infinity by at
most 0.0001. We divide the interval of integration into intervals with 
ξ = 0.05
and use the trapezoid formula. The difference between the values of the required
functions at the fourth and fifth nodes of approximation amounts to the third digit
after the decimal point, between the values at the sixth and seventh nodes, to the
fifth digit, and between those on the eleventh and twelfth nodes, to the eighth digit.

4. The Results of Modeling

Fig. 2 depicts the dependence of the dimensionless momentum m and dimen-
sionless velocity ū of hoop deformation on the coordinate ξ for the creep exponents
n = 1, 3, 5. The graphs imply that as n increases, the boundary effect zone some-
what grows, and simultaneously we observe a smoother change of momentum in the
boundary effect zone. Our computations show that the momentum m in clamped
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edges unchanged as the creep exponent n varies, and in fact equals 1. The same re-
sult is obtained in [3] with the use of the variational principle (the functional in (5)).
This fact is natural; for instance, if we use Mises’ fluidity criterion then in the limit
state of the shell as n = ∞ the momentum also equals 1. Indeed, for ξ = 0 the
velocity of hoop deformation vanishes. Thus, σ2 = (1/2)σ1, and Mises’ criterion

σ2
1 − σ1σ2 + σ2

2 = s2∞

implies that σ1 = (2/
√

3)s∞. Therefore, M1(0) = (4/
√

3)δhs∞ or m = 1 since the
limit state is reached for p = 1.

Fig. 2. Distribution of deflection and momentum
in semi-infinite cylindrical shell

For the original shell of thickness H we express torque as

3M1

2qHa
= −
(

n

1 + 2n

)n/(n+1)√
3m.

This follows once we use the definition of m and (1), which yield the dependence of
the parameters of the model on the thickness of modeled and the creep exponent.

Fig. 3. Distribution of deflection
in finite and infinite cylindrical shells

Fig. 3 illustrates a comparison of the dependence of the transverse velocity of
deformation on the coordinate ξ for finite and infinite shells.

We can express the longitudinal and hoop stresses in terms of m and ū as
follows [3]:

1
p

σ±1
σ∗

= ± 2√
3
m,

1
p

σ±2
σ∗

=
ū

ω
± m√

3
.
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This implies that p is the value of hoop stress at infinity, (σ2(∞)/σ∗) = p.
Fig. 4 depicts the dependence of hoop stresses on the dimensionless coordinate ξ.

The dashed lines correspond to the stress (1/p)(σ+
2 /σ∗), while the solid lines, to the

stress (1/p)(σ−2 )/σ∗) in the lower layer.

Fig. 4. Distribution of stresses in the boundary effect zone

It is particularly interesting to estimate the maximal stretching stress since
large stretching stresses can lead to cracks in a construction. The maximal stretching
stress is a longitudinal stress on the interior side of the shell. The maximal stretching
stress in a modeled shell is different from the maximal stress in the model, and we
can find it in terms of torque at the restraint:

(σ1)max =
M1(0)
Wn

, Wn =
In
hν
, In =

h

1 + 1/ν
, ν =

1
n
.

Refer as the concentration coefficient to the ratio of the maximal stretching
stress to the hoop stress at infinity. The last equalities yield

(σ1)max

σ2(∞)
= (ν + 2)ν/(1+ν) 2√

3
m(0).

For n = 1 the maximal stretching stress at the restraint exceeds the hoop stretching
stress at infinity by a factor of two. The results of computation imply that the
concentration coefficient decreases with the growth of the creep exponent. But
its value remains quite large for the creep exponent for materials widely used in
technology. As a consequence, it is necessary to take the boundary effect into account
when calculating constructions.

Conclusion. Using the two-layer shell model we model the distribution of
stresses and velocity of deformation in the boundary effect zone in cylindrical shells,
both of finite length and semi-infinite.
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VARIOUS APPROACHES TO MODELING

INDUCED CURRENTS IN TRANSMISSION LINES

Yu. M. Grigor′ev and M. N. Borisova

Abstract. We compare the currents and voltages induced in an aerial transmission line
in the event of a nearby lightning strike, calculating them with the use of two different
mathematical models. The first model describes the electrostatic component of the in-
duced currents, and the second, the electromagnetic component. We show that the peak
values of these components are comparable and that in permafrost conditions the peak
values of the electrostatic components of induced currents and voltage can be greater by
orders of magnitude, and so more dangerous than in the areas without permafrost.

Keywords: lightning, transmission line, permafrost, induced voltage, induced currents

The problem of electromagnetic compatibility of technical constructions with at-
mospheric electricity is particularly urgent in permafrost conditions due to the low
conductivity of the ground. Some aspect of this problem concerns the questions
of improving the effectiveness of the electrical protection of long-distance transmis-
sion lines. These include pipelines, power transmission lines, and communication
lines. From the physical viewpoint, the long-distance lines amount to long conduc-
tive lines in a stratified medium (air, conducting ground, or permafrost) and subject
to electric induction during thunderstorms and intense geomagnetic disturbances.
In long-distance transmission lines, the currents and voltages appear both in the ab-
sence and in presence of a direct strike lightning. These are called induced currents
and voltages. There are two kinds of them: Those of the first kind are electro-
magnetic, i.e., they arise in result of the influence of the electromagnetic field of
exterior disturbances. Those of the second kind are electrostatic: the electrostatic
field of a thundercloud induces electric charges on long-distance conducting lines.
The fast discharge of a thundercloud releases these charges; flowing along the trans-
mission line, and they form a current and voltage wave. The use of long-distance
power transmission lines and communication lines in Yakutia during the last decades
shows that induced currents and voltages cause many emergencies. Some operational
parameters of the electric protection of these lines often fail to reach the required
standardized values.

In order to draw up recommendations on the protection of transmission lines
against the action of atmospheric electricity, it is necessary first of all to analyze
the processes, in particular, to estimate the induced currents and voltages. The
standard methods for approximate calculation of induced overvoltages in aerial lines
rest on calculating the electromagnetic field of the lightning channel. In essentially
all published articles, the calculation of induced currents and voltages accounts only

The authors were financially supported by the Russian Foundation for Basic Research (Grant
DV No. 12–05–98528–a) and the Ministry for Education and Science (Grant No. 1626).

c© 2014 Grigor ′ev Yu. M. and Borisova M. N.
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for electromagnetic induction and neglects the electrostatic part. But, in our opinion,
in domains with high specific electric resistance of the ground, including domains
with permafrost, it is necessary to account for the electrostatic component (i.e., the
current and voltage wave) while calculating the induced currents and voltages. The
authors are aware of few articles calculating current and voltage waves.

Let us survey some basic facts of use below. The electrization of thunderclouds
in the most cases (up to 90%) results in lightning carrying negative charge to the
ground. In the middle latitudes, about 30–40% of the total number of lightnings
strike the ground. The remaining 60–70% constitute discharges between clouds or
their oppositely charged parts. The lightning consists mostly of several separate
successive discharges (up to 14). A multicomponent lightning can last up to 1 sec.
Most often the duration of a lightning strike is below 0.1 sec. The failures in long-
distance lines occur mainly due to a nearby lightning strike.

The articles [1–7] consider some mathematical models of the electromagnetic
influence of lightning discharges to the ground or between clouds on a long-distance
line. Tsapenko attempted [8] to construct a mathematical model of current and
voltage waves in power transmission lines; To model the initial potential of a cloud,
he used a quadratic function without justification. The most adequate models of
current and voltage waves in a coaxial cable under permafrost conditions appeared
in [9–12]. We constructed and solved analytically and numerically the mathematical
models of current and voltage waves induced in power transmission lines by lightning
discharges in permafrost conditions [13–20].

In this article we compare the calculations of currents and voltages induced in
a power transmission line according to our model [13–20] to the model described
in [3].

Let us briefly describe our model of current and voltage waves. We construct it
on assuming the instantaneous character of the lightning discharge. For simplicity,
consider a transmission line with one infinitely thin conductor (Fig. 1) characterized
by the following distributed parameters: resistance R, capacity C, inductance L,
and leakage factor G calculated per unit length.

Fig. 1. Lightning strike near transmission line
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Introduce the system of Cartesian coordinates x, y, and z. Suppose that the
domain z < l is occupied by conducting ground, where the parameter l characterizes
the thickness of the permafrost layer. The transmission line is aligned with the x-
axis. We model a thundercloud with a point charge Q with coordinates (xc, yc, zc).
Consequently, the line lies in the field of the charge Q and its electrostatic image −Q.
Assume that the conductor is grounded at an infinitely distant point, while the
potential v of the ground equals 0, i.e., the charges induced on the line create the
potential compensating the potential of two point charges Q and −Q.

At time t = 0 the charges Q disappear instantaneously (the cloud discharges),
and the current wave, the flow of induced charges, propagates along the line for t > 0.
It is described by the telegraph system of equations. Thus, to determine the current
i(x, t) and the voltage u(x, t) in the lines following the discharge of a thundercloud,
we obtain the problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ux + Lit + Ri = 0,
it + Cut + Gu = 0,
i(x, 0) = 0,
u(x, 0) = f(x),

−∞ < x <∞, t > 0. (1)

We find the initial function f(x) from the previous arguments:

f(x) =
1

4πε0

(
Q√

z2
c + (x− xc)2 + y2

c

− Q√
(2l + zc)2 + (x − xc)2 + y2

c

)
,

this is the potential that up to time t = 0 compensates the potential of the charges Q
and −Q. The second initial condition i(x, 0) = 0 is obvious.

The solution to our problem is the voltage

u(x, t) =
1
2
eλt(f(x + at) + f(x− at))

+
1
2
eλt

x+at∫
x−at

(
μ

a
I0(k
√
a2t2 − (x− y)2) + kta

I1(k
√
a2t2 − (x− y)2)√

a2t2 + (x− y)2

)
f(y) dy (2)

and the current

i(x, t) = −
√

C

L

eλt

2

x+at∫
x−at

I0(k
√
a2t2 − (x− y)2)fy(y) dy, (3)

where I0(z) and I1(z) are modified Bessel functions.
If the condition

RC = LG (4)

of the absence of disturbances is fulfilled then the solution to our problem simplifies,
becoming

u(x, t) =
1
2
e−

R
L t(f(x− at) + f(x + at)), (5)

i(x, t) =
1
2

√
C

L
e−

R
L t(f(x− at)− f(x + at)). (6)

Let us recall how the numerical experimentation of [3] studied the influence
of low conductivity of the ground on the induced currents in a power transmission
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line, accounting only for the electromagnetic component of induced currents. It all
starts with calculation of the electromagnetic field of the lightning channel by several
methods. We determine the horizontal component of the electric field near a power
transmission line without imposing boundary conditions on the wires. Then we insert
the strength of this field into the right-hand side of the telegraph equations as the
external electromotive force and solve the resulting initial-boundary value problem.
The power transmission line was treated in [3] as one wire of radius b = 0.005 m
hanging at l = 10 m above ground. Furthermore, C = 2πε0

log( 2l
b ) = 6.7 · 10−12 F/m is

the capacity, R = ρ l
πb2 = 3.4 · 10−4 Ohm/m is the resistance, and L = μ0

2π log
( 2l

b

)
=

1.6 · 10−6 H/m is the inductance of the conductor per unit length.
We calculate the leakage factor G as

G =
σ0

ε0
C,

where σ0 is the conductivity of air. We can justify this formula in the electrodynamic
derivation of telegraph equations [21].

The vertical lightning strikes near a power transmission line at distance r = 50 m
from its center (Fig 2).

Fig. 2. The lightning geometry calculated in [13]

Fig. 3. Lightning current pulse
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To calculate the horizontal component of the electric field near a power trans-
mission line, assume that we express the lightning current at the base of the lightning
channel as

I(t) = I0(e−αt − e−βt), (7)

where I0 = 12 kA, α = 3 · 104 s−1, and β = 107 s−1.
Fig. 3 depicts the current pulse. We assume that the velocity of propagating

lightning current equals v = 1.3 · 108 m/s.

Fig. 4. Voltage in a power transmission line induced
by the electromagnetic field of lightning current

The results of [3] show that the peak values of voltage in a power transmission
line can reach 60 kV. Fig. 4 depicts the pulse of induced overvoltage in the power
transmission line.

Let us now find the predicted parameters for our model current and voltage
wave with instantaneous lightning discharge using the original data of [3]. The total
charge carried by the lightning current (7) for our model will be the charge

Q =
∞∫
0

I(t) dt = 0.33 C

of the cloud. For a lightning current pulse lasting 11.5 μs and the specified velocity of
the current, we estimate the height of the lightning as about H = 1500 m. Therefore,
we find the expression

f(x) =
1

4πε0

(
Q√

(H − l)2 + x2
− Q√

(H + l)2 + x2

)

for the initial potential of our model. Fig. 5 depicts the results of calculations of
the current and voltage wave for a long power transmission line with the above
parameter when lightning strikes the ground 50 m away from all power transmission
lines.

Calculations show that the peak value 60 kV for current and voltage waves
agrees with the results of [3] on the order of magnitude.

The authors previously constructed some mathematical model of current and
voltage wave in a transmission line in permafrost conditions [13–20]. Adding to
this problem a permafrost layer with lp = 250 m, we obtain the predicted results,
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Fig. 5. Voltage wave in a power transmission line according to our model
with instantaneous lightning discharge

presented in Fig. 6. The initial potential, taking permafrost into account, is of the
form

f(x) =
1

4πε0

(
Q√

(H − lp)2 + x2
− Q√

(H + lp)2 + x2

)
.

Fig. 6. Voltage wave in a power transmission line in permafrost conditions
taking into account the instantaneous character of lightning strike

It is clear that in permafrost conditions the induced voltage can be dozens of
times more dangerous.

Conclusions

• The peak values of the electrostatic component of induced voltage (current
and voltage wave) are comparable to those of the electromagnetic components.
• In permafrost conditions the peak values of the electrostatic component of

induced voltage (current and voltage wave) can be greater by orders of magnitude,
and so more dangerous than in the areas without permafrost.
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MATHEMATICAL MODELING OF JIGGING
L. V. Nikiforova, A. I. Matveev,

E. S. Sleptsova, and B. V. Yakovlev

Abstract. We present a mathematical model of jigging using the statical approach for
describing the process and the theory of Brownian motion. The Fokker–Planck equation
is obtained for fractions in a jigging machine. The distributions of the grainy rocks under
study are calculated in various cases.

Keywords: jigging, distribution, Fokker–Planck equation, diffusion, probability, model

Jigging is a method of gravity-assisted enrichment of ores which is based on strati-
fying grainy rock fractions by density and size. It goes in a vibrating medium under
the action of the gravitational field of the Earth. In this article we discuss the
developing of a mathematical model for jigging.

Statistical approach is often used to describe the jigging process: we consider not
only deterministic mechanical processes but also stochastic. In [1–4] it is not shown
adequately which premises and assumptions lead to the Fokker–Planck equation,
and how we solve the latter. In this article we suggest a physical model of jigging
and, basing on it, obtain a relation of Fokker–Planck type. To solve this equation,
we use a model of the motion of a Brownian particle in the field of the Earth [5].
The solution extends to the case of a set of noninteracting particles. The equation
has unknown parameters to be determined from the physical model and refined as
a result of physical modeling.

Consider the following problem:
We put N identical balls of density ρ1 and radius r0 into a jigging bed, submerg-

ing them into a medium of density ρv and viscosity ηv. At a certain height h there
is a ball of the same size but a greater density ρ0 > ρ1 (Fig. 1). As the jigging bed
oscillates with frequency ω0 and amplitude a0, the test particle must diffuse down-
ward due to the action of gravity. We need to find the probability of the particle
occurring at a certain location at arbitrary time.

Assume that the problem is one-dimensional.
Firstly, consider the case that gravity is absent, together with the boundaries;

i.e., the system is unbounded. At the initial moment the particle is at rest; when
the system starts oscillating, the particle will move according to Markov processes.
A Brownian particle is moving chaotically under the action of the thermal motion of
the molecules of the surrounding medium. Furthermore, the molecules bombarding
it have certain average velocity in accordance with the temperature. In our case,
the role of these molecules belongs to the density ρ1 balls surrounding our test ball
and moving under the action of exterior periodic forces. The balls of the surround-
ing medium have kinetic energy in accordance with the oscillations of the medium,
namely, m〈v〉2

2 = ma2
0ω

2
0

2 , where a0 and ω0 are the amplitude and frequency of os-
cillations of the medium. The two kinds of forces act on the particle: the gradient

c© 2014 Nikiforova L. V., Matveev A. I., Sleptsova E. S., and Yakovlev B. V.
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h

Fig. 1

forces Fgr, since we treat each moment as a statistical ensemble and the resistance
forces. The latter are caused by collisions, F1, of the particle under consideration
with the surrounding balls and viscosity F2 when the process occurs in water, for
instance. The resistance force Fs equals F1 + F2.

We can determine the resistance force due to collisions as follows: The mean
decelerating force equals the loss of momentum. For each collision it completely
loses the velocity. This force equals approximately

F1 = −dp

dt
= −mdv

dt
≈ −mv̄

τ
, (1)

where v̄ is the mean velocity of particles and τ is the mean free time between
collisions.

We can find the mean value of free time from the oscillatory characteristics of
the system. The mean squared velocity of particles in the oscillations of the jigging
machine equals

〈v〉 = a0 · ω0. (2)

The mean length of free path equals the amplitude of oscillations. Hence, the mean
free time equals the period of oscillations

τ =
2π
ω0

. (3)

Thus,
�F1 ≈ −mω0

2π
�v. (4)

Assume that the resistance of the medium equals the Stokes force

�F2 = −6πηr0�v, (5)

where η is the viscosity of the medium.
To determine the gradient force, consider an inhomogeneous one-dimensional

system, that is, a one-dimensional problem, where n(x) depends only on one vari-
able x, a reservoir with inhomogeneous distribution of particles (Fig. 2). Suppose
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dx

x x+dx

n1(x) n2(x)

x

grF
�

Fig. 2

that the concentration of particles is greater to the left than to the right of some
boundary: n1 > n2.

The force proportional to concentration and equal to kn1�S acts on the left
boundary of the domain dx and equal to kn2�S, on the right boundary, where
k = m〈v〉2

3 = ma2
0ω

2
0

3 . The force, acting on a particle inside the domain, equals

Fgr =
k(n2 − n1)�S

n(t, x)�V
=

k(n(t, x)− n(t, x + dx))�S

n(t, x)�Sdx
= − k

n(t, x)
dn(t, x)

dx
(6)

or
�Fgr = − k

n(t, �r)
∇n(t, �r) (7)

in vector notation.
The mathematical expression for the conservation of amount of substance is the

continuity equation
∂n(t, �r)

∂t
+∇ · (n(t, �r) · �v) = 0. (8)

The balance of the forces
∑

i

�Fi = �Fgr + �F1 + �F2 = 0 (9)

acting on a given particle yields

− k

n(t, �r)
∇n(t, �r)− mω0

2π
�v − 6πηr0�v = − k

n(t, �r)
∇n(t, �r)− α�v = 0, (10)

where α = mω0
2π + 6πηr0.

By (8) and (10),

∂n(t, �r)
∂t

=
k

α
�n(t, �r) = D�n(t, �r), (11)

where D = k
α is the coefficient of macrodiffusion.

The resulting expression is the Fokker–Planck equation for a free particle. The
solutions to this classical equation are known; in particular, in the one-dimensional
case the fundamental solution is

n(t, x) =
1√

4πDt
exp
(
− x2

4Dt

)
. (12)
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t4

t1

t2

t3

n(t,x)

x

Fig. 3

Fig. 3 shows this dependence for various times.
Returning to the problem under study, consider the motion of a particle in

the gravity field of the Earth. The particle is in a reservoir, bounded below by
an impermeable wall and surrounded by other particles of smaller density. During
oscillations the particle diffuses downward. It is acted on by the gravity force

�F3 = m�g, (13)

where m = 4
3πr

3
0ρ0 is the mass of the particle under study. Then the Fokker–Planck

equation is of the form

∂n(t, x)
∂t

− mg

α

∂n(t, x)
∂x

−D�n(t, x) = 0 (14)

with the initial and boundary conditions

n(0, x) = δ(x− h), (15)

∞∫

0

n(t, x) dx = 1, (16)

n(t, x)|x→+∞ = 0, (17)

∂n(t, x)
∂x

∣∣∣∣
x→+∞

= 0, (18)

(
mg

k
n(t, x) +

∂n(t, x)
∂x

)

x=0
= 0. (19)

The last relation is the condition of the absence of flow through the lower surface.
To solve this problem, using the solution to a similar problem for a Brownian

particle [5], we obtain the analytical expression

n(t, x) =
1√

4πDt

(
exp(− (x− h)2

4Dt

)
+ exp

(
− (x + h)2

4Dt

))

× exp
(
− (mg)2t

4kα
− mg(x− h)

2k

)

+
mg

k
exp
(
− mgx

k

)
1√

4πDt

mgt
α −x−h∫

−∞
exp
(
− η2

4Dt

)
dη. (20)
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Fig. 4

Fig. 4 depicts the dependence according to (20) at various times. The marks
on the horizontal axis indicate the height of the reservoir with balls.

It is clear from Fig. 4 that the distribution of the probability of finding the
particle spreads initially while moving down, and eventually becomes the Boltzmann
distribution.

This problem is equivalent to the problem with a set of N particles of density
ρ0 distributed on the same plane at some height h (Fig. 5). Then the distribution
of the number of particles is described by the curve (20); furthermore, the number
of particles is proportional to the area of the figure inside the domain adjacent to
the horizontal axis and the line in Fig. 4.

h h

Fig. 5 Fig. 6

In reality, the extracted gold pieces lie randomly in the volume of the jigging
bed. To model this distribution, we can use a generator of random numbers. When
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we have sufficiently many grains of the material under study, the initial distribution
is roughly uniform. Thus, we consider a uniformly distributed system (Fig. 6).

Fig. 7 shows the dependences for the uniform distribution.

Fig. 7

Fig. 8

The dark solid line illustrates the total distribution according to

n(t, x) =
1
N

N∑

i=1

ni(t, x). (21)

Fig. 8 shows the dependence of the total distribution when the initial state has
uniform distribution of the grains under study at various moments of time.
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The resulting distributions enable us, for the prescribed values of the target
fractions (for instance, in percent of total volume) with uniform initial distribution,
to calculate the likely time that a certain prescribed layer of material takes to form
at the bottom of the jigging bed reservoir with a prescribed concentration of the
useful fraction.
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