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ON SMOOTH SOLUTIONS TO THE GEVREY

PROBLEM FOR THIRD ORDER EQUATIONS

V. I. Antipin and S. V. Popov

Abstract. We consider the Gevrey problem for a forward-backward equation of the
third order with multiple characteristics. The agreement conditions are continuous and
the theory of integral equations with a homogeneous kernel of degree −1 is employed.
Solvability of boundary value problems in Hölder classes is established. It is demon-
strated that the Hölder classes of solutions depend on the fulfillment of some necessary
and sufficient conditions on the data of the problem.

Keywords: Gevrey problem, forward-backward equation, agreement condition, well-
posedness, Hölder space, integral equation with a homogeneous kernel of degree −1

1. Introduction

We consider the Gevrey equation of the third order with multiple characteristics
written as

uxxx − sgnx · ut = F (x, t). (1)
Solvability of the boundary value problems for (1) was considered for the first time
by T. D. Dzhuraev [1]. As is known, the smoothness of the initial and boundary
data ensures the membership of a solution of the usual boundary value problems for
strictly parabolic equations in the Hölder space Hp,p/2

x t , whereas this is not so for
forward-backward equations. In some simplest cases S. A. Tersenov in [2] gives some
necessary and sufficient conditions for solvability of the problem in Hp,p/2

x t for p > 2.
The solvability (orthogonality) conditions for the data of the problem were written
down explicitly in [2]. The Gevrey problems are also examined in [3–5]. Note that
the number of necessary orthogonality conditions is finite in the one-dimensional
case. However, the number of orthogonality conditions (of the integral character)
is infinite in the multidimensional case (see [6, 7]). The generalized and regular
solvability of the Gevrey problems can be found in [8, 9].

2. Smooth Solvability

Consider (1) in the domain Q = � × (0, T ), � ≡ R. The parts of the strip Q,
where x < 0 and x > 0, are denoted by Q− and Q+.

The space Hp,p/3
x t (Q), p = 3 + γ, 0 < γ < 1, is the Banach space of func-

tions u(x, t) continuous in Q together with their derivatives of the form Dr
tD

q
x with

3r + q < p having the finite norms

|u|(p)Q = 〈u〉(p)Q +
3∑

j=0

∑

3r+q=j

∣∣Dr
tD

q
xu
∣∣(0)
Q
, |u|(0)Q = max

Q
|u|,
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where
〈u〉(p)Q = 〈u〉(p)x,Q + 〈u〉(p/3)t,Q , 〈u〉(p)x,Q = 〈ut〉(γ)

x,Q + 〈uxxx〉(γ)
x,Q,

〈u〉(p/3)t,Q =
∑

0<p−3r−q<3

〈
Dr

tD
q
xu
〉(p−3r−q

3 )
t,Q

.

We seek for a solution that lies in the Hölder space Hp,p/3
x t (Q±), p = 3 + γ,

0 < γ < 1, and satisfies the initial conditions

u(x, 0) = ϕ1(x), x > 0, u(x, T ) = ϕ2(x), x < 0, (2)

and the agreement conditions

∂ku

∂xk
(−0, t) =

∂ku

∂xk
(+0, t) (k = 0, 1, 2). (3)

Uniqueness follows from the arguments similar to those of [1, p. 157].
Existence of a solution. To prove existence, we first write down the funda-

mental and elementary Cattabriga solutions [10–12] for the equation

∂u

∂t
− ∂3u

∂x3 = 0. (4)

These solutions for (4) are of the form

Ui(x, t; ξ, τ) =

{
1

(t−τ)1/3 fi
( x−ξ

(t−τ)1/3

)
, t > τ,

0, t ≤ τ, (5)

where f0(η) and f1(η), called Airy functions, are linearly independent solutions to
the differential equation

z′′(η) +
η

3
z(η) = 0 (6)

representable as

f0(η) =
∞∫

0

cos(λ3 − λη) dλ, −∞ < η < +∞,

f1(η) =
∞∫

0

[e−λ3−λη + sin(λ3 − λη)] dλ, η > −∞.

The fundamental solution f0(η) and the elementary solution f1(η) satisfy the
estimates (see [11])

{ ∣∣ ∂k+j

∂xk∂tjU0(x, t; ξ, τ)
∣∣

∣∣ ∂k+j

∂xk∂tjU1(x, t; ξ, τ)
∣∣
< C0

|x− ξ|(2k+6j−1)/4

|t− τ |(2k+6j+1)/4 (7)

for x−ξ
(t−τ)1/3 → +∞, k + j ≥ 1 and

∣∣∣∣
∂k+j

∂xk∂tj
U0(x, t; ξ, τ)

∣∣∣∣ <
C1

|t− τ | 1+k+3j
3

exp
(
− C2

|x− ξ| 32
|t− τ | 12

)
(8)
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for x−ξ
(t−τ)1/3 < +∞; C0, C1, and C2 are positive constants. Moreover, it is easy to

verify that

f0(0) =
√

3
2

∞∫

0

e−η3
dη =

1
2
√

3



(
1
3

)
, f1(0) =

3
2

∞∫

0

e−η3
dη =

1
2



(
1
3

)
,

f ′0(0) =
√

3
2

∞∫

0

ηe−η3
dη =

1
2
√

3



(
2
3

)
, f ′1(0) = −3

2

∞∫

0

ηe−η3
dη = −1

2



(
2
3

)
,

∞∫

0

f0(η) dη =
2π
3
,

0∫

−∞
f0(η) dη =

π

3
,

∞∫

0

f1(η) dη = 0.

(9)

For convenience, we consider the system

u1
t = Lu1, −u2

t = Lu2
(
L ≡ ∂3

∂x3

)
(10)

in Q+ for F (x, t) ≡ 0 rather than (1). The initial and agreement conditions take the
form

u1(x, 0) = ϕ1(x), u2(x, T ) = ϕ2(−x), x > 0, (11)
∂ku1

∂xk
(0, t) = (−1)k

∂ku2

∂xk
(0, t) (k = 0, 1, 2). (12)

We assume that ϕi(x) ∈ Hp(R) (i = 1, 2). In this case the functions

ω1(x, t) =
1
π

∫

R

U0(x, t; ξ, 0)ϕ1(ξ) dξ, ω2(x, t) =
1
π

∫

R

U0(ξ, T ;x, t)ϕ2(ξ) dξ (13)

are solutions to (10) satisfying (11) in R. We use the following representation for
solutions to (10):

u1(x, t) =
t∫

0

U0(x, t; 0, τ)α0(τ) dτ +
t∫

0

U1(x, t; 0, τ)α1(τ) dτ + ω1(x, t),

u2(x, t) =
T∫

t

U0(0, τ ;x, t)β0(τ) dτ + ω2(x, t).

(14)

In view of the general results [11, 13, 14], the densities α0, α1, and β0 have to belong
to Hq (q = γ+1

3 ), with
α0(0) = α1(0) = β0(T ) = 0. (15)

Indeed, note that u1(x, t) ∈ Hp,p/3
x t (Q+), if ψ1(t) = u1(0, t) ∈ H1+γ

3 (0, T ), ψ2(t) =
u1
x(0, t) ∈ H

2+γ
3 (0, T ) and the consistency conditions hold:

ψ1(0) = ϕ1(0), ψ′1(0) = ϕ′′′1 (0), ψ2(0) = ϕ′2(0). (16)

From (9) it follows that

ψ1(t) = f0(0)
t∫

0

α0(τ) +
√

3α1(τ)
(t− τ) 1

3
dτ + ω1(0, t),

ψ2(t) = f ′0(0)
t∫

0

α0(τ) −
√

3α1(τ)
(t− τ) 2

3
dτ + ω1x(0, t).
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Hence,

ψ′1(t) = f0(0)
d

dt

t∫

0

α0(τ) +
√

3α1(τ) − α0(0)−√3α1(0)
(t− τ) 1

3
dτ

+f0(0)(α0(0) +
√

3α1(0))t−
1
3 +

1
π

∫

R

U0(0, t; ξ, 0)ϕ′′′1 (ξ) dξ, (17)

ψ2(t) = f ′0(0)
t∫

0

α0(τ) −
√

3α1(τ)− α0(0) +
√

3α1(0)
(t− τ) 2

3
dτ

+3f ′0(0)(α0(0)−√3α1(0))t
1
3 +

1
π

∫

R

U0(0, t; ξ, 0)ϕ′1(ξ) dξ.

If α0(t), α1(t) ∈ H 1+γ
3 (0, T ) then (see [2, 11]):

d

dt

t∫

0

α0(τ) +
√

3α1(τ) − α0(0)−√3α1(0)
(t− τ) 1

3
dτ ∈ H γ

3 (0, T ),

t∫

0

α0(τ)−
√

3α1(τ) − α0(0) +
√

3α1(0)
(t− τ) 2

3
dτ ∈ H 2+γ

3 (0, T );

moreover, ∫

R

U0(0, t; ξ, 0)ϕ′′′1 (ξ) dξ ∈ H γ
3 (0, T ),

∫

R

U0(0, t; ξ, 0)ϕ′1(ξ) dξ ∈ H
2+γ
3 (0, T ).

Therefore, under the conditions α0(0) = α1(0) = 0, we see that ψ1(t) ∈ H1+ γ
3 (0, T ),

ψ2(t) ∈ H 2+γ
3 (0, T ), and the consistency conditions (16) for α0(t) and α1(t) hold.

The agreement conditions (12) generate the following system of integral equa-
tions with Abel’s operators with respect to α0, α1, and β0:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f0(0)
t∫
0

α0(τ)+
√

3α1(τ)

(t−τ)
1
3

dτ + ω1(0, t) = f0(0)
T∫
t

β0(τ)

(τ−t)
1
3
dτ + ω2(0, t),

f ′0(0)
t∫
0

α0(τ)−√3α1(τ)

(t−τ)
2
3

dτ + f ′0(0)
T∫
t

β0(τ)

(τ−t)
2
3
dτ + ω1x(0, t) + ω2x(0, t) = 0,

− 2π
3 α0(t) + ω1xx = −π

3β0(t) + ω2xx.

(18)

Equations (18) and the Abel inversion formulas [2] lead to the system of singular
integral equations of the form
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2√
3
(α0(t) +

√
3α1(t)) + 1√

3
β0(t)− 1

π

T∫
0

(
τ
t

)2/3 β0(τ)
τ−t dτ = d

dt

t∫
0

�0(τ)
(t−τ)2/3 dτ,

2√
3
(α0(t)−

√
3α1(t)) + 1√

3
β0(t) + 1

π

T∫
0

(
τ
t

)1/3 β0(τ)
τ−t dτ = d

dt

t∫
0

�1(τ)
(t−τ)1/3 dτ,

2α0(t)− β0(t) = �2(t),

(19)
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where

�j(t) =
1

πf (j)(0)

(
∂jω2

∂xj
(0, t)− (−1)j

∂jω1

∂xj
(0, t)

)
(j = 0, 1),

�2(t) =
3
π

[ω2xx(0, t)− ω1xx(0, t)].

Put

F 0
0 (t) =

t∫

0

�′0(τ) − �′0(0)
(t− τ) 2

3
dτ, F 0

1 (t) =
d

dt

t∫

0

�1(τ)− �1(0)
(t− τ) 1

3
dτ, F 0

2 (t) = �3(t)−�3(0).

Since �0
k(t) ∈ Hqk(0, T ), qk = 1 + γ−k

3 [2], the functions F 0
k (t) (k = 0, 1, 2) belong

to H(1+γ)/3(0, T ) and F 0
k (t) = O(t(1+γ)/3) for t small.

Prove the existence of solutions α1, α2, and β0 to (19) belonging to Hq(0, T )
(q = (p− 2)/3, p = 3 + γ, 0 < γ < 1) and satisfying (15).

Assume that α1, α2, and β0 belong to the space. In this case, in view of (19)
we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− 1
π

T∫
0

β0(τ)

τ
1
3
dτ = �0(0),

1
π

T∫
0

β0(τ)

τ
2
3
dτ = �1(0),

β0(0) = −�2(0).

(20)

The last equality is equivalent to the first condition α0(0) = 0 in (15). Note also
that the condition 2α0(T ) = �2(T ) is equivalent to the equality β0(T ) = 0.

Under conditions (20) the system of equations (19) is rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
3
(α0(t) +

√
3α1(t)) + 1√

3
β0(t)− 1

π

T∫
0

(
t
τ

)1/3 β0(τ)
τ−t dτ

= 3�′0(0)t1/3 + F 0
0 (t),

2√
3
(α0(t)−

√
3α1(t)) + 1√

3
β0(t) + 1

π

T∫
0

(
t
τ

)2/3 β0(τ)
τ−t dτ = F 0

1 (t),

2α0(t)− β0(t) + β0(0) = F 0
2 (t).

(21)

In view of the formula [15, p. 177]

1
π

T∫

0

τρ−1(T − τ)σ−1

τ − t dτ = tρ−1(T − t)σ−1 cot(σπ)

− 
 (ρ)
 (σ − 1)
π
 (ρ+ σ − 1)

T ρ+σ−2F

(
2− ρ− σ, 1, 2− σ;

T − t
T

)
, (22)

we can define α1(T ).
Introduce the new function β̄0(t) = β0(t)− β0(0)T−t

T in (21). Involving (22) we
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can represent (21) as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
3
(α0(t) +

√
3α1(t)) + 1√

3
β̄0(t)− 1

π

T∫
0

(
t
τ

)1/3 β̄0(τ)
τ−t dτ

= − 9
2πβ0(0)F

(− 2
3 , 1,

4
3 ; t

T

)(
t
T

) 1
3 + 3�′0(0)t1/3 + F 0

0 (t),

2√
3
(α0(t)−

√
3α1(t)) + 1√

3
β̄0(t) + 1

π

T∫
0

(
t
τ

)2/3 β̄0(τ)
τ−t dτ

= 9
2πβ0(0)F

(− 1
3 , 1,

5
3 ; t

T

)(
t
T

) 2
3 + F 0

1 (t),

2α0(t)− β̄0(t) = −β0(0) t
T + F 0

2 (t).

(23)

Since α0(t), α1(t), and β0(t) must belong to H(1+γ)/3(0, T ), the first equation
of the above system validates the condition

− 1
π

T∫

0

β̄0(τ)
τ

4
3

dτ = − 9
2π
β0(0)

1
T

1
3

+ 3�′0(0). (24)

Under (24), we arrive at the system⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2√
3
(α0(t) +

√
3α1(t)) + 1√

3
β̄0(t)− 1

π

T∫
0

(
t
τ

)4/3 β̄0(τ)
τ−t dτ = F

0
0 (t),

2√
3
(α0(t)−

√
3α1(t)) + 1√

3
β̄0(t) + 1

π

T∫
0

(
t
τ

)2/3 β̄0(τ)
τ−t dτ = F

0
1 (t),

2α0(t)− β̄0(t) = F
0
2 (t),

(25)

where

F
0
0 (t) = − 9

2π
β0(0)

[
F

(
− 2

3
, 1,

4
3
;
t

T

)
− 1
](

t

T

) 1
3

+ F 0
0 (t),

F
0
1 (t) =

9
2π
β0(0)F

(
− 1

3
, 1,

5
3
;
t

T

)(
t

T

) 2
3

+ F 0
1 (t),

F
0
2 (t) = −β0(0)

t

T
+ F 0

2 (t)

belong to H(1+γ)/3(0, T ) and F
0
j (t) = O(t

1+γ
3 ) (j = 0, 1, 2) for small t.

Proceed with the proof of existence of α0(t), α1(t), and β0(t) in the system of
equations (25) from H(1+γ)/3(0, T ).

Excluding α0(t) and α1(t) from (25), we infer

4√
3
β̄0(t) +

t
2
3

π

T∫

0

K(t, τ)β̄0(τ) dτ = Q(t), (26)

where

K(t, τ) =
τ

1
3 + t

1
3

τ
4
3 (τ 2

3 + τ
1
3 t

1
3 + t

2
3 )
, Q(t) = F

0
0 (t) + F

0
1 (t)− 2√

3
F

0
2 (t).

The kernel K(t, τ) of (26) satisfies the estimate

K(t, τ) ≤ τ
1
3 + t

1
3

τ
4
3 |τ − t| 23 (27)

and

t
2
3K(t, τ) =

(
t

τ

) 1+γ
3

ϕ

(
t

τ

)
1
τ
, ϕ(x) = x

1−γ
3

1− x 2
3

1− x .
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Putting β1(t) = β̄0(t)t−
1+γ
3 and Q1(t) = Q(t)t−

1+γ
3 in (26), we have

4√
3
β1(t) +

1
π

T∫

0

ϕ

(
t

τ

)
β1(τ)
τ

dτ = Q1(t). (28)

Integral equation (28) has a homogeneous kernel of degree −1 [16]. Introducing the
new variables t = Te−y, τ = Te−x and assigning

β2(y) = β1(Te−y), Q2(y) = Q1(Te−y), h(x) = ϕ(e−x) = e(1−β)xK1(1, ex),

K1(t, τ) = τ
2
3K(t, τ), β =

1− γ
3

,

we arrive at the Wiener–Hopf equation (see [16, 17])

4√
3
β2(y) +

1
π

+∞∫

0

h(y − x)β2(x) dx = Q2(y), 0 < y < +∞. (29)

It is not difficult to justify the integrability condition

+∞∫

−∞
|h(x)| dx =

+∞∫

0

|K1(1, u)|u−β du = 2
√

3π
sin(β + 1

3 )π
sin(3βπ)

for 0 < β < 1
3 . Hence, (28) is considered in the space Hβ(0, T ), 0 < β < 1

3 . The
function

h(x) = e(1−β)xK1(1, ex) = e(
1
6−β)x sinh x

3
sinh x

2

is even for β = 1
6 . The kernel of (28) is symmetrizable in E 1

6
(0, T ) [16]; moreover,

the function (see [16, p. 518])

H(x) = 2
+∞∫

0

cos(xt)
sinh t

3
sinh t

2
dt =

2
√

3π
2 cosh(2πx) − 1

is positive and monotone on (0,+∞) and H(0) = 2
√

3π. In the space E 1
6
(0, T ) the

equation [16]

β1(t) + λ

T∫

0

ϕ

(
t

τ

)
β1(τ)
τ

dτ = Q1(t) (30)

is uniquely solvable for λ ∈ Nλ =
(−∞; 1

2
√

3π

)
, and λ0 = −

√
3

4π ∈ Nλ for (28).
The study of equations of the form (28) to which Wiener–Hopf theory is inap-

plicable directly in the Hölder spaces can be found in [19, 20].
The Fredholm property for integral operator (28) follows from Theorem 2 of [19],

namely, from the condition that the function

B(x) = 1 +
√

3
4π

+∞∫

0

ϕ(t)tq−ix dt

vanishes nowhere on the real axis for all q ∈ R, which is easy to verify.
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Integral equation (26) is examined as an equation with respect to β3(t) =
β̄0(t)t−

2
3 . Find solutions β3(t) unbounded at t = 0 with singularities of order less

than 1 and bounded at t = T . Equations (26) yield

4√
3
β3(t) +

1
π

T∫

0

K(t, τ)τ
2
3β3(τ) dτ =

Q(t)
t

2
3
. (31)

Equation (31) implies that β0(T ) = 0 if and only if

1
π

T∫

0

K(T, τ)τ
2
3 β3(τ) dτ =

Q(T )
T

2
3
. (32)

Under condition (32), we obtain the equation

4√
3
β3(t) +

1
π

T∫

0

K2(t, τ)β3(τ) dτ = Q3(t), (33)

where

K2(t, τ) =
(T 1

3 − t 1
3 )(τ 1

3T
1
3 + τ

1
3 t

1
3 + t

1
3 T

1
3 )

τ
2
3 (τ 2

3 + τ
1
3 t

1
3 + t

2
3 )(τ 2

3 + τ
1
3T

1
3 + T

2
3 )
, Q3(t) =

Q(t)
t

2
3
− Q(T )

T
2
3
.

The function K3(t, τ) = K2(t,τ)

T
1
3−t

1
3

satisfies the estimates

0 ≤ K3(t, τ) ≤ τ
1
3 T

1
3 + τ

1
3 t

1
3 + t

1
3T

1
3

τ
2
3 |τ − t| 23 |τ − T | 23 . (34)

We can easily derive that the functions K3(t, τ)t
2
3 and Q3(t)t

2
3 at the endpoints 0

and T behave as t
1+γ
3 (T − t)

1+γ
3 and t

1+γ
3 (T − t)

1+γ
3 ; moreover, [19, Section 51]

β0(t) ∈ H 1+γ
3 (0, T ) and αk(t) ∈ H 1+γ

3 (0, T ) (k = 0, 1).
The behavior of the integral 1

π

∫ T
0 K3(t, τ)β3(τ) dτ at the endpoints of the inte-

gration contour is defined (see [13, p. 136]) by the formula

1

 (σ)

t∫

0

τρ−1(t− τ)σ−1 dτ =

 (ρ)


 (ρ+ σ)
tρ+σ−1.

It is easy to find that

1
π

T∫

t

K3(t, τ)β3(τ) dτ = O((T − t) γ
3 ) for small T − t,

t
2
3

π

t∫

0

K3(t, τ)β3(τ) dτ = O(t
1+γ

3 ) for small t.

The systems of equations (25) are equivalent to (18) under the four conditions
(20), (24), and (32). Inserting values of α0(t), α1(t), and β0(t) into (20), (24), and
(32), we justify four solvability conditions of (1)–(3) in Hp,p/3

x t (Q). These conditions
are denoted by

Ls(ϕ1, ϕ2) = 0, s = 1, 2, 3, 4. (35)
Thus, we have proven the following theorem.
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Theorem. Let ϕ1, ϕ2 ∈ Hp, p = 3 + γ, 0 < γ < 1. Then under the four
conditions (35), there is a unique solution to (1) belonging to Q from Hp,

x
p/3
t (Q±)

and satisfying (2) and (3).
Remark. Similar studies can be fulfilled in the case of ϕ1, ϕ2 ∈ Hp (p = 3l+γ),

0 < γ < 1, where l ≥ 1 is an integer.
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ON THE DIFFERENTIAL GEOMETRY OF

FIVE–DIMENSIONAL B–COMPLEXES OF

PLANES IN THE PROJECTIVE SPACE P 5

I. V. Bubyakin

Abstract. The differential geometry of five-dimensional B-complexes is considered in
the projective space P 5. The structure is determined five-dimensional B-complexes of
two-dimensional planes.

Keywords: complexes of two-dimensional plane, Grassmann map, Segre manifold

1. The article deals with that part of the multidimensional projective differential
geometry which is devoted to the studies of families of planes of various dimensions
in the projective space. Many articles by Soviet, Russian, and foreign geometricians
are devoted to this theory. It was shaped in the articles on the line congruence theory
and the theory of complexes of lines. These studies were collected in the celebrated
monographs by Finikov [1] and Kovantsev [2], respectively. Afterwards, the method
of exterior Cartan forms [3] made it possible to develop these theories in a more
general situation for families of m-dimensional planes of an arbitrary dimension.
Many questions are of interest for not only multidimensional differential geometry
but the Radon–Helgason integral geometry as well which is a new direction in the
modern mathematics (see the monograph [4] by Gelfand, Gindikin, and Graev) and
the general theory of partial differential equations, for example, as exposed in the
article [5] by Gelfand and Graev, where the hypergeometric functions connected with
the Grassmann manifold of two-dimensional planes in a five-dimensional space are
examined. In integral geometry the complexes of m-dimensional planes of the same
dimension as the space itself are considered when solving the main problem.

One of the most beautiful fields of differential geometry, where the advantages
of coordinate-free methods are fully exhibited, is the theory of complexes of multi-
dimensional planes of the projective space. This interest in the theory of complexes
of multidimensional planes is stipulated also by the problems of integral geometry
in which we need to recover a function from its integrals over planes of some family.
The main problem is to describe the so-called admissible complexes for which the
recovering is possible. To solve this problem successfully, it is necessary to com-
bine the methods of integral geometry with various beautiful constructions within
the framework of the projective geometry of complexes of multidimensional planes.
At the same time the differential and geometric studies of admissible complexes of
planes which are of great importance in integral geometry stand aside.

Hence, the projective differential geometry of complexes of multidimensional
planes seems topical. The admissible five-dimensional complexes of two-dimensional
planes in the projective space P 5 are the object of the study of this article. The
complexes of two-dimensional planes are generalizations of complexes of straight

c© 2015 Bubyakin I. V.
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lines in the three-dimensional space in the sense that the two-dimensional planes in
a five-dimensional space and straight lines in a three-dimensional space are self-dual.
The family of two-dimensional planes p in the five-dimensional projective space P 5

is also self-dual, since its image under a correlative transformation is a family of
the same type. In view of this fact, all constructions connected with such a family
admits a dual interpretation. The dual constructions allows us to conduct the stud-
ies without any additional arguments. These constructions are widely used in the
differential geometry of families of complexes of two-dimensional planes [6].

For the first time, some generalizations of admissible complexes of straight lines
of the projective space and their geometric structure were examined by Kruglyakov
in [7, 8] (they are called K-admissible complexes), Vasil′ev, and Nersesyan in [9, 10]
(they are called N -admissible complexes), and also by Maius, the Hungarian ge-
ometrician, and Goncharov [14–16] (these complexes are called admissible in the
integral geometry sense or just admissible complexes of plains). The constructions
of K-admissible complexes of two-dimensional planes coincide with some of the con-
structions of admissible complexes of two-dimensional planes from [14–16] and [11–
13], and the constructions of N -admissible complexes of planes are different from
those in the integral geometry sense.

In an n-dimensional projective space Pn, Vasil′ev and Nersesyan [9, 10] call
the n-dimensional complexes Cn of m-dimensional planes admissible (N -admissible)
whenever the following holds: Given a point M in an arbitrary generator p ∈ Cn,
the containing tangent plane to the cone formed by the planes of the complex pass-
ing through M is independent of the choice of M ∈ Cn. Kruglyakov [7, 8] call
the n-dimensional complexes Cn of m-dimensional planes admissible (K-admissible)
if the following holds: For an (m − 1)-dimensional plane pm−1 with an arbitrary
generator p ∈ Cn, the containing tangent plane to the cone formed by the planes
of the complex passing through (m − 1)-dimensional plane pm−1 is independent of
the choice of the (m − 1)-dimensional plane pm−1 ∈ Cn. The Grassmann mapping
[17] is a bijective mapping of the manifold G(2, 5) of two-dimensional planes in the
projective space P 5 onto a nine-dimensional point algebraic manifold �(2, 5) from
the projective space P 19. The tangent space Tp�(2, 5) to the manifold �(2, 5) in an
arbitrary point p contains the five-dimensional asymptotic cone Bp(2) [18] connected
with a neighborhood of the second order whose projectivization is the Segre man-
ifold Sp(2, 2). The Segre manifold Sp(2, 2) remains invariant under the projective
transformations of the space P 8 = PTp�(2, 5), which is the projectivization cen-
tered at р of the tangent space Tp�(2, 5) to �(2, 5). Moreover, Tp�(2, 5) contains
the eight-dimensional asymptotic cone Bp(3) [18] connected with a neighborhood of
the third order whose projectivization is the cubic hypersurface PBp(3) in P 8.

To a five-dimensional complex C5 of two-dimensional planes on the algebraic
manifold �(2, 5), there corresponds a five-dimensional smooth manifold V 5. The
study of the mutual location of the four-dimensional tangent plane PTpV 5 which is
the projectivization centered at a point p of the tangent plane TpV 5 to the mani-
fold V 5 with the Segre manifold Sp(2, 2) and the cubic hypersurface PBp(3) gives
us a possibility of distinguishing N - and K-admissible compact sets with a common
viewpoint. Namely, as is exhibited in [6], N -admissible complexes are character-
ized by the fact that for every two-dimensional generator p the intersection of the
four-dimensional plane PTpV 5 and the hypercube PBp(3) is the three-dimensional
cubic surface Q3 which decomposes into the cone Q2 of second order and the three-
dimensional plane from the α-generator of the hypercube PBp(3) while K-admissible
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complexes are characterized by the fact that for every two-dimensional generator p
the four-dimensional plane PTpV 5 contains the α-generator of the Segre manifold
Sp(2, 2). Moreover, this methodological approach allows us also to distinguish some
five-dimensional complexes of two-dimensional planes which are admissible com-
plexes in the integral geometry sense.

Thereby, we arrive at the problem of a generalization of the notion of admis-
sible complex of straight lines in the projective space Pn on the base of a map of
the Grassmann manifold G(m,n) onto the algebraic manifold �(m,n) of PN , with
N = Cm+1

n+1 − 1. Given n-dimensional admissible complexes of m-dimensional planes
in Pn, the problem is to find their full geometrical description and structure. Full
geometrical description of these complexes can be used in multidimensional differen-
tial geometry and integral geometry as well. It is natural to begin these studies with
generalization of the complex of straight lines in the three-dimensional projective
space, namely, with five-dimensional complexes of two-dimensional planes in P 5.

2. In P 5 each two-dimensional plane p is defined by three linearly-independent

points. The matrix of coordinates of these points is used to define
(

3
6

)
= 20 third

order determinants that are called Grassmann coordinates of p. They are connected
by a system of algebraic equations and give rise to the bijective mapping of the
Grassmann manifold G(2, 5) of two-dimensional planes of the space P 5 onto a nine-
dimensional algebraic manifold �(2, 5) of the projective space P 19. This mapping is
called the Grassmann mapping [17].

Let us study the structure of �(2, 5) in more detail. Consider two two-dimen-
sional planes in the space P 5 whose intersection is a straight line. They generate
a linear pencil of planes, i.e. a family of two-dimensional planes containing a line and
lying in a three-dimensional plane. To this linear pencil on �(2, 5), there corresponds
a rectilinear generator. In this case the straight line and the three-dimensional
plane containing this line completely define the linear pencil and so the straight line
on �(2, 5).

Consider all two-dimensional planes lying in a fixed three-dimensional plane.
They form a linear three-parameter family to which on the manifold �(2, 5) there cor-
responds some three-dimensional flat generator, the so-called α-generator. Since P 5

contains eight-parameter family of three-dimensional planes, �(2, 5) carries a family
of α-generators depending on eight parameters.

Fix a straight line in P 5. Consider all two-dimensional planes passing through
the line. These two-dimensional planes generate a three-parameter bundle to which
on �(2, 5) there corresponds some three-dimensional flat generator, the so-called β-
generator. Since the space P 5 contains an eight-parameter family of straight lines,
the manifold �(2, 5) carries a family of β-generators depending on eight parameters.
Thus, �(2, 5) carries the two families of three-dimensional flat generators.

If a three-dimensional plane of P 5 contains a fixed straight line then the in-
tersection of the corresponding α- and β-generators, forming �(2, 5), is a straight
line. If a three-dimensional plane in P 5 does not contain a straight line then the
corresponding flat generators of �(2, 5) are disjoint.

Consider a fixed two-dimensional plane p in P 5. A family of two-parameter
three-dimensional planes passes through this plane. Hence, a family of two-parameter
α-generators passes through the point on �(2, 5) corresponding to p. At the same
time p contains a two-parameter family of straight lines. Hence, a two-parameter
family of β-generators of the manifold passes through p. In this case two genera-
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tors of different families of �(2, 5) passing through p have a common line to which
in P 5 there corresponds some linear pencil of two-dimensional planes and two gener-
ators of one family have only one common point p. Therefore, all three-dimensional
flat generators passing through p are flat generators of the Segre cone Cp(3, 3) [18]
with vertex p on the manifold �(2, 5). This cone is the intersection of the tan-
gent plane Tp�(2, 5) at p to �(2, 5) with the manifold itself. In P 5 to the Segre
cone Cp(3, 3) there corresponds the collection of two-dimensional planes whose in-
tersections with the two-dimensional plane p are straight lines.

Given the projective space P 5, examine a five-parameter family of two-dimen-
sional planes, i.e. a five-dimensional complex C5. To the complex C5 under the
Grassmann map [17–19] there corresponds the five-dimensional manifold V 5 which
belongs to the algebraic manifold �(2, 5). The manifold V 5 at every its point p
has five-dimensional tangent plane TpV 5. The projectivization of TpV 5 centered
at p is the four-dimensional plane PTpV 5. To different mutual locations of the
plane PTpV 5 and the Segre manifold Sp(2, 2) there correspond different classes of
complexes C5 [17–19]. The Segre manifold Sp(2, 2) is a four-dimensional algebraic
surface of sixth order carrying two two-parameter families of two-dimensional flat
generators. In this case two generators of different families have a common point
and two generators from one family are disjoint. Since the Segre manifold Sp(2, 2)
is an algebraic surface of the sixth order, in the general case the intersection of the
manifold and the plane PTpV 5 consists of sixth points. These points define the sixth
fields of directions on V 5 to whose integral lines on the complex C5 there correspond
six families of torses (developable surfaces with two-dimensional flat generators) [6]
formed by two-dimensional planes osculating with some curve. Six torses (one from
each family) pass through every generator. Every torse of the complex defines, given
a two-dimensional generator p of the complex C5, the characteristic straight line (the
intersection of two infinitely close generators of the torse), and the three-dimensional
characteristic plane (tangent to the torse).

3. Given the projective space P 5, consider a family of point frames {AI},
I = 0, 1, . . . , 5, and a family of frames formed by the hyperplanes αI = (−1)I(A0,
. . . , AI−1, AI+1, . . . , A5). The equations of motion of these frames are of the form

dAI = ωJ
I AJ , dαI = ωI

Jα
J ,

where ωJ
I are linear differential forms satisfying the structure equations of P 5, i.e.,

dωJ
I = ωK

I ∧ ωJ
K , I, J,K = 0, 1, . . . , 5.

Related to a two-dimensional plane p of the space P 5 a family of point frames
so that Ai, i = 0, 1, . . . , 5, belong to p. In this case

dAi = ωj
iAj + ωp

iAp, dAp = ωi
pAi + ωq

iAq,

where i, j = 0, 1, 2 and p, q = 3, 4, 5. Hence, we see that the two-dimensional plane p
in P 5 depends on nine parameters and the forms ωi

p are spanned by their differentials.
Let ωi

p, i = 0, 1, 2, p = 3, 4, 5, be linear differential forms specifying the motion
of the plane p = A0 ∧ A1 ∧ A2 in P 5. Since the dimension of the complex C5

in question is equal to five, the following four linearly independent equations hold
on C5:

�αi
p ωp

i = 0, (1)

where α = 1, 2, 3, 4. These equations define the four-dimensional plane PTpV 5

in P 8 = PTp�(2, 5).
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A one-parameter family of two-dimensional planes p is a three-dimensional sur-
face with two-dimensional flat generators. This surface is a torse [20] if it is tan-
gentially degenerate of rank one. To a torse on �(2, 5), there corresponds the curve
whose tangents serve as rectilinear generators of this surface. This curve coincides
with the asymptotic line of �(2, 5). Hence,

rang
(
ωp
i

)
= 1 (2)

at every point of this line. Thus, the equation of a torse in the space can be written
parametrically as follows:

ωp
i = αix

p dt.

On �(2, 5), the asymptotic directions of second order emerging from the point p are
defined from the condition

D2p = 0(modTp�(2, 5)),

which implies that the equation of the cone Bp(2) of asymptotic directions of second
order are of the form

ωp
i ω

q
j − ωq

i ω
p
j = 0.

These equations imply that the coordinates ωp
i of a point in Bp(2) satisfy con-

dition (2) and so they admit the asymptotic representation

ωp
i = αix

p.

Hence, the cone Bp(2) of second order asymptotic directions coincides with the Segre
cone Cp(3, 3).

The third order asymptotic directions of the manifold �(2, 5) emerging from p
are specified by the condition

d3p = 0
(
modT 3

p�(2, 5)
)
, (3)

where
d3p = 6 det

(
ωp
i

)
A3 ∧A4 ∧A5

(
modT 2

p�(2, 5)
)
.

Consider the projectivization of the tangent plane Tp�(2, 5) centered at p which
is the projective space P 8 = PTp�(2, 5), where ωp

i are homogeneous coordinates of
a point. The third order asymptotic directions of the manifold �(2, 5) form a cone
with the vertex at p denoted by Bp(3). In view of (3), Bp(3) is defined by the
equation

det
(
ωp
i

)
= 0. (4)

Hence, Bp(3) is a hypercone of third order in the tangent plane Tp�(2, 5) at p to the
manifold �(2, 5).

The geometric sense of Bp(3) is described as follows: Each hyperplane in P 5

passing through p contains a sixth-parameter family of two-dimensional planes to
which on the algebraic manifold �(2, 5) there corresponds the submanifold �(2, 4)
passing through p. The six-dimensional tangent planes to these submanifolds con-
stitute a family of flat generators of the cone Bp(3) which are called α-generators.
A sixth-parameter family of two-dimensional planes passes through every point of
the plane p; to this family there corresponds some submanifold �∗(2, 4) on the
manifold �(2, 5) also passing through p. Six-dimensional tangent planes to these
submanifolds form the second family of flat generators of the cone Bp(3) which are
called its β-generators. Thus, the cone Bp(3) carries two families of six-dimensional
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flat generators. It follows from (3) that the six-dimensional subspace defined in the
space Tp�(2, 5) by the equations

αpω
p
i = 0

belongs to the asymptotic cone Bp(3). This subspace coincides with α-generators
of Bp(3). The six-dimensional subspace defined in the space Tp�(2, 5) by the equa-
tions

βiωp
i = 0

also belongs to the asymptotic cone Bp(3). It coincides with the β-generators
of Bp(3). As is easily seen, the intersection of two generators of different families
of the cone Bp(3) is a four-dimensional plane to which in P 5 there corresponds the
set of two-dimensional planes passing through some point and belonging to a fixed
hyperplane and the intersection of two generators of the same family is a three-
dimensional plane being a generator of Bp(2) of second order asymptotic directions.

To the asymptotic cone Bp(3) in P 8 = PTl�(2, 5) there corresponds the cubic
hypersurface PBp(3) defined by the same equation (4) as Bp(3) in the tangent
space Tp�(2, 5). The hypercube PBp(3) carries a family of α-generators obtained by
the projectivization centered at p of α-generators of the cone Bp(3) and the family of
β-generators obtained by the projectivization of β-generators of the cone Bp(3). Note
that the Segre manifold Sp(2, 2) is the set of double points of the hypercube PBp(3).
The intersection of the plane PTpV and the hypercube PBp(3) is generally a three-
dimensional cubic surface Q3 carrying two two-dimensional families of rectilinear
generators and two generators of different families pass through every point of this
surface.

4. The five-dimensional complexes C5 in the projective space P 5 can be defined
as the intersection of four hypercomplexes of one bundle. As a result of the above
frame specialization, the equation of a bundle μ of the hypercomplexes C8 of two-
dimensional planes p in P 5 is written as

μα ∧ αi
p ωp

i = 0, (5)

where i = 0, 1, 2, p = 3, 4, 5, α = 1, 2, 3, 4, and ωp
i are linear differential forms

whose vanishing fixes a two-dimensional plane p on the five-dimensional complex C5.
The projectivization of this bundle of complexes is the three-dimensional projective
space P ∗3 whose homogeneous coordinates are the coefficients μα of the bundle of
hypercomplexes.

Consider the hypercomplex C8 defined by (3) for some fixed values of the coef-
ficients μα. A two-parameter family of two-dimensional planes p of the hypercom-
plex C8 forming a hypercone with the vertex p1 passes through every straight line
p1 ⊂ p. The tangent hyperplanes to these cones in the general case intersect on
a two-dimensional plane p, i.e.,

μα ∧ αi
p xp = 0.

Under the conditions
rang

(
μα ∧ αi

p

)
= 1, (6)

(5) defines a hyperplane tangent to the hypercone of two-dimensional planes p with
a one-dimensional vertex p1 ⊂ p. Each three-dimensional plane lying in this tangent
hyperplane is a tangent three-dimensional plane to a torse belonging to C5.
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Let us proceed with dual constructions. Each three-dimensional plane p3 ⊃ p
contains a two-parameter family of two-dimensional planes p of the hypercomplex C8

whose envelope is a two-dimensional tangentially nondegenerate surface; i.e., at ev-
ery three-dimensional plane p3 there exists a point describing a two-dimensional
tangentially nondegenerate surface. The manifold of all these points is given by the
system of equations

μα ∧αip ai = 0.

Under condition (6), this system of equations defines a point at the center of the
pencil of straight lines lying in the two-dimensional generator p of the hypercom-
plex C8; each straight line of this pencil is a characteristic line of a torse belonging
to C5.

Condition (6) defines in the three-dimensional projective space P ∗3 the inter-
section of four linearly independent quadratic surfaces Qα which generally have no
common points. Consider the five-dimensional complexes C5 of two-dimensional
planes p defined by the bundle of hypercomplexes C8 with the property that un-
der the Grassmann map hyperplanes of the bundle of hyperplanes PTpV 8 contain
only one α-generator of the cubic surface PBp(3) and the intersection of the four-
dimensional plane PTpV 5 with the Segre manifold Sp(2, 2) contains two straight lines
from different α-generators of Sp(2, 2) and one straight line in the β-generator of
Sp(2, 2). We call chosen five-dimensional complexes C5 of two-dimensional planes p
B-complexes. Note that five-dimensional B-complexes of two-dimensional planes
are admissible [14–16].

The choice of the above complexes C5 of two-dimensional planes p leads to
four hypercomplexes for which the corresponding hyperplanes PTpV 8 under the
Grassmann map contain α-generators of the hypercube PBp(3) and thus

ω5
0 = 0, ω4

1 = 0, ω3
2 = 0, ω5

1 − ω5
2 = 0. (7)

The equation of the bundle μ of hypercomplexes C8 of two-dimensional planes p in
this case is written as

αω5
0 + βω4

1 + γω3
2 + δ

(
ω5

1 − ω5
2
)

= 0.

The center of this bundle μ of the hypercomplexes C8 is a five-dimensional B-
complex C5 of two-dimensional planes p being the intersection of four above hyper-
complexes C8 and defined by the system of four differential equations (7).

It is easy to verify that the intersection of the four-dimensional plane PTpV 5

with the Segre manifold Sp(2, 2) contains the two straight lines

ω4
0 = 0, ω4

2 = 0, ω5
1 = 0, (8)

ω3
0 = 0, ω3

1 = 0, ω5
1 = 0 (9)

from two different α-generators of Sp(2, 2) and one straight line

ω3
1 = 0, ω4

2 = 0, ω5
1 = 0 (10)

from a β-generator of Sp(2, 2). Now we clarify the structure of the five-dimensional
B-complexes C5 of two-dimensional planes p.
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Theorem 1. The five-dimensional B-complexes C5 are a manifold of two-
dimensional planes belonging to hyperplanes of one-parameter family, being tangent
at every hyperplane of this family to three-dimensional tangentially nondegenerate
surfaces.

Proof. A B-complex C5 is defined by the differential equations (7) and the
forms ω3

0 , ω4
0 , ω3

1 , ω4
2 , and ω5

1 are linearly independent on it. Hence, we can take the
latter as basis forms for the B-complex C5. Applying the exterior derivation to (7),
we arrive at the quadratic equations

ω5
3 ∧ ω3

0 + ω5
4 ∧ ω4

0 +
(
ω1

0 + ω2
0
) ∧ ω5

1 = 0,

ω0
1 ∧ ω4

0 − ω4
3 ∧ ω3

1 + ω2
1 ∧ ω4

2 − ω4
5 ∧ ω5

1 = 0,

ω0
2 ∧ ω3

0 + ω1
2 ∧ ω3

1 − ω3
4 ∧ ω4

2 − ω3
5 ∧ ω5

1 = 0,

ω5
3 ∧ ω3

1 + ω5
4 ∧ ω4

2 +
(
ω1

1 − ω2
2 + ω2

1 − ω1
2
) ∧ ω5

1 = 0.

(11)

The first quadratic equation of (11) implies that the forms ω5
3 and ω5

4 are ex-
pressed through the basis forms ω3

0 , ω4
0 , and ω5

1 of the B-complex C5 and the last
quadratic equation of the that the same forms are expressed through the basis forms
ω3

1, ω4
2 , and ω5

1 . In view of uniqueness of the decomposition of forms on the basis of
the B-complex C5 we obtain that these forms are expressed through only one basis
form ω5

1 , i.e., we have the equations

ω5
3 = aω5

1 , ω5
4 = bω5

1 . (12)

The differential of the hyperplane A0∧A1∧A2∧A3∧A4 due to these equations
is written as

d(A0 ∧A1 ∧A2 ∧A3 ∧A4) =
(
ω0

0 + ω1
1 + ω2

2 + ω3
3 + ω4

4
)
(A0 ∧A1 ∧A2 ∧A3 ∧A4)

− ω5
1{(A0 ∧A2 ∧A3 ∧A4 ∧A5)− (A0 ∧A1 ∧A3 ∧A4 ∧A5)
+ a (A0 ∧A1 ∧A2 ∧A4 ∧A5)− b(A0 ∧A1 ∧A2 ∧A3 ∧A5)}. (13)

Hence, the hyperplane A0∧A1 ∧A2 ∧A3∧A4 describes a one-parameter family
with a three-dimensional characteristic plane defined by the equations

x1 + x2 + a x3 + bx4 = 0. (14)

Insert in this characteristic plane of the one-parameter family of hyperplanes A0 ∧
A1 ∧A2∧A3 ∧A4 the vertices A0, A1, A2, A3, and A4 of the moving frame. In view
of this specialization of a moving frame, we infer

a = b = 0, (15)

and the equation (14) of the three-dimensional characteristic plane takes the form

x1 + x2 = 0.

In the fixed hyperplane A0∧A1∧A2∧A3 ∧A4, i.e., for ω5
1 = 0, we find that the

two-dimensional planes p of the B-complex C5 are tangent to two three-dimensional
tangentially nondegenerate surfaces given by the equations

ω4
1 = 0, ω3

2 = 0. (16)

In this case the points A1 and A2 at every hyperplane A0 ∧A1 ∧A2 ∧A3 ∧A4 of the
one-parameter family specify three-dimensional tangentially nondegenerate surfaces
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whose tangent 3-planes coincide with the respective three-dimensional planes A0 ∧
A1 ∧A2 ∧A3 and A0 ∧A1 ∧A2 ∧A4.

Thus, the two-dimensional generators p of a five-dimensional B-complex C5

belong to hyperplanes of a one-parameter family and are tangent at every hyperplane
of this family with two three-dimensional tangentially nondegenerate surfaces.

Let us prove the converse. Consider the set of two-dimensional planes p belong-
ing to hyperplanes of the one-parameter family which are tangent at every hyper-
plane of this family to two three-dimensional tangentially nondegenerate surfaces.
Insert the vertices A0, A1, A2, A3, and A4 of the moving frame {AI} in a hyper-
plane of the one-parameter family and the points A0, A1, A2, A3, and A4 in the
three-dimensional characteristic plane of this family. We superpose the vertices A1
and A2 with the current points of the three-dimensional tangentially nondegenerate
surfaces. Insert the points A0, A1, and A2 on the two-dimensional plane presenting
the intersection of three-dimensional tangent planes to the tangentially nondegen-
erate surfaces and arrange A3 and A4 in the three-dimensional tangent planes to
the tangentially nondegenerate surfaces. In view of the above specialization of the
moving frame, the one-parameter family of hyperplanes A0 ∧ A1 ∧ A2 ∧ A3 ∧ A4 is
defined by the following equations:

ω5
0 = 0, ω5

1 − ω5
2 = 0, ω5

3 = 0, ω5
4 = 0, (17)

where ω5
1 is a basis form on this family of hyperplanes.

The three-dimensional tangentially nondegenerate surfaces lying at every hy-
perplane A0 ∧ A1 ∧ A2 ∧ A3 ∧ A4 of the one-parameter family of hyperplanes are
given by (16) due to the specialization of the moving frame. From (16) and (17) we
obtain that (7) define a five-dimensional complex C5 of two-dimensional planes p.
It is not difficult to establish that such complexes are defined by a bundle of hy-
percomplexes C8 such that under the Grassmann map the hyperplanes belonging
to the bundle PTpV 8 of hyperplanes contain only one α-generator of the cubic sur-
face PBp(3) and the intersection of the three-dimensional plane PTpV 5 with the
Segre manifold Sp(2, 2) contains two straight lines from two different α-generators
of Sp(2, 2), defined by equations (8) and (9) and one straight line from a β-generator
of the manifold Sp(2, 2) defined by the equation (10), i.e., they are five-dimensional
B-complexes of two-dimensional planes p. Thus, the conjecture about the struc-
ture of the five-dimensional B-complexes of two-dimensional planes p is completely
proven.

We can conduct dual constructions; i.e., we can take β-generators of the cubic
surface PBp(3) in the definition of B-complexes C5 of two-dimensional planes p in
the projective space P 5. Consider five-dimensional complexes C5 of two-dimensional
planes p in the projective space P 5 defined by a bundle μ of the hypercomplexes C8

such that under the Grassmann map the hyperplanes of the bundle PTpV 8 of hyper-
planes contain only one β-generator of the hypercube PBp(3) and the intersection
of the four-dimensional plane PTpV 5 with the Segre manifold Sp(2, 2) contains two
straight lines belonging to different β-generators of Sp(2, 2) and one straight line
belonging to an α-generator of the manifold Sp(2, 2). We call such five-dimensional
complexes C5 of two-dimensional planes p dual B-complexes. The claim dual to that
in Theorem 1 holds for these complexes.

Theorem 2. The dual five-dimensional B-complexes C5 are a manifold of two-
dimensional planes intersecting some curve and tangent to tangentially nondegener-
ate hypersurfaces.
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ALMOST CONTACT METRIC STRUCTURES

DEFINED BY AN N–EXTENDED CONNECTION
S. V. Galaev

Abstract. On a manifold with an almost contact metric structure (ϕ, �ξ, η, g, X,D), we
introduce the notions of intrinsic and N-extended connections. Using an N-extended
connection, we define a new contact metric structure on the distribution D, which is
called an extended almost contact metric structure. The properties of this structure are
studied.

Keywords: almost contact metric structure, intrinsic connection, N-extended connec-
tion, extended almost contact metric structure

1. Introduction

The study of the geometry of tangent bundles begins with the seminal work [1]
of 1958 by Sasaki. Using a Riemannian metric g on a smooth manifold X , Sasaki de-
fines a Riemannian metric G on the tangent bundle TX of X . Sasaki’s construction
is based on the natural splitting (holding due to the existence of the Levi-Civita con-
nection on a Riemannian manifold) of the tangent bundle TTX of the manifold TX
into a direct sum of a vertical distribution and a horizontal distribution whose fibers
are isomorphic to the fibers of TX . An odd analog of the tangent bundle is given by
the distribution D of an almost contact metric structure (ϕ, �ξ, η, g). Because of the
prescription of a connection over the distribution [2] (and then of an N -extended
connection, namely, of a connection on the vector bundle (X,D)) the bundle TX
splits just as the bundle TTX into the direct sum of a vertical distribution and
a horizontal distribution. As was shown in [2, 3], D is thus endowed with a natural
almost contact metric structure which makes it possible for example to give an in-
variant nature to the analytical description of mechanics with constraints. In [3],
on the manifold D, the geodesic pulverization of a connection over a distribution is
defined, which is an analog of the geodesic pulverization defined on the space of the
tangent bundle TX , having the clear physical interpretation: the projections of the
integral curves of the geodesic pulverization of a connection over a distribution co-
incide with the admissible geodesics (the trajectories of the motion of a mechanical
system with constraints).

This article, intended an introduction to the geometry of extended almost con-
tact metric structures, is devoted to the development of the two ideas: the idea of
generalizing Sasaki’s construction (see [1]) to the case of odd dimension as well as
the idea of extending an intrinsic connection.

The article is organized as follows: Section 2 consists of three subsections, the
first of which contains a summary of the intrinsic geometry of almost contact metric
spaces. The reader is referred to [4] for a more detailed exposition.

c© 2015 Galaev S. V.
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In Subsection 2.2, we introduce the concept of N -extended metric connec-
tion. An intrinsic connection defines a parallel translation of the admissible vectors
(i.e., the vectors belonging to D) along admissible curves. Each corresponding N -
extending connection is a connection in the vector bundle (D,π,X) defined by the
intrinsic connection and the endomorphism N : D → D. The choice of the endo-
morphism N : D → D influences the properties of the extended connection as well
as the properties of the (extended) almost contact metric structure appearing on the
space D of the vector bundle (D,π,X). Central to this subsection is a theorem on
the existence and uniqueness of an N -extended metric connection with zero torsion.
In Section 2.3, we reveal the connection of the intrinsic and extended connections
with the familiar connections arising on almost contact metric spaces.

In Section 3, we define an extended almost contact metric structure on a man-
ifold D with extended metric connection. We study the properties of an extended
almost contact metric structure. Particular attention is paid to almost contact
Kähler spaces.

2. Intrinsic and N-Extended Connections

2.1. Main information from the intrinsic geometry of almost contact
metric spaces. Let X be a smooth manifold of odd dimension n and let �TX be
the C∞(X)-module of smooth vector fields on X . All manifolds, tensor fields, and
other geometric objects are assumed smooth of class C∞. An almost contact metric
structure on X is a collection (ϕ, �ξ, η, g) of tensor fields on X , where ϕ is a tensor
of type (1, 1) which is called the structure endomorphism, �ξ and η and a vector
and a covector, called the structure vector and the contact form, g is a (pseudo-)
Riemannian metric. Moreover,

η(�ξ) = 1, ϕ(�ξ) = 0, η ◦ ϕ = 0, ϕ2 �X = − �X + η( �X)�ξ,

g(ϕ �X,ϕ�Y ) = g( �X, �Y )− η( �X)η(�Y ), dη( �X, �ξ) = 0,

�X, �Y ∈ �TX .
The skew-symmetric tensor �( �X, �Y ) = g( �X,ϕ�Y ) is called the fundamental form

of the structure. A manifold on which an almost contact metric structure is fixed is
called an almost contact metric manifold. If � = dη then the almost contact metric
structure is called a contact metric structure. An almost contact metric structure
is called normal if Nϕ + 2dη ⊗ �ξ = 0, where Nϕ is the Nijenhuis torsion generated
by the tensor ϕ. A normal contact metric structure is called a Sasakian structure.
A manifold with a Sasakian structure is called a Sasakian manifold. Let D be
a smooth distribution of codimension 1 defined by a form η, and D⊥ = Span(�ξ) is
its rig. If the restriction of the form ω = dη to D is nondegenerate then �ξ uniquely
determined from the conditions η(�ξ) = 1, kerω = Span(�ξ), is called the Reeb vector.

Call an almost contact metric structure almost normal if

Nϕ + 2(dη ◦ ϕ)⊗ �ξ = 0. (1)

In what follows, we refer to an almost normal almost contact metric space as
an almost contact Kähler space if its fundamental form is closed. An almost metric
space will be called an almost K-contact metric space if L�ξg = 0. The last equality
is more frequently used in the case when the form ω has maximal rank; then the
corresponding space is called K-contact.
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An almost normal contact metric structure is obviously a Sasakian structure.
Sasakian spaces are very popular among the researchers studying almost contact
metric spaces for two main reasons. On the one hand, there are many interesting and
informative examples of Sasakian structures; on the other hand, Sasakian manifolds
possess very important and natural properties. At the same time, almost contact
Kähler spaces inherit a number of important properties of Sasakian spaces, which
turns out to rather substantial in the cases when the contact metric space cannot
be a Sasakian space in principle [6].

Call a chart K(xα) (α, β, γ = 1, . . . , n) (a, b, c, e = 1, . . . , n−1) of a manifold X
adapted to a nonholonomic manifold D if D⊥ = Span( ∂

∂xn ) [4]. Let P : TX → D
be the projection defined by the decomposition TX = D ⊕ D⊥ and let K(xα) be
an adapted chart. The vector fields P (∂a) = �ea = ∂a−�n

a ∂n are linearly independent
and generate a distribution D: D = Span(�ea), in the domain of the corresponding
chart. Thus, on X , we get a nonholonomic field of the bases (�ea, ∂n) and the corre-
sponding field of the cobases (dxa, θn = dxn + �n

a dx
a). It is a straightforward check

that [�ea�eb] = Mn
ab∂n, where the components Mn

ab constitute the so-called nonholon-
omy tensor [7]. If we require that �ξ = ∂n in all adapted charts then, in particular,
[�ea�eb] = 2ωba∂n, where ω = dη. The basis �ea = ∂a − �n

a ∂n will also be called
adapted since it is defined by an adapted chart. Note that ∂n�n

a = 0. Let K(xα)
and K(xα

′
) be adapted charts; then, under the condition �ξ = ∂n, we obtain the

following formulas for the change of coordinates: xα = xα(xα
′
), xn = xn

′
+ xn(xα

′
).

A tensor field of type (p, q) on an almost contact metric manifold will be called
admissible (to the distribution D) if its coordinate representation in an adapted
chart has the form

t = t
a1...ap

b1...bq
�ea1 ⊗ · · · ⊗ �eap ⊗ dxb1 ⊗ · · · ⊗ dxbq .

The definition of almost contact structure implies that the affinor ϕ is an ad-
missible tensor field of type (1, 1). Reckoning with the properties of the field of the
affinor ϕ, we call it an admissible almost complex structure. It stands to reason to
call the form ω = dη, which is an admissible form too, an admissible symplectic form.

The transformation of the components of an admissible tensor field in adapted
coordinates obeys the law

tab = Aa
a′A

b′
b t

a′
b′ ,

where Aa
a′ = ∂xa

∂xa′ .
Remark 1. The formulas for the transformation of an admissible tensor field

implies that the derivatives ∂ntab are again the components of an admissible tensor
field. Moreover, the vanishing of the derivatives ∂ntab does not depend on the choice of
adapted coordinates. This circumstance is supported by the fact that (L�ξt)

a
b = ∂ntab .

Remark 2. Refer to an admissible tensor structure for which ∂ntab = 0 as
projectable (other terms addressed to structures with such a property can be found
in the literature: “basic,” “semibasic,” etc.). Admissible projectable structures can
naturally be regarded as structures defined on a manifold of lesser dimension.

Using adapted coordinates, introduce the admissible tensor fields:

hab =
1
2
∂nϕ

a
b , Cab =

1
2
∂ngab, Ca

b = gdaCdb, ψb
a = gdaωda.

We will use the notations for the connection and the coefficients of the Levi-Civita
connection of the tensor g: ˜∇, ˜�α

βγ . Straightforward calculations justify the following
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Theorem 1. The coefficients of the Levi-Civita connection of an almost contact
metric space in adapted coordinates have the form

˜� c
ab = � c

ab, ˜�n
ab = ωba − Cab, ˜� b

an = ˜� b
na = Cb

a − ψb
a, ˜�n

na = 0, ˜� a
nn = 0,

where
� a
bc =

1
2
gad(�ebgcd + �ecgbd − �edgbc).

2.2. An N-extended metric connection. Under an intrinsic linear con-
nection on a manifold with almost contact metric structure [4] we mean a mapping
∇ : �D × �D → �D satisfying the conditions:

(1) ∇f1 �u1+f2 �u2 = f1∇ �u1 + f2∇ �u2 ,
(2) ∇�uf�v = f∇�u�v + (�uf)�v,

where �D is the module of admissible vector fields. The coefficients of the linear
connection are defined from the relation ∇�ea�eb = � c

ab�ec.
The torsion of the intrinsic linear connection S is by definition

S( �X, �Y ) = ∇ �X
�Y −∇�Y

�X − P [ �X, �Y ].

Thus, in adapted coordinates, we have Sc
ab = � c

ab − � c
ba.

The action of an intrinsic linear connection naturally extends to arbitrary ad-
missible tensor fields. An important example of an intrinsic linear connection is given
by the intrinsic metric connection determined uniquely by the conditions ∇g = 0,
S = 0 [7]. In adapted coordinates, we have

� a
bc =

1
2
gad(�ebgcd + �ecgbd − �edgbc).

Note that � a
bc = ˜� a

bc (see Theorem 1).
Like a connection in the ambient space, an intrinsic linear connection can be

given by defining a horizontal distribution over the space of a vector bundle. In the
case of an intrinsic connection, as such a bundle, there acts the distribution D. We
say that a connection is defined over a distributionD if the distribution ˜D = π−1∗ (D),
where π : D → X , splits into the direct sum of the form ˜D = HD⊕V D, where V D
is the vertical distribution on the total space D.

Endow D with the structure of a smooth manifold by assigning to each adapted
chart K(xα) on X the superchart K̃(xα, xn + a) on the manifold D, where xn+a

are the coordinates of an admissible vector in the basis �ea = ∂a − �n
a ∂n. The so-

constructed superchart will also be called adapted. The definition of connection
over a distribution is equivalent to the definition of Ga

b (x
α, xn+a) such that HD =

Span(�εa), where �εa = ∂a − �n
a ∂n − Gb

a∂n+b. If Ga
b (x

a, xn+a) = � a
bc(x

a)xn+c then
the connection over the distribution is defined by an intrinsic linear connection.
The notion of extended connection was introduced in [2]. An extended connection
is always considered with respect to some connection over a distribution and is
defined by the expansion TD = ˜HD ⊕ V D, where HD ⊂ ˜HD. The extended
connection is a connection in a vector bundle. As follows from the definition of
extended connection, from its definition (under the condition of an already existing
connection over a distribution), it suffices to define a vector field �u on the manifold D
having the following coordinate representation: �u = ∂n − Na

b x
n+b∂n+a, where the

endomorphism N : D → D can be chosen arbitrarily. We refer as the torsion of
an extended connection to the torsion of the initial intrinsic connection. In what
follows, we refer to an extended connection as an N -extended connection.
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In [7], Vagner refers to the admissible tensor field defined by the equality

R(�u,�v)�w = ∇�u∇�u �w −∇�v∇�u �w −∇p[�u,�v] �w − p[q[�u,�v]�w]

as the first Schouten curvature tensor. The coordinate representation of the Schouten
tensor in adapted coordinates has the form

Rd
abc = 2�e[a� d

b]c + 2� d
a|e|�

e
b]c.

If the distribution D does not contain an integrable distribution of dimension n− 2,
the vanishing of the Schouten curvature tensor is equivalent to the fact that the
parallel translation of admissible vectors along admissible curves does not depend
on the translation path [7]. Call the Schouten tensor the curvature tensor of the
distribution D, and if the Schouten tensor vanishes then call D a distribution of zero
curvature. It is not hard to establish that the partial derivatives ∂n� a

bc = P a
bc are the

components of an admissible vector field [7].
Remark 3. For (almost) K-contact spaces, the Schouten curvature tensor pos-

sesses the same properties as the curvature tensor of a Riemannian manifold. It is
not so in the general case.

The vector fields
(

�εa = ∂a − �n
a ∂n − Gb

acx
n+c∂n+b, �u = ∂n − Ga

n∂n+a, ∂n+a

)

define a nonholonomic (adapted) basis field D, and the forms
(

dxa, θn = dxn +
�n
a dx

a, θn+a = dxn+a + � a
bcdx

b +Na
b x

n+bdxn
)

determine the corresponding cobasis
field. Carrying out the necessary calculations, we obtain the following structure
equations:

[�εa, �εb] = 2ωba�u+ xn+d
(

2ωbaN
c
d +Rc

bad

)

∂n+c, (3)

[�εa, �u] = xn+d
(

∂n�
c
ad −∇aN

c
d

)

∂n+c, (4)

[�εa, ∂n+b] = � c
ab∂n+c.

From (3) and (4) we get the expression for the curvature tensor of the extended
connection:

K(�u,�v)�w = 2ω(�u,�v)N �w +R(�u,�v)�w,

K(�ξ, �u)�v = P (�u,�v)− (∇�uN)�v,

where �u,�v ∈ �D.

Theorem 2. There exists an N -extended metric connection defined uniquely
by the following conditions:

(1) �Zg( �X, �Y ) = g(∇�Z
�X, �Y ) + g( �X,∇�Z

�Y ) (the metric property),
(2) ∇ �X

�Y −∇�Y
�X − p[ �X, �Y ] = 0 (the absence of torsion),

(3) N is a symmetric operator such that

g(N �X, �Y ) =
1
2
L�ξg( �X, �Y ), (5)

where �X, �Y , �Z ∈ �D are sections of D, and P : TX → D is the projection.
Proof. The first two conditions of the theorem uniquely define the intrinsic

metric connection [7]. Alternating the second covariant derivative, we get ∇[e∇a]gbc
= 2ωea∂ngbc − gdcRd

eab − gbdRd
eac.

Comparing the above result with (5), we find an explicit expression for the
endomorphism N :

Nf
b =

1
4(n− 1)

ωea(Rf
eab + gbdg

cfRd
eac).
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If ∂ngab = 0 then put N = 0. The theorem is proved.

Refer to an N -extended connection furnished with the properties of Theorem 2
as an N -extended metric connection. For an extended connection, use the notation
∇N = (∇, N); in the particular case, ∇1 = (∇, 0).

3. Special Connections of Manifolds
with Almost Contact Metric Structure

Cartan (see [8–10]) was the first to consider a linear metric connection with tor-
sion instead of the Levi-Civita connection. Most interesting among metric connec-
tions with torsion is the semisymmetric connection treated systematically by Yano
in [11]. The quarter-symmetric connection was defined in 1975 by Golab in [12].
Many works are devoted both to metric and nonmetric connections with torsion de-
fined on manifolds with almost contact metric structure. Here we will only dwell on
Bejancu’s article [13]. Bejancu defines the connection ∇B on a Sasakian manifold
by the formula

∇B
�X

= ˜∇ �X
�Y − η( �X)˜∇�Y

�ξ − η(�Y )˜∇ �X
�ξ + (ω + c)( �X, �Y )�ξ.

In adapted coordinates, the nonzero components �Bα
βγ of the connection ∇B are

�Ba
bc = � a

bc =
1
2
gad(�ebgcd + �ecgbd − �edgbc).

The connection constructed by Bejancu is in general not metric in the more general
case of an almost contact metric structure than the Sasakian structure. Indeed,
since ∇B

n gab = ∂ngab, the metricity of the Bejancu connection is equivalent to the
almost K-contactness of the contact metric structure. On a manifold with an almost
contact metric structure, define the connection ∇N by the equality

∇N
�X

= ∇B
�X
�Y + η( �X)N�Y ,

where N is the endomorphism of Theorem 2. Refer to the so-introduced connection
as the N -connection. The nonzero components of the N -connection are at most

�Na
bc = � a

bc =
1
2
gad(�ebgcd + �ecgbd − �edgbc),

�Na
nc = Na

c . The curvature of the N -connection is defined by the equality

SN( �X, �Y ) = 2ω( �X, �Y )�ξ + η( �X)N �Y − η(�Y )N �X.

Straightforward calculations in adapted coordinates validate the following

Theorem 3. The N -connection is a metric connection.

4. An N-Extended Connection as
an Almost Contact Metric Structure

Suppose that a manifoldX is endowed with a contact metric structure (D,ϕ, �ξ, η,
g,X). On the distribution D as a smooth manifold, define an almost contact metric
structure (D̃, J, �u, λ = η ◦ π∗, g̃, D) by setting

g̃(�εa, �εb) = g̃(∂n+a, ∂n+b) = g(�ea, �eb), g̃(�εa, ∂n+b) = g̃(�εa, �u) = g̃(�u, ∂n+b) = 0,

J(�εa) = ∂n+a, J(∂n+a) = −�εa.
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Here the vector fields (�εa = ∂a − �n
a ∂n −Gb

acx
n+c∂n+b, �u = ∂n −Ga

n∂n+a, ∂n+a) are
defined by the extended connection. The so-obtained structure will be called an
extended almost contact metric structure. Let ω̃ = dλ. It is a straightforward check
that the nonzero components of the form ω̃ are defined by the equalities ω̃ab = ωab.
Thus, rk ω̃ = n−1

2 . This in particular implies that the constructed structure is not
contact and in particular not a Sasakian structure.

Theorem 4. An extended almost contact metric structure is almost K-contact
if and only if the initial structure is K-contact.

Proof. The nonzero components of the Lie derivative L�ug̃ have the following
form in adapted coordinates:

(L�ug̃)ab = ∂ngab, (6)

(L�ug̃)n+a,n+b = ∂ngab − gacN c
b −−gcbN c

a , (7)

(L�ug̃)n+a,b = gac(P c
bd −∇bN

c
d)xn+d. (8)

The components in (7) are also zero as the components of the covariant deriva-
tives of the metric tensor. The equality ∂ngab = 0 implies the two other equalities:
N c

d = 0 and P c
bd = 0 (see (6) and (8)), which proves the theorem.

Assume that the initial structure is K-contact (N = 0). Then we have

Theorem 5. An almost contact metric structure (D̃, J, �u, λ = η ◦ π∗, g̃, D) is
almost normal if and only if D is a distribution of zero curvature.

Proof. Rewrite (1) in new notations:

NJ + 2(dη̃ ◦ J) ◦ �u = 0.

It was proved in [4] that an almost contact structure is almost normal if and only if P̃◦
NJ = 0, where ˜P : TD→ ˜D is the projection. Using (3)–(5) for the connection ∇1,
we obtain the following two components of the Nijenhuis affinor J :

NJ(�εa, �εb) = −Re
abcx

n+c∂n+e,

NJ(∂n+a, ∂n+b) = 2ωba +Re
abcx

n+c∂n+e,

NJ(�εa, ∂n+b) = 0,

NJ(�εa, ∂n) = NJ(∂n+a, ∂n) = −xn+cP b
ac∂n+b.

Thus, an extended almost contact metric structure is almost normal if and only if
the Schouten curvature tensor is zero.

Theorem 6. An almost contact metric structure (D̃, J, �u, λ = η ◦ π∗, g̃, D) is
an almost contact Kähler structure if and only if (ϕ, �ξ, η, g) is a Sasakian structure
with zero curvature distribution.

Proof. Straightforward calculations yield d� = 0 ⇔ d�̃ = 0, where �̃( �X, �Y )
= g̃( �X, J �Y ), which proves the theorem.
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A NONLOCAL PROBLEM ON THE SEMIAXIS

FOR DEGENERATE EVOLUTION EQUATIONS

N. D. Ivanova and V. E. Fedorov

Abstract. We obtain necessary and sufficient conditions of the unique solvability in
the classical and generalized sense of a time nonlocal boundary value problem with an
integral condition on the semiaxis for a linear homogeneous differential equation of the
first order in Banach space with a degenerate operator at the derivative. The condi-
tions on the operators in this equation ensure the exponential decay of the respective
strongly continuous resolving semigroup. An estimate exhibiting the exponential de-
cay of a generalized solution is given. The abstract results are used to examine a time
nonlocal boundary value problem for a class of partial differential equations with poly-
nomials of the Laplacian, including some equations of filtration theory and the theory
of semiconductors.

Keywords: nonlocal problem, degenerate evolution equation, operator semigroup, clas-
sical solution, generalized solution, boundary value problem

1. Introduction

Consider the nonlocal problem
∞∫

0

u(t)η(t) dt = u0, (1.1)

Lu̇(t) = Mu(t), t ≥ 0, (1.2)

where the evolution equation is degenerate, L ∈ L (U;V) is a linear operator from
a Banach space U in a Banach space V, kerL �= {0}, M ∈ C l(U;V) is a linear
closed operator with domain D(M) dense in U, acting in V, and η : (0,∞) → R is
a nonnegative nonincreasing function. The condition of the strong (L, p)-radiality
of M [1] is assumed, which ensures existence of a strongly continuous degenerate
resolving semigroup for (1.2) that decays exponentially.

The problems for equations of this form with a degenerate operator at the
derivative and thus unsolvable with respect to it are an abstract form of bound-
ary value problems for partial differential equations and systems of these equations
convenient for the study by operator methods [1–4]. In particular, the necessary
and sufficient conditions of solvability of (1.1), (1.2) obtained in the present article
are used to establish unique solvability of boundary value problems for (1.2) with L
and M polynomials of an elliptic operator in the space variables. This class includes
some equations of filtration theory and the theory of semiconductors.

The authors were supported by the Laboratory of Quantum Topology of Chelyabinsk State
University (Grant 14.Z50.31.0020 of the Government of the Russian Federation).

c© 2015 Ivanova N. D. and Fedorov V. E.
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This article is a continuation of [5] to the case of degenerate evolution equa-
tion (1.2). The article contains necessary and sufficient conditions of generalized
and classical solvability of (1.1) with a nonnegative nonincreasing function η for the
equation

u̇(t) = Au(t), t ≥ 0, (1.3)
solvable with respect to the derivative, where A is a linear operator generating
a strongly continuous semigroup of class C0 [6] in a Banach space X. At the same
time the results were complemented in [7], where the degenerate equation (1.2) is
examined with the nonlocal boundary condition

T∫

0

u(t)η(t) dt = u0 (1.4)

and the unique solvability of this problem is studied for the nonhomogeneous equa-
tions (1.2) and (1.3). It is observed in [7] that in contrast to the homogeneous
equation the behavior at infinity of a solution to the nonhomogeneous equation is
not defined by the properties of A, L, or M ; hence, the well-posedness of the non-
local condition (1.1) is not ensured in terms of these operators. This is the reason
why we consider only the homogeneous equation.

Note also the articles by I. V. Tikhonov devoted to uniqueness of solutions to
(1.2), (1.4) and (1.3), (1.4) [8] and unique solvability of (1.1), (1.2) and (1.3), (1.4)
[9] and the articles by A. A. Kerefov, [10], V. V. Shelukhin [11], A. I. Kozhanov [12],
and many other authors (see, for instance, [13–15]), where close nonlocal problems
are studied. Somewhat more detailed historiography can be found in [7].

2. Preliminaries

Given a function η : (0,+∞)→ R, consider the nonlocal problem
∞∫

0

x(t)η(t) dt = x0, (2.1)

ẋ(t) = Ax(t), t ≥ 0, (2.2)
where A is a closed linear operator with dense domain D(A) in a Banach space X
which generates a strongly continuous semigroup {X(t) ∈ L (X) : t ≥ 0} of class C0.

As in [5], a function x(t) = X(t)v, t ≥ 0, v ∈ X is a generalized solution to (2.2).
In our case this function is continuous but possibly not differentiable.

A function x ∈ C1([0,∞);X) is referred to as a classical solution to (2.2) if (2.2)
holds for every t ≥ 0. Clearly, for given an operatorA, every classical solution to (2.2)
is a generalized solution and a generalized solution is classical whenever v ∈ D(A).

A generalized or classical solution to (2.2) satisfying (2.1) is called a generalized
or classical solution to (2.1), (2.2).

Theorem 2.1 [5]. Assume that an operator A is a generator of a strongly con-
tinuous semigroup {X(t) ∈ L (X) : t ≥ 0} of class C0, the inequality ‖X(t)‖L (X) ≤
Ke−αt holds for t ≥ 0 with constants K > 0 and α > 0, the function η is nonnegative
and nonincreasing on (0,∞) and η(t) > 0 as t→ 0+. Then

(i) for every x0 ∈ D(A), there exists a unique generalized solution x(t) =
X(t)v to (2.1), (2.2) such that ‖x(t)‖X ≤ Ce−αt‖Ax0‖X, where the constant C is
independent of x0 and t;

(ii) a generalized solution to (2.1), (2.2) is classical if and only if x0 ∈ D(A2);
(iii) if x0 ∈ X \D(A) then a generalized solution to (2.1), (2.2) does not exist.
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Proceed with the degenerate evolution equation

Lu̇(t) = Mu(t), t ≥ 0. (2.3)

Here U and V are Banach spaces, L ∈ L (U;V), kerL �= {0}, and M ∈ C l(U;V).
Put N0 = {0}∪N, ρL(M) = {μ ∈ C : (μL−M)−1 ∈ L (V;U)}, σL(M) = C\ρL(M),
RL

μ(M) = (μL−M)−1L, and LL
μ = L(μL−M)−1.

Let p ∈ N0. An operator M is strongly (L, p)-radial with constants K > 0 and
a ∈ R if

(i) ∃a ∈ R (a,∞) ⊂ ρL(M);
(ii) ∃K > 0 ∀μ ∈ (a,∞) ∀n ∈ N

max
{∥∥(RL

μ (M)
)n(p+1)∥∥

L (U),
∥∥(LL

μ(M)
)n(p+1)∥∥

L (V)

} ≤ K

(μ− a)n(p+1) ;

(iii) there exists a subspace
◦
V dense in V and such that

∥∥M(μL−M)−1(LL
μ(M)

)p+1
f
∥∥
V
≤ const(f)

(μ− a)p+2 ∀f ∈
◦
V,

∥∥(RL
μ(M)

)p+1(μL−M)−1∥∥
L (V;U) ≤

K

(μ− a)p+2

for every μ ∈ (a,∞).
Remark 2.1. The equivalence of the conditions of this definition, similar to

more cumbersome conditions in [1], is demonstrated in [16].

Some family of operators {U(t) ∈ L (U) : t ≥ 0} is the resolving semigroup
of (2.3) if

(i) U(s)U(t) = U(s + t), s, t ≥ 0;
(ii) for every u0 from some dense subspace in U, the function u(t) = U(t)u0 is

a classical solution to (2.3);
(iii) imV (0) ⊂ imU(0) for every operator family {V (t) ∈ L (U) : t ≥ 0}

satisfying (i) and (ii).
Put U0 = ker(RL

μ (M))p+1 and V0 = ker(LL
μ(M))p+1. The symbols U1 and V1

stand for the closure of the images of im(RL
μ (M))p+1 and im(LL

μ(M))p+1 in U and V,
respectively.

Denote the restriction of L (M) to Uk (D(Mk) = D(M) ∩ Uk), k = 0, 1,
by Lk (Mk).

Theorem 2.2 [1]. Let an operator M be strongly (L, p)-radial with constants
K > 0 and a ∈ R. Then

(i) U = U0 ⊕ U1 and V = V0 ⊕V1;
(ii) Lk ∈ L (Uk;Vk) and Mk ∈ C l(Uk;Vk), k = 0, 1;
(iii) there exist M−1

0 ∈ L (V0;U0) and L−1
1 ∈ L (V1;U1);

(iv) H = M−1
0 L0 is nilpotent of degree at most p;

(v) there exists a strongly continuous semigroup {U(t) ∈ L (U) : t ≥ 0} resolv-
ing (2.3) such that ‖U(t)‖L (U) ≤ Keat for all t ≥ 0;

(vi) S = L−1
1 M1 is a generator of a C0-continuous semigroup {U1(t) ≡ U(t)|U1 ∈

L (U1) : t ≥ 0} of operators.
Remark 2.2. In the case of kerL �= {0} in Theorem 2.2, the unity U(0) of the

resolving semigroup is a nontrivial projection such that kerL ⊂ kerU(0) = U0 and
imU(0) = U1.
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3. A Nonlocal Problem for
a Degenerate Evolution Equation

Consider the nonlocal problem
∞∫

0

u(t)η(t) dt = u0, (3.1)

Lu̇(t) = Mu(t), t ≥ 0, (3.2)

for a homogeneous degenerate evolution equation assuming that M is strongly (L, p)-
radial. By Theorem 2.2, problem (3.1), (3.2) is reduced to the two problems

∞∫

0

x(t)η(t) dt = U(0)u0, (3.3)

ẋ(t) = Sx(t), t ≥ 0, (3.4)

and ∞∫

0

y(t)η(t) dt = (I − U(0))u0, (3.5)

Hẏ(t) = y(t), t ≥ 0, (3.6)

where x(t) ≡ U(0)u(t), y(t) = (I − U(0))u(t) for t ≥ 0, S = L−1
1 M1 ∈ C l(U1), and

H = M−1
0 L0 ∈ L (U0).

Since H is nilpotent (item (iv) of Theorem 2.2), (3.6) has only trivial solution
y(t) ≡ 0 (see, for instance, [1]). Hence, (3.5), (3.6) is solvable if and only if (I −
U(0))u0 = 0. Therefore, for u0 ∈ U1, problem (3.1), (3.2) is equivalent to (3.3), (3.4).

A function u(t) = U(t)v for v ∈ U is a generalized solution to (3.2) A function
u ∈ C1([0,∞);U) is a classical solution to (3.2) if (3.2) is fulfilled in the classical
sense. Every classical solution u to (3.2) is a classical solution to (3.4) in view of the
above arguments and so u(t) = U1(t)v1 = U(t)v1 = U(t)(v0 + v1) = U(t)v, where
v0 ∈ U0, v1 ∈ U1, v = v0 + v1; as a consequence, it is also a generalized solution
to (3.2). We involve the fact that U(t)v0 = U(t)U(0)v0 = 0 for every v0 ∈ U0 by
Remark 2.2.

The same reasoning and the equality D(S) = D(M1) valid due to the continuous
invertibility of L1 imply that a generalized solution u(t) = U(t)v to the equation
(3.2) is classical whenever v ∈ U0+̇D(M1).

A generalized or classical solution to (3.2) satisfying (3.1) is a generalized or
classical solution to (3.1), (3.2).

Theorem 3.1. Assume that M is strongly (L, p)-radial with constants K > 0
and a < 0, while η : (0,∞) → R is nonnegative and nonincreasing and does not
vanish identically. Then

(i) there exists a unique generalized solution u ∈ C([0,+∞);U) to (3.1), (3.2)
for u0 ∈ D(M1); in this event ‖u(t)‖U ≤ Ce−|a|t‖Mu0‖V for all t ≥ 0, where the
constant C is independent of u0 and t;

(ii) if u0 ∈ U \D(M1) then a generalized solution to (3.1), (3.2) does not exist;
(iii) a generalized solution to problem (3.1), (3.2) is classical if and only if

u0 ∈ D
((
L−1

1 M1
)2).
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Proof. As was noted, the condition u0 ∈ U1 is necessary for generalized
solvability of (3.1), (3.2), in this case (3.1), (3.2) and (3.3), (3.4) are equivalent.
By Theorem 2.2, the operator S = L−1

1 M1 ∈ C l(U1) is a generator of the semigroup
{U1(t) ∈ L (U1) : t ≥ 0} satisfying

‖U1(t)‖L (U1) ≤ ‖U(t)‖L (U) ≤ Keat = Ke−|a|t,

since a is negative by the conditions of the theorem. Applying Theorem 2.1 to (3.3),
(3.4), we obtain the claim taking it into account that

‖u(t)‖U = ‖u(t)‖U1 ≤ C1e
−|a|t‖Su0‖U1

≤ C1
∥∥L−1

1

∥∥
L (V1;U1)e

−|a|t‖M1u0‖V1 = Ce−|a|t‖Mu0‖V. �

4. A Time Nonlocal Boundary Value Problem for
a Certain Class of Partial Differential Equations

Let the polynomials Pn(λ) =
∑n

i=0 ciλ
i and Qm(λ) =

∑m
j=0 djλ

j , with ci, dj ∈
C, i = 0, 1, . . . , n, j = 0, 1, . . . ,m, be such that cn, dm �= 0, m ≥ n. Next, � ⊂ Rs is
a bounded domain with boundary ∂� of class C∞, η : [0,∞)→ R, 	 is the Laplace
operator, and θ ∈ R. Consider the boundary value problem

∞∫

0

z(x, t)η(t) dt = z0(x), x ∈ �, (4.1)

Pn(	)
∂z

∂t
(x, t) = Qm(	)z(x, t), (x, t) ∈ �× [0,∞), (4.2)

θ
∂

∂n
	kz(x, t) + (1− θ)	kz(x, t) = 0,

k = 0, . . . ,m− 1, (x, t) ∈ ∂�× [0,∞).
(4.3)

Put
z(·, t) = u(t), t ≥ 0,

U = H2n
θ (�)

=
{
v ∈ H2n(�) : θ

∂

∂n
	kv(x) + (1− θ)	kv(x) = 0, k = 0, . . . , n− 1, x ∈ ∂�

}
,

V = L2(�), L = Pn(	), M = Qm(	),

D(M) = H2m
θ (�)

=
{
v ∈ H2m(�) : θ

∂

∂n
	kv(x) + (1 − θ)	kv(x) = 0, k = 0, . . . ,m− 1, x ∈ ∂�

}
.

Thus, we reduced (4.1)–(4.3) to (3.1), (3.2).
Denote by λk, k ∈ N the eigenvalues of the operator A1 enumerated with

multiplicity counted which acts in L2(�) and A1u = 	u on its domain

H2
θ (�) =

{
v ∈ H2(�) : θ

∂

∂n
	v(x) + (1− θ)	v(x) = 0, x ∈ ∂�

}
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Moreover, we assume that {ϕk : k ∈ N} is the corresponding system of eigenfunctions
of this operator orthonormal in L2(�) with the inner product 〈·, ·〉L2(�). It is possible
that Pn(λk) = 0 for some k ∈ N, i.e., (4.2) is not solvable with respect to the time
derivative zt.

All functions of the form

z(x, t) =
∑

Pn(λk) �=0

e
t
Qm(λk)
Pn(λk) 〈v, ϕk〉L2(�)ϕk(x), v ∈ H2n

θ (�)

are generalized solutions to (4.1)–(4.3).

Theorem 4.1. Assume that m > n, (−1)m−n Re(dm/cn) ≤ 0, the spectrum
σ(A1) does not contain common roots of the polynomials Pn and Qm,

a = sup
Pn(λk) �=0

Re
Qm(λk)
Pn(λk)

< 0,

and η : (0,∞)→ R is nonnegative and nonincreasing and does not vanish identically.
Then, for every z0 ∈ H2m

θ (�) ∩ span{ϕk : Pn(λk) �= 0}, there exists a unique
generalized solution to (4.1)–(4.3) and

∃C > 0 ∀t ≥ 0 ‖z(·, t)‖H2n(�) ≤ Ce−|a|t‖z0‖H2m(�).

If
z0 /∈ H2m

θ (�) ∩ span{ϕk : Pn(λk) �= 0}
then a generalized solution does not exist. If

z0 ∈ H4m−2n
θ ∩ span{ϕk : Pn(λk) �= 0}

then there exists a classical solution to (4.1)–(4.3).
Proof. If m > n, (−1)m−n Re(dm/cn) ≤ 0, and the spectrum of σ(A1) does

not contain common roots of the polynomials Pn and Qm then M is strongly (L, 0)-
radial by Theorem 5.1 in [17]. In this case

σL(M) =
{
μk =

Qm(λk)
Pn(λk)

: Pn(λk) �= 0
}

and, hence, we can take

a = sup
Pn(λk) �=0

Re
Qm(λk)
Pn(λk)

in the definition of strong (L, 0)-radiality.
It is proven in [17] that in our situation we have

P =
∑

Pn(λk) �=0

〈·, ϕk〉L2(�)ϕk, Q =
∑

Pn(λk) �=0

〈·, ϕk〉L2(�)ϕk

(convergence of the series is understood in the sense of the norm of the space U
for the operator P and the space V for the operator Q). Moreover, U1 and V1 are
the closures of the same set span{ϕk : Pn(λk) �= 0} in the norm of the spaces U
or V, respectively. Finally, we refer to Theorem 3.1 and indicate that the norms
‖Mz0‖L2(�) and ‖z0‖H2m(�) are equivalent here. �

Example 4.1. Let

P1(λ) = 1 + λ, Q2(λ) = λ + 2λ2, � = (0, π), θ = 0.
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Then

λk = −k2, ϕk(x) = sinkx, k ∈ N, sup
k=2,3,...

2k4 − k2

1− k2 = −9
1
3
< 0,

and, hence, the problem

∞∫

0

z(x, t)η(t) dt = z0(x), x ∈ (0, π),

z(0, t) =
∂2z

∂x2 (0, t) = z(π, t) =
∂2z

∂x2 (π, t) = 0, t ≥ 0,
(

1 +
∂2

∂x2

)
∂z

∂t
(x, t) =

(
∂2

∂x2 + 2
∂4

∂x4

)
z(x, t), (x, t) ∈ (0, π)× [0,∞),

meets all requirements of Theorem 4.1.

Remark 4.1. Theorem 4.1 remains valid for m ≤ n. In this case the condition
(−1)m−n Re(dm/cn) ≤ 0 can be omitted, M is continuous on H2n

θ (�), and the values
of k in (4.3) do not exceed n− 1.

Remark 4.2. The following equations are particular cases of (4.2) [3]: the
equation of transient processes in semiconductors

(λ −	)
∂z

∂t
(x, t) = αz(x, t),

the filtration equation in a fractured porous medium [18]

(λ−	)
∂z

∂t
(x, t) = α	z(x, t),

the equation of motion of underground water with free boundary [19]

(λ−	)
∂z

∂t
(x, t) = α	z(x, t)− β	2z(x, t).

Remark 4.3. In the arguments of this section we can replace the Laplace
operator A1 in L2(�) with a selfadjoint elliptic operator generally of higher order,
i.e. with the operator

(A1u)(x) =
∑
|α|≤2r

aα(x)Dαu(x), aα ∈ C∞(�).

with the domain D(A1) = H2r
{Bl}(�) (see the notations in [20]), where

(Blu)(x) =
∑
|α|≤rl

blα(x)Dαu(x), blα ∈ C∞(∂�), l = 1, 2, . . . , r,

under the conditions of regular ellipticity of the collection A, B1, B2, . . . , Br [20] and
the lower boundedness of the spectrum σ(A1).
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2. Demidenko G. V. and Uspenskĭı S. V. Equations and Systems That Are Not Solved with
Respect to the Higher Derivative. New York and Basel: Marcel Dekker, 2003.

3. Sveshnikov A. G., Al ′shin A. B., Korpusov M. O., and Pletner Yu. D. Linear and Nonlinear
Equations of Sobolev Type [in Russian]. Moscow: Fizmatlit, 2007.

4. Fedorov V. E. A generalization of the Hille–Yosida theorem to the case of degenerate semi-
groups in locally convex spaces // Sib. Math. J.. 2005. V. 46, N 2. P. 333–350.

5. Tikhonov I. V. Solvability of a problem with a nonlocal integral condition for a differential
equation in a Banach space // Differential Equations. 1998. V. 34, N 6. P. 841–844.

6. Hille E. and Phillips R. S. Functional Analysis and Semigroups. Providence: Amer. Math.
Soc., 1957.

7. Fedorov V. E., Ivanova N. D., and Fedorova Yu. Yu. On a time nonlocal problem for inhomo-
geneous evolution equations // Sib. Math. J.. 2014. V. 55, N 4. P. 721–733.

8. Tikhonov I. V. Uniqueness theorems for linear non-local problems for abstract differential
equations // Izv. Math.. 2003. V. 67, N 2. P. 333–363.

9. Tikhonov I. V. A nonlocal problem with a ‘periodic’ integral condition for a differential
equation in Banach space // Integral Transformations and Special Functions [in Russian].
2004. V. 4, N 1. P. 49–69.

10. Kerefov A. A. Nonlocal boundary value problems for parabolic equations // Differentsial′nye
Uravneniya. 1979. V. 15, N 1. P. 74–78.

11. Shelukhin V. V. A variational principle for linear evolution problems nonlocal in time // Sib.
Math. J.. 1993. V. 34, N 2. P. 369–384.

12. Kozhanov A. I. A time-nonlocal boundary problem for linear parabolic equations // Sib. Zh.
Ind. Mat.. 2004. V. 7, N 1. P. 51–60.

13. Byszewski L. and Lakshmikantham V. Theorems about the existence and uniqueness of solu-
tions of a nonlocal abstract Cauchy problem in a Banach space // Appl. Anal.. 1991. V. 40,
N 1. P. 11–19.

14. Agarwal R. P., Bochner M., and Shakhmurov V. B. Linear and nonlinear nonlocal bound-
ary value problems for differential-operator equations // Appl. Anal.. 2006. V. 85, N 6–7.
P. 701–719.

15. Uvarova M. V. On some nonlocal boundary value problems for evolution equations // Mat.
Tr.. 2010. V. 13, N 2. P. 179–207.

16. Fedorov V. E. The pseudoresolvent property and existence conditions of degenerate semi-
groups of operators // Vestnik Chelyabinsk. Univ. Mat. Mekh. Inform.. 2009. V. 20, N 11.
P. 12–19.

17. Fedorov V. E. and Ruzakova O. A. On solvability of perturbed Sobolev type equations // St.
Petersburg Math. J.. 2009. V. 20, N 4. P. 645–664.

18. Barenblatt G. I., Zheltov Yu. P., and Kochina I. N. Basic concepts in the theory of seepage
of homogeneous liquids in the theory of seepage of homogeneous liquids in fissured rocks
[strata] // J. Appl. Math. Mech.. 1961. V. 24, N 5. P. 1286–1303.

19. Dzektser E. S. A generalization of the equation of motion of underground water with a free
surface // Dokl. Akad. Nauk SSSR. 1972. V. 202, N 5. P. 1031–1033.

20. Triebel H. Interpolation Theory; Function Spaces; Differential Operators. Amsterdam: North-
Holland, 1978.

November 4, 2014

V. E. Fedorov
Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk, Russia
kar@csu.ru

N. D. Ivanova
South Ural State University, Chelyabinsk, Russia
natalia.d.ivanova@gmail.com



Yakutian Mathematical Journal
January—March, 2015. Vol. 22, No. 1

UDC 517.956

INVERSE PROBLEMS OF RECOVERING

A SOURCE FUNCTION IN HEAT

AND MASS TRANSFER SYSTEMS
E. M. Korotkova and S. G. Pyatkov

Abstract. We consider the well-posedness in the Sobolev spaces of the problem of
recovering a source function in heat and mass transfer systems. The overdetermination
conditions are the values of concentration of admixtures on given surfaces (or separate
points). A local existence theorem is proven and some stability estimates for solutions
are established.

Keywords: parabolic system, inverse problem, heat and mass transfer, Navier–Stokes
system, boundary value problem

Intriduction

We examine the system

ut − ν�u+ (u,∇)u+∇p = f + βcC + βθ�, div u = 0, (1)

�t − λθ�� + (u,∇)� = fθ, (2)

Ct + (u,∇)C −
n∑

i,j=1

aijCxixj +
n∑

i=1

aiCxi + a0C = fc, (3)

where ν = const > 0, (x, t) ∈ Q = G × (0, T ) (G ⊂ Rn, T < ∞), u, �, p,
and C are the velocity vector, the temperature of a fluid, the pressure, the vector of
concentration of admixtures (organic or inorganic) in a fluid, and fc is the volume
density of admixture sources, respectively. Here aij , ai, and a0 are matrices of
size h × h, with h the number of admixtures, βC is a matrix of size n × h, β� is
a vector of length n, and λ� > 0 is a scalar function. System (1)–(3) describes the
admixture propagation in a fluid. In particular, the classical Oberbeck–Boussinesq
model (see [1–4]) can be written in the form of (1)–(3). The functions fθ and f are
the densities of the heat sources and exterior forces, respectively, and λθ is the heat
conductivity coefficient. In the Oberbeck–Boussinesq model βc and βθ are the mass
and heat transfer coefficients multiplied by the gravity acceleration. Here we assume
that βc is an arbitrary matrix-function of size n × h and βθ is a vector-function of
length n.

The system (1)–(3) is complemented with the initial and boundary conditions

u|t=0 = u0, u|S = g1(t, x), � = ∂G, S = � × (0, T ), (4)
�|t=0 = �0, �|S = g2(t, x), C|t=0 = C0, C|S = g3(t, x). (5)

The authors were supported by the Russian Foundation for Basic Research and the Govern-
ment of the Khanty-Mansiysk Autonomous Okrug–Yugra (Grant 15–41–00063, r ural a).

c© 2015 Korotkova E. M. and Pyatkov S. G.
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We consider the inverse problem on determining a solution to (1)–(3) and the
right-hand side fc in (3) with the use of additional measurements on sections of G
or at distinguished points.

Let x′′ = (xs+1, xs+2, . . . , xn) (s = 0, 1, . . . , n − 1). If s ≥ 1 then we denote
x′ = (x1, x2, . . . , xs). We assume that the right-hand side of (3) is known in some
domain Q′ = G1 × (0, T ) and unknown in the domain Q′′ = G0 × (0, T ), where G1
and G0 are either nonempty disjoint domains such that G0 ∪ G1 = G or G1 = ∅
and so Q′′ = Q. The right-hand side of (3) is of the form

fc = f0(x, t) +
m∑

i=1

fi(x, t)qi(x′, t), (x, t) ∈ Q, (6)

where fi (i = 0, 1, . . . ,m) are given functions vanishing on Q′. The scalar func-
tions qi(x′, t) in this representation are unknown and can be found on using the
overdetermination conditions:

C|Si = ψi(t, x′) (Si = (0, T )× �i, i = 1, 2, . . . , r, m = rh), (7)

where {�i} is a collection of smooth s-dimensional surfaces lying in G. For s = 0
these surfaces �i are just points in G0 = G.

The inverse problems of this type appear in chemistry, biology, and other fields
while describing heat and mass transfer processes, diffusion, and filtration. Numeri-
cal methods for solving boundary value problems for (1)–(3) are collected in [4]. We
refer to [5], where many inverse and extremal problems for (1)–(3) in the stationary
case are exhibited. Similar problems in a simplified setting are considered in [6–10].
Note that in the real models of use are the regional decision support systems, several
equations are used for different admixtures in a fluid even in the one-dimensional
case. The parameters taken into account are phytoplankton, apiphyton, and various
chemical compounds. Many coefficient inverse problems with the overdetermina-
tion conditions of the form (6) and s = n− 1 for second order parabolic equations
are considered in the articles by Yu. Ya. Belov, Yu. E. Anikonov, and other authors
(see [11]). In the case of n = 1 (s = 0, the unknowns qi depend only on t and the sur-
faces Si are points) such linear and nonlinear problems are treated in [12] for second
order parabolic equations. Among the recent articles we point out [13–15], where
some analogs of problems (1)–(6) are examined for parabolic systems of equations.
The well-posedness of inverse problems for parabolic equations with the overdeter-
mination conditions of the form (7) (including numerical methods) are presented in
[16–21]. We note the monographs [22–25] which are devoted to inverse problems for
parabolic and elliptic equations and systems of equations, where statements of the
problems and some results can be found.

1. Notations and Auxiliary Statements

Let E be a Banach space. Denote by Lp(G;E) (with G a domain in Rn) the
space of strongly measurable functions on G with values in E which is endowed with
the norm ‖‖u(x)‖E‖Lp(G) (see, for instance, [26, Section 1.18.4]). We also use the
spaces Ck(G;E) of functions having the derivatives up to the order k continuous
and bounded on G and admitting a continuous extensions to G. The definitions of
the Sobolev spaces W k

p (G;E) and W k
p (Q;E) are conventional (see [26]). If E = C

or E = Cn then we use the notation W k
p (G) or Ck(G). The membership u ∈ W k

p (G)
(or u ∈ Ck(G)) for a given vector-function u = (u1, u2, . . . , uk) means that every
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component ui belongs to W k
p (G) (or Ck(G)). The norm on the corresponding space

is the sum of the norms of coordinates, unless otherwise stated. A similar conven-
tion is used for matrices; i.e., the membership a ∈ W k

p (G) (a = {aij}kj,i=1) means
that aij(x) ∈ W k

p (G) for all i and j. Given an interval J = (0, T ), put W k,r
p (Q) =

W r
p (J ;Lp(G)) ∩ Lp

(
J ;W k

p (G)
)

and W k,r
p (S) = W r

p (J ;Lp(� )) ∩ Lp

(
J ;W k

p (� )
)
. De-

note by Lp,σ(G) the closure of solenoidal C∞0 -vector-functions with respect to the
norm of Lp(G) and put W k

p,σ(G) = W k
p (G)∩Lp,σ(G) and W k,k/2

p,σ (Q) = W k,k/2
p (Q)∩

Lp(0, T ;Lp,σ(G)) (k ≥ 0). The symbol
◦
W k

q (G) stands for the closure of C∞0 (G)
with respect to the norm of W k

q (G) and Ẇ 1
q (G) = {p ∈ Lq,loc(G) : ∇p ∈ Lq(G)}.

We identify the functions differing by a constant and endow the last space with the
norm ‖p‖Ẇ 1

q (G) = ‖∇p‖Lq(G). It is a Banach space. The notation ∇x′′f(x, t) desig-
nates the vector-function (∂xs+1f, ∂xs+2f, . . . , ∂xnf), where ∂xk denotes the partial
derivative ∂

∂xk
.

Describe the class of domains G. We say that the boundary � = ∂G belongs
to Cβ (β ≥ 1) if there exist numbers d, r > 0 such that, for every x0 ∈ � , there exists
a neighborhood U about x0 with the following properties: in the local coordinate
system y, obtained by rotation and translation of the original system so that the
axis yn is directed along the inner normal to � at x0, we have

U ∩G = {y ∈ Rn : y′ ∈ Br, ω(y′) < yn ≤ ω(y′) + d}, y′ = (y1, . . . , yn−1),

U ∩ (Rn \G) = {y ∈ Rn : ω(y′)− d ≤ yn < ω(y′)},
� ∩ U = {y ∈ Rn : y′ ∈ Br, yn = ω(y′)},

where yn = ω(y′) is the equation of � , ω ∈ Cβ(Br) (Br = {y′ : |y′| < r}) and the
norms of all functions ω in Cβ(Br) are bounded by a constant independent of x0.
Without loss of generality we may assume that Mr < d/4, with M the Lipschitz
constant of ω in Br. Write down the conditions on G0 and �i.

(A) (a) The case of s > 0. There exists a domain � ⊂ Rs with boundary of
class C2 such that G0 ⊂ �× Rn−s,

�i =
{
x ∈ Rn : x′′ = ϕi(x′) =

(
ϕi
s+1(x

′), ϕi
s+2(x

′), . . . , ϕi
n(x′)

)
, x′ ∈ �},

ϕi(x′) ∈ C2(�), and there exists a constant δ > 0 such that

Uδi = {(x′, ϕi(x′) + η) : x′ ∈ �, η ∈ Rn−s, |η| < δ} ⊂ G0, ρ(Uδi, G \G0) > 0,

for i = 1, 2, . . . , r and Uδi ∩ Uδj = ∅ for i �= j, i, j = 1, 2, . . . , r.
(b) The case of s = 0. In this case the sets {�i}ri=1 are interior points {xi}ri=1

of G. Put Uδi = Bδ(xi) and choose a number δ > 0 such that Uδi ⊂ G and
Uδi ∩ Uδj = ∅ for i �= j, i, j = 1, 2, . . . , r.

Condition (A) is used in all articles on the problems in question. As is easily
seen, it ensures uniqueness of solutions. Condition (A) is fulfilled if G0 = G =
�×Rn−s, with � a bounded or unbounded domain of class C2. In what follows we
use the notations Qτ = (0, τ) × G, Qτ

0 = (0, τ) × �, QT = (0, T )× �, Gδ = ∪iUδi,
Qδi

τ = (0, τ)× Uδi, and Qδ
τ = (0, τ)×Gδ.

Lemma 1. Let u ∈ W 2,1
q (Qτ ) (q ∈ (1,∞)) and let u(x, 0) = 0. Then there

exists a constant c > 0 independent of u such that

‖u‖Lq(Qτ ) ≤ cτ‖u‖W 2,1
q (Qτ ), ‖∇u‖Lq(Qτ ) ≤ cτ1/2‖u‖W 2,1

q (Qτ ).
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The claim results from the Newton–Leibnitz formula and the interpolation in-
equality ‖∇u‖Lq(G) ≤ c‖u‖1/2W 2

q (G)‖u‖1/2Lq(G).
The following lemma ensues from Lemma 1 and Lemma 3.3 in Chapter 2 of [27],

where δ =
√
τ .

Lemma 2. Let u ∈ W 2,1
q (Qτ ). Then u ∈ Lp(Qτ ) for 2 − (1

q − 1
p )(n + 2) ≥ 0

and p ≥ q and ∇u ∈ Lp(Qτ ) for 1 − (1
q − 1

p )(n + 2) ≥ 0 and p ≥ q. Moreover,
u ∈ Cλ,λ/2(Qτ ) for q > (n + 2)/2 and ∇u ∈ Cλ,λ/2(Qτ ) for q > n + 2, where
λ ∈ [0, 2− (n+ 2)/q) in the former case and λ ∈ [0, 1− (n+ 2)/q) in the latter. The
following estimates are valid for the corresponding values of parameters:

‖u‖Lp(Qτ ) ≤ cτβ1‖u‖W 2,1
q (Qτ ), ‖∇u‖Lp(Qτ ) ≤ cτβ1−1/2‖u‖W 2,1

q (Qτ ),

‖u‖Cλ,λ/2(Qτ ) ≤ cτβ2‖u‖W 2,1
q (Qτ ), ‖∇u‖Cλ,λ/2(Qτ ) ≤ cτβ2−1/2‖u‖W 2,1

q (Qτ ),

where β1 = 1 − (n+2)
2 (1

q − 1
p ), β2 = 1 − (n+2)

2q − λ
2 , and c is a constant independent

of τ ≤ T and u ∈ W 2,1
q (Qτ ).

Lemma 3. Let b ∈ Lp(Q). Then the inequalities are valid for τ ∈ (0, T ]: if
q > (n+ 2)/2 and p ≥ q then

‖bu‖Lq(Qτ ) ≤ cτ1−n+2
2p ‖u‖W 2,1

q (Qτ );

if q > n+ 2 and p ≥ q then

‖b∇u‖Lq(Qτ ) ≤ cτ1/2− (n+2)
2p ‖u‖W 2,1

q (Qτ ).

The constant c > 0 is independent of τ ≤ T and u ∈ W 2,1
q (Qτ ).

The proof of this lemma is contained in that of Theorem 9.1 of Chapter 4 in [27].

Theorem 1. For every f ∈ Lr(Q), r ∈ (1,∞), there exist a unique vector-

function u ∈ W 2,1
r,σ (Q) ∩ Lr

(
0, T ;

◦
W 1

r(G)
)

and a function p ∈ Lr(0, τ ; Ẇ 1
r (G)) such

that
ut − ν�u+∇p = f, div u = 0, u|S = 0, u|t=0 = 0

and
‖u‖W 2,1

r (Q) + ‖∇p‖Lr(Q) ≤ c‖f‖Lr(Q),

with c a constant independent of f .

Corollary 1. For every f ∈ Lr(Qτ ), τ ∈ (0, T ], there exist a unique vector-

function u ∈ W 2,1
r,σ (Qτ ) ∩ Lr

(
0, τ ;

◦
W 1

r(G)
)

and a function p ∈ Lr

(
0, τ ; Ẇ 1

r (G)
)

such
that

ut − ν�u+∇p = f, div u = 0, u|S = 0, u|t=0 = 0 (8)

and
‖u‖W 2,1

r (Qτ ) + ‖∇p‖Lr(Qτ ) ≤ c‖f‖Lr(Qτ ),

with c a constant independent of f and τ .
The theorem follows from Theorem 1.1 in [28]. We can refer also to Theorem 1.2

in [29] and the properties of the Helmholtz projection.
The next result will be a theorem on solvability of parabolic problems. We

examine the problem

ut − Lu = f, u|S = 0, u(x, 0) = 0, (9)
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where

Lu =
n∑

i,j=1

aij(x, t)uxixj −
n∑

i=1

ai(x, t)uxi − a0(x, t)u,

aij , ai, and a0 are matrices of size h × h, and there exists a constant δ1 > 0 such
that

n∑

i,j=1

(aij(x, t)ξi, ξj) ≥ δ1
n∑

i=1

‖ξi‖2 ∀ξj ∈ Rh, (x, t) ∈ Q, j = 1, 2, . . . , n. (10)

We suppose that
aij ∈ C(Q), ai ∈ Lq(Q), a0 ∈ Lq(Q), i, j = 1 . . . n. (11)

Theorem 2. Assume that ∂G ∈ C2, q > n + 2, γ ∈ (0, T ], and conditions
(10) and (11) hold. Then, for every f ∈ Lq(Qγ), there exists a unique solution
u ∈ W 2,1

q (Qγ) to (9) satisfying

‖u‖W 2,1
q (Qγ ) ≤ c‖f‖Lq(Qγ ),

with c a constant independent of γ ∈ (0, T ).
For a fixed parameter γ = T , the theorem results from Theorem 10.4 of Chap-

ter 7 in [27] (see also [30]). The independence on γ is obvious.

Theorem 3. Assume that ∂G ∈ C2 and conditions (A), (10), and (11) are
fulfilled. We require also that
∇x′′f ∈ Lq

(
Qδ

γ

)
, ∇x′′aij ∈ L∞

(
Qδ

T

)
, ∇x′′ai,∈ Lq

(
Qδ

T

)
, ∇x′′a0 ∈ Lq

(
Qδ

T

)

for some q > n+ 2 and all i, j = 1, 2, . . . , n.
Then a solution u ∈W 2,1

q (Qγ) to problem (9) possesses the properties: ∇x′′u ∈
W 2,1

q

(
Qδ1

γ

)
for every δ1 < δ and

‖∇x′′u‖W 2,1
q (Qδ1

γ ) ≤ c(‖f‖Lq(Qγ) + ‖∇x′′f‖Lq(Qδ
γ)).

The constant c here depends on δ1 < δ and is independent of γ ≤ T .

2. The Main Results

First, we impose some conditions on the data, assuming that condition (A) is
fulfilled. In the sequel, q > n+ 2.

Agreement and smoothness conditions can be written as follows: There
exist vector-functions �1, �3, and �2 such that

�i(t, x) ∈ W 2,1
q (Q) : �1|t=0 = u0, �2|t=0 = �0, �3|t=0 = C0, �i|S = gi, (12)

div�1 = 0, �3|Sj = ψj , f0, fθ, f ∈ Lq(Q), fj ∈ L∞(Q), (13)

∇x′′�3 ∈W 2,1
q

(
Qδ

T

)
, ∇x′′f0 ∈ Lq

(
Qδ

T

)
, ∇x′′fj ∈ L∞

(
Qδ

T

)
, (14)

where j = 1, 2, . . . ,m, i = 1, 2, 3, and δ is the constant from (A).
Define the matrix B as follows: the rows with the numbers from (k − 1)h + 1

to kh (k = 1, 2, . . . , r) are occupied by the columns

[f1(x′, ϕk(x′), t), f2(x′, ϕk(x′), t), . . . , fm(x′, ϕk(x′), t)].
We assume that there exists a constant δ0 > 0 such that

| detB| ≥ δ0 > 0, a.a. in QT , (15)
and the conditions hold:

(B) λθ(x, t) ≥ δ1 > 0 ∀(x, t) ∈ Q, λθ, aij ∈ C(Q), and ∇x′′aij ∈ L∞(Qδ
T ) for

all i, j = 1, 2, . . . , n; βc, ai, a0, βθ ∈ Lq(Q), ∇x′′ai, ∇x′′a0 ∈ Lq(Qδ
T ), i = 1, 2, . . . , n.
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Theorem 4. Assume that � ∈ C2, q > n + 2 and conditions (A), (B), (10),
and (12)–(15) hold. Fix R0 > 0. Then there exists a number τ0 = τ0(R0) ∈ (0, T ]
such that for all data (�1, �2, �3, f, fθ, f0) satisfying the condition

3∑

j=1

(‖�j‖W 2,1
q (Q) + ‖∇x′′�3‖W 2,1

q (Qδ
T ) + ‖f‖Lq(Q)

+‖fθ‖Lq(Q) + ‖f0‖Lq(Q) + ‖∇x′′f0‖Lq(Qδ
T )) ≤ R0 (16)

there exists a unique solution (u, p, �,C, q1, . . . , qm) to (1)–(7) of the class

u ∈W 2,1
q (Qτ0), p ∈ Lq(0, τ0; Ẇ 1

q (G)), qj ∈ Lq(Qτ0
0 ) j = 1, 2, . . . ,m,

�,C ∈ W 2,1
q (Qτ0), ∇x′′C ∈W 2,1

q

(
Qδ2

τ0

) ∀δ2 < δ.

For a given δ1 < δ, there exists a constant c = c(R0, δ1) such that every pair of
solutions ui, �i, Ci, qi, qi = (qi1, qi2, . . . , qim), i = 1, 2, from this class with the data
(�i

1, �
i
2, �

i
3, f

i, f i
θ, f

i
0), i = 1, 2, satisfies the estimate

‖u1 − u2‖W 2,1
q (Qτ0 ) + ‖�1 − �2‖W 2,1

q (Qτ0 ) + ‖C1 − C2‖W 2,1
q (Qτ0 )

+‖∇x′′(C1 − C2)‖
W 2,1

q (Qδ1
τ0 ) +

m∑

j=1

‖q1j − q2j‖Lq(Q
τ0
0 )

≤ c
( 3∑

j=1

(∥∥�1
j − �2

j

∥∥
W 2,1

q (Qτ0 ) +
∥∥∇x′′�

1
3 −∇x′′�

2
3
∥∥
W 2,1

q (Qδ
τ0

) + ‖f1 − f2‖Lq(Qτ0 )

+
∥∥f1

θ − f2
θ

∥∥
Lq(Qτ0 ) +

∥∥f1
0 − f2

0
∥∥
Lq(Qτ0 ) +

∥∥∇x′′f
1
0 −∇x′′f

2
0
∥∥
Lq(Qδ

τ0
)

)
.

3. Proof of the Main Results

Proof of Theorem 4. Make the change of variables u = v+�1, � = �1+�2,
and C = C1 + �3. We obtain

L01(v, p) = vt − ν�v +∇p = g + βcC1 + βθ�1

−(�1,∇)v − (v,∇)v − (v,∇)�1, div v = 0, (17)
L02�1 = �1t − λθ��1 = gθ − (v,∇)�1 − (�1,∇)�1 − (v,∇)�2, (18)

L03C1 = C1t −
n∑

i,j=1

aijC1xixj +
n∑

j=1

ajC1xj + a0C1 = gc

−(v,∇)C1 − (�1,∇)C1 − (v,∇)�3 +
m∑

j=1

fjqj ,

where the new function gθ and the vector-functions g and gc are of the form

g = f − �1t + ν��1 − (�1,∇)�1 + βc�3 + βθ�2, gθ = fθ − L02�2 − (�1,∇)�2,

gc = f0 − L03�3 − (�1,∇)�3.

Denote by �1j, j = 1, 2, . . . , n, the coordinates of �1. The new functions v, θ1,
and the vector-function C1 satisfy the homogeneous boundary conditions (4), (5),
and (7). Next, we determine q0i as a solution to the system

m∑

i=1

fi(x′, ϕj(x′), t)q0i + gc(x′, ϕj(x′), t) = 0, j = 1, 2, . . . , r. (20)



42 E. M. Korotkova and S. G. Pyatkov

Equality (20) can be written as

Bq0 = −�g,
where the matrix B is defined in Section 2. The coordinates of the vector �g from
h(k−1)+1 to hk coincide with those of the vector-function �gc(x′, ϕk(x′), t). In view
of (15) B is invertible.

Note that the vector-function gc belongs to Lq(Q) and ∇x′′gc ∈ Lq(Qδ
T ). In

this case the trace gc|�i ∈ Lq(QT ) is correctly defined. Find q0i from (20) and put
qi = q0i + q1i. We obtain the equation

L03C1 = C1t −
n∑

i,j=1

aijC1xixj +
n∑

j=1

ajC1xj + a0C1 = g0c − (v,∇)C1

−(�1,∇)C1 − (v,∇)�3 +
m∑

j=1

fjq1j , g0c = gc +
m∑

j=1

fjq0j . (21)

We arrive at an equivalent problem. Let γ ∈ (0, T ]. By Theorems 1 and 2, we can
rewrite (17), (18), and (21) as follows:

(v, p) = (L01)−1g + (L01)−1(βcC1 + βθ�1 − (�1,∇)v − (v,∇)v − (v,∇)�1), (22)

�1 = (L02)−1gθ − (L02)−1((v,∇)�1 + (�1,∇)�1 + (v,∇)�2), (23)

C1 = (L03)−1g0c + (L03)−1
(
−(v,∇)C1 − (�1,∇)C1 − (v,∇)�3 +

m∑

j=1

fjq1j

)
. (24)

Here the operator (L01)−1 takes g ∈ Lq(Qγ) into the pair (v, p) presenting a so-
lution to the equation L01(v, p) = g and such that div v = 0, v ∈ W 2,1

q (Qγ),
p ∈ Lq(0, γ; Ẇ 1

q (G)), and the vector-function v satisfies the homogeneous initial
and boundary conditions. The operators (L0i)−1, i = 2, 3, are defined similarly
with the use of Theorem 2. Let (L01)−1g = (v0, p0). Define the space Hγ compris-
ing the vectors (v, p, �,C), where v ∈ W 2,1

q (Qγ) is a solenoidal vector-function of
length n satisfying the homogeneous conditions (4), C,� ∈ W 2,1

q (Qγ) are a vector
of length h and a scalar function, respectively, satisfying the homogeneous condi-
tions (5), and p is a scalar function in Lq

(
0, γ; Ẇ 1

q (G)
)
. Endow this space with the

norm

‖(v, p, �,C)‖Hγ = ‖v‖W 2,1
q (Qγ) + ‖p‖Lq(0,γ;Ẇ 1

q (G)) + ‖�‖W 2,1
q (Qγ) + ‖C‖W 2,1

q (Qγ).

Let R = 3‖v0, p0, (L02)−1gθ, (L03)−1g0c‖HT . We look for a solution to system (22)–
(24) which can be rewritten as

ω = A(ω, q1), ω = (v, p, �,C), q1 = (q11, q12, . . . , q1m), (25)

where A is defined by the right-hand side of (22)–(24). Assume that ω ∈ BR,γ =
{ω ∈ Hγ : ‖ω‖Hγ ≤ R}. In view of (13) and Theorem 2, we infer

∥∥∥∥(L03)−1
( m∑

j=1

fjq1j

)∥∥∥∥
W 2,1

q (Qγ )
≤ c
∥∥∥∥

m∑

j=1

fjq1j

∥∥∥∥
Lq(Qγ)

≤ c1‖q1‖Lq(Qγ
0 ). (26)
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Assume that c1‖q1‖Lq(Qγ
0 ) ≤ R/3; i.e., the vector-function q1 belongs to the closed ball

Bγ
R/(3c1) of radius R/(3c1) centered at the origin of Lq(Qγ

0 ). Estimate ‖A(ω, q1)‖Hγ .
Theorems 1 and 2 yield

‖A(ω, q1)‖Hγ ≤ c
(
‖βcC1 + βθ�1 − (�1,∇)v − (v,∇)v − (v,∇)�1‖Lq(Qγ )

+‖(v,∇)�1 + (�1,∇)�1 + (v,∇)�2)‖Lq(Qγ)

+
∥∥∥∥(v,∇)C1 + (�1,∇)C1 + (v,∇)�3 −

m∑

j=1

fjq1j

∥∥∥∥
Lq(Qγ)

)
+R/3.

Estimate each of the summands as follows:

‖βcC1‖Lq(Qγ) ≤ ‖βc‖Lq(QT )‖C1‖L∞(Qγ ) ≤ c1γβ1‖C1‖W 2,1
q (Qγ).

By analogy,
‖βθ�1‖Lq(Qγ) ≤ c2γβ2‖�1‖W 2,1

q (Qγ).

The next summand is estimated as

‖(�1,∇)v‖Lq(Qγ ) ≤ ‖�1‖Lq(QT )‖∇v‖L∞(Qγ) ≤ c3γβ3‖v‖W 2,1
q (Qγ).

Similarly,

‖(�1,∇)�1‖Lq(Qγ) ≤ c4γβ4‖�1‖W 2,1
q (Qγ), ‖(�1,∇)C1‖Lq(Qγ ) ≤ c5γβ5‖C1‖W 2,1

q (Qγ).

We have

‖(v,∇)�1‖Lq(Qγ) ≤ ‖∇�1‖Lq(QT )‖v‖C(Qγ) ≤ c6γβ6‖v‖W 2,1
q (Qγ).

Moreover,

‖(v,∇)�2‖Lq(Qγ) ≤ c7γβ7‖v‖W 2,1
q (Qγ ), ‖(v,∇)�3‖Lq(Qγ) ≤ c8γβ8‖v‖W 2,1

q (Qγ ).

At last, we arrive at the inequality

‖(v,∇)v‖Lq(Qγ) ≤ ‖∇v‖C(Qγ)‖v‖C(Qγ) ≤ c9γβ9‖v‖W 2,1
q (Qγ).

We obtain
‖(v,∇)�1‖Lq(Qγ) ≤ c10(R)γβ10‖�1‖W 2,1

q (Qγ)

and
‖(v,∇)C1‖Lq(Qγ) ≤ c11(R)γβ11‖C1‖W 2,1

q (Qγ).

Summing all summands and taking (26) into account, we infer

‖A(ω, q1)‖Hγ ≤ R

3
+ c1(R)γβ1‖v‖W 2,1

q (Qγ)

+c2(R)γβ2‖�1‖W 2,1
q (Qγ ) + c3(R)γβ3‖C1‖W 2,1

q (Qγ) + c1‖q1‖Lq(Q
γ
0 ).

Since γ ∈ (0, T ], choosing β = min(β1, β2, β3), we have

‖A(ω, q1)‖Hγ ≤ R/3 + c0(R)γβ‖ω‖Hγ + c1‖q1‖Lq(Qγ
0 ), (27)

where the constant c1 is independent of R and β. Choose γ0 ≤ T such that
c0(R)γβ ≤ R/3 ∀γ ≤ γ0. In this case (27) can be rewritten as

‖A(ω, q1)‖Hγ ≤ R ∀q1 ∈ Bγ
R/(3c1).
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The latter means that, for every q1 ∈ Bγ
R/(3c1), the operator A(ω, q1) maps the ball

BR,γ into itself. Similar arguments validate an estimate for ‖A(ω1, q1)−A(ω2, q1)‖Hγ ,
where ωi = (vi, pi, �i, Ci), i = 1, 2. We obtain

‖A(ω1, q1)−A(ω2, q1)‖Hγ ≤ c(‖βc(C1 − C2) + βθ(�1 − �2)

−(�1,∇)(v1 − v2)− (v1,∇)v1 + (v2,∇)v2 − (v1 − v2,∇)�1‖Lq(Qγ )

+‖((v1,∇)�1 − (v2,∇)�2) + (�1,∇)(�1 − �2) + (v1 − v2,∇)�2‖Lq(Qγ )

+‖(v1,∇)C1 − (v2,∇)C2 + (�1,∇)(C1 − C2) + (v1 − v2,∇)�3‖Lq(Qγ )).

Estimate each of the summands as follows:

‖βc(C1 − C2)‖Lq(Qγ) ≤ c1γβ1‖(C1 − C2)‖W 2,1
q (Qγ).

‖βθ(�1 − �2)‖Lq(Qγ) ≤ c2γβ2‖(�1 − �2)‖W 2,1
q (Qγ).

We have

‖(�1,∇)(v1−v2)‖Lq(Qγ) ≤ ‖�1‖Lq(QT )‖∇(v1−v2)‖C(Qγ) ≤ c3γβ3‖v1−v2‖W 2,1
q (Qγ).

By analogy, we infer

‖(�1,∇)(�1 − �2)‖Lq(Qγ) ≤ c4γβ4‖�1 − �2‖W 2,1
q (Qγ )

and
‖(�1,∇)(C1 − C2)‖Lq(Qγ ) ≤ c5γβ5‖C1 − C2‖W 2,1

q (Qγ).

Estimate the summand

‖(v1 − v2,∇)�1‖Lq(Qγ) ≤ ‖∇�1‖Lq(QT )‖v1 − v2‖C(Qγ) ≤ c6γβ6‖v1 − v2‖W 2,1
q (Qγ).

Similarly,
‖(v1 − v2,∇)�2‖Lq(Qγ) ≤ c7γβ7‖v1 − v2‖W 2,1

q (Qγ)

and
‖(v1 − v2,∇)�3‖Lq(Qγ) ≤ c8γβ8‖v1 − v2‖W 2,1

q (Qγ).

Accounting for the relations

(v1,∇)v1 − (v2,∇)v2 = (v1 − v2,∇)v1 + (v2,∇)(v1 − v2),

‖(v1 − v2,∇)v1‖Lq(Qγ) ≤ ‖∇v1‖C(Qγ)‖v1 − v2‖C(Qγ) ≤ c(R)γβ‖v1 − v2‖W 2,1
q (Qγ),

‖(v2,∇)(v1−v2)‖Lq(Qγ) ≤ ‖v2‖C(Qγ)‖∇(v1−v2)‖C(Qγ) ≤ c(R)γβ‖v1−v2‖W 2,1
q (Qγ),

we derive the inequality

‖(v1,∇)v1 − (v2,∇)v2‖Lq(Qγ ) ≤ c9(R)γβ9‖v1 − v2‖W 2,1
q (Qγ).

Similarly, we deduce that
∥∥(v1,∇)�1

1 − (v2,∇)�2
1
∥∥
Lq(Qγ) ≤ c10(R)γβ10

∥∥�1
1 − �2

1
∥∥
W 2,1

q (Qγ)

and
‖(v1,∇)C1 − (v2,∇)C2‖Lq(Qγ) ≤ c11(R)γβ11‖C1 − C2‖W 2,1

q (Qγ).

Choosing an appropriate number β, we justify the inequality

‖A(ω1, q1)−A(ω2, q1)‖Hγ ≤ c2(R)γβ‖ω1 − ω2‖Hγ ;
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i.e., A is contractive for c2(R)γβ = r0 < 1. In particular,

‖A(ω1, q1)−A(0, q1)‖Hγ ≤ c2(R)γβ‖ω1‖Hγ .

Fix a constant r0 < 1 and find a constant γ1 ≤ γ0 such that c2(R)γβ ≤ r0 for
γ ≤ γ1. The fixed point theorem implies that, for every q1 ∈ Bγ

R/(3c1) with γ ≤ γ1,
system (25) and system (22)–(24) respectively have a unique solution ω in BR,γ .
A solution meets the estimate

‖ω‖Hγ ≤ ‖A(0, q1)‖Hγ + ‖A(ω, q1)−A(0, q1)‖Hγ ≤ R/3 + c1‖q1‖Lq(Qγ
0 ) + r0‖ω‖Hγ .

This inequality means that

‖ω‖Hγ ≤ R

3(1− r0) +
c1

1− r0 ‖q
1‖Lq(Qγ

0 ). (28)

By Theorem 3, a solution C1 to (24) possesses the property ∇x′′C1 ∈ W 2,1
p

(
Qδ1

γ

)

and the corresponding inequality of the theorem holds. In particular, (28) yields an
estimate for C1 of the form

‖∇x′′C1‖W 2,1
q (Qδ1

γ ) ≤ c‖q1‖Lq(Qγ
0 ) + c0(R), (29)

where the constant δ1 < δ is fixed and γ ≤ γ1 .
Consider two vectors q1, q2 ∈ Bγ

R/(3c1) and find two solutions ω1 and ω2 (ωi =
(vi, pi, �i, Ci), i = 1, 2) to (22)–(24). Their difference ω1 − ω2 satisfies the equality

ω1 − ω2 = A(ω1, q1)−A(ω2, q1) +A(ω2, q1)−A(ω2, q2)

which implies that

‖ω1 − ω2‖Hγ ≤ r0‖ω1 − ω2‖Hγ + c1‖q1 − q2‖Lq(Qγ
0 )

and
‖ω1 − ω2‖Hγ ≤ c1

1− r0 ‖q
1 − q2‖Lq(Qγ

0 ). (30)

Let γ ≤ γ1. Equation (24) can be written in the form of (21). Note that the right-
hand side of (21) satisfies the conditions of Theorem 3. By Theorem 3, solutions Ci,
i = 1, 2, to (24) are such that ∇x′′Ci ∈W 2,1

p

(
Qδ1

γ

)
and the corresponding inequality

of the theorem holds. Subtracting two equations (21) relating to q1 and q2 and using
Theorem 3 and (30), we obtain an estimate for the difference C1 − C2 of the form

‖∇x′′(C1 − C2)‖
W 2,1

q (Qδ1
γ ) ≤ c‖q1 − q2‖Lq(Qγ

0 ), (31)

where δ1 < δ is fixed.
Fix a number l = 1, 2, . . . , r. Make the change of variables y′′ = x′′ − ϕl(x′),

y′ = x′ in (21) in the domain Uδ1l, with δ1 < δ. Describe the connections between
the derivatives in old and new variables. We have

∂xj = ∂yj −
n∑

r=s+1

ϕl
ryj

(y′)∂yr (j ≤ s), ∂xj = ∂yj (j > s),

∂yj = ∂xj +
n∑

r=s+1

ϕl
rxj

(x′)∂xr (j ≤ s), ∂yj = ∂xj (j > s).
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Next, we infer

vi(y, t), Ci(y, t) ∈W 2,1
q (Qγ,δ1), ∇y′′C

i ∈ W 2,1
q (Qγ,δ1), i = 1, 2,

where Qγ,δ1 = � × Gδ1 × (0, γ) and Gδ1 = (−δ1, δ1)n−s. The system (20) can be
rewritten as

C1t − LlC1 = g0c −
n∑

j=1

αl
jvj −

n∑

j=1

βl
jC1yj +

m∑

j=1

fjq1j , i = 1, 2, (32)

where αl
j is a linear combination of coordinates of the vectors ∇y�3, while βl

j is
spanned by the vectors �1 and v,

LlC1 =
n∑

i,j=1

alij(y, t)C1yiyj −
n∑

i=1

ali(y, t)C1yi − al0(y, t)C1,

and the operator Ll satisfies the conditions of Theorems 2 and 3. Denote by Ll
1 the

part of Ll not containing the derivatives with respect to ys+1, . . . , yn and by Ll
2, the

difference Ll − Ll
1.

Since all summands in (32) and their derivatives with respect to ys+1, . . . , yn
belong to Lq(Qγ,δ1) and q > n + 2, their traces exist at y′′ = 0. Take y′′ = 0.
In result, we derive the relation

S0l(q1) =
(
−Ll

2C1 +
n∑

j=1

αl
jvj +

n∑

j=s+1

βl
jC1yj

)∣∣∣∣
y′′=0

=
m∑

j=1

fj(y′, ϕl(y′), t)q1j(y′, t), i = 1, 2, (33)

which can be rewritten as

q1 = B−1S0(q1) = S(q1), (34)

where the coordinates of S0 from (l − 1)h + 1 to lh coincide with the coordinates
of S0l. Here the right-hand side can be treated as an operator S over the vector-
functions q1 ∈ Bγ

R/3c1 with γ ≤ γ1. The functions C1, v1, . . . , vn of the vector S(q1)
are expressed through q1 by means of (22)–(24).

Demonstrate that (34) has a unique solution locally in time. Let q1, q2 ∈
Bγ

R/(3c1). The properties of the matrix B yield

‖S(q1)− S(q2)‖Lq(Qγ
0 ) ≤ c

m∑

l=1

‖S0l(C1, v1)− S0l(C2, v2)‖Lq(Qγ
0 ), (35)

where Ci, vi (vi = (vi1, vi2, . . . , vin), i = 1, 2) are solutions corresponding to q1 and q2
in (22)–(24). Write down the difference S0l(C1, v1)− S0l(C2, v2) as follows:

S0l(C1, v1)−S0l(C2, v2) = −Ll
2(C

1−C2)+
n∑

j=1

αl
j

(
v1
j −v2

j

)
+

n∑

j=s+1

(
β1l
j C

1
yj
−β2l

j C
2
yj

)
.

We have

Ll
2(C

1 − C2) =
n∑

j=s+1

n∑

i=1

alij
(
C1

yiyj
− C2

yiyj

)
+
∑

i≥s+1

ali
(
C1

yi
− C2

yi

)
. (36)
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Estimate each of the summands separately. Put Bδ1 = {y′′ : |y′′| < δ1}. We have

∥∥∥∥
n∑

j=s+1

n∑

i=1

alij
(
C1

yiyj
− C2

yiyj

)∣∣
y′′=0

∥∥∥∥
Lq(Qγ

0 )

≤ c1
n∑

j=s+1

n∑

i=1

∥∥(C1
yiyj
− C2

yiyj

)∣∣
y′′=0

∥∥
Lq(Q

γ
0 )

≤ c2
n∑

j=s+1

n∑

i=1

∥∥(C1
yiyj
− C2

yiyj

)∥∥
Wα

q (Bδ1 ;Lq(Qγ
0 )),

where α ∈ (n−s
q , 1) (see the embedding theorems in [31, Chapter 6, Section 6.1]).

Applying the interpolation inequality, Lemma 1, and estimate (31), we infer

c2

n∑

j=s+1

n∑

i=1

∥∥(C1
yiyj
− C2

yiyj

)∥∥
Wα

q (Bδ1 ;Lq(Qγ
0 ))

≤ c3
n∑

j=s+1

n∑

i=1

∥∥C1
yiyj
− C2

yiyj

∥∥α
W 1

q (Bδ1 ;Lq(Qγ
0 ))

∥∥C1
yiyj
− C2

yiyj

∥∥1−α

Lq(Bδ1 ;Lq(Qγ
0 ))

≤ c4γ 1−α
2 ‖∇y′′(C1 − C2)‖W 2,1

q (Bδ1×Qγ
0 ) ≤ c5γβ5‖q1 − q2‖Lq(Qγ

0 ).

Estimating the second summand in (36), we derive that
∥∥∥∥∥

n∑

i=s+1

ali
(
C1

yi
− C2

yi

)∣∣
y′′=0

∥∥∥∥∥
Lq(Qγ

0 )

≤ c2
n∑

i=s+1

∥∥ali
(
C1

yi
− C2

yi

)∥∥
W 1

q (Bδ1 ;Lq(Q
γ
0 )).

Taking it into account that

∂

∂yk
ali
(
C1

yi
− C2

yi

)
yi

= aliyk
(C1 − C2)yi + ali(C

1 − C2)yiyk ,

we infer that

c2

n∑

i=s+1

∥∥ali
(
C1

yi
− C2

yi

)∥∥
W 1

q (Bδ1 ;Lq(Qγ
0 ))

≤ c3
(

n∑

i=s+1

∥∥ali∇y

(
C1

yi
− C2

yi

)∥∥
Lq(Bδ1 ;Qγ

0 ) +
n∑

i=s+1

∥∥aliyi
(
C1

yi
− C2

yi

)∥∥
Lq(Bδ1 ;Qγ

0 )

)
.

The inequalities of Lemma 3 imply that

c3

(
n∑

i=s+1

∥∥ali∇y

(
C1

yi
− C2

yi

)∥∥
Lq(Bδ1 ;Qγ

0 ) +
n∑

i=s+1

∥∥aliyi
(
C1

yi
− C2

yi

)∥∥
Lq(Bδ1 ;Qγ

0 )

)

≤ c4γβ5‖∇y′′(C1 − C2)‖W 2,1
q (Bδ1 ;Qγ

0 ) ≤ c5γβ6‖q1 − q2‖Lq(Qγ
0 ).

Finally, we have
∥∥Ll

2(C
1 − C2)|y′′=0

∥∥
Lq(Qγ

0 ) ≤ c1γβ7‖q1 − q2‖Lq(Qγ
0 )
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for some β7 > 0 and c1 > 0. Next,
∥∥∥∥

n∑

j=1

αl
j

(
v1
j − v2

j

)∣∣
y′′=0

∥∥∥∥
Lq(Q

γ
0 )
≤ c
∥∥∥∥

n∑

j=1

αl
j

(
v1
j − v2

j

)∥∥∥∥
W 1

q (Bδ1 ;Lq(Q
γ
0 ))

≤
(∥∥∥∥

n∑

j=1

αl
jyk

(
v1
j − v2

j

)∥∥∥∥
Lq(Bδ1×Qγ

0 )
+
∥∥∥∥

n∑

j=1

αl
j

(
v1
j − v2

j

)
yk

∥∥∥∥
Lq(Bδ1×Qγ

0 )

)

≤ c4γτ1‖v1 − v2‖W 2,1
q (Bδ1×Qγ

0 ) + c5γ
τ2‖v1 − v2‖W 2,1

q (Bδ1×Qγ
0 ).

Passing to the variables x, we validate the estimate
∥∥∥∥

n∑

j=1

αl
j

(
v1
j − v2

j

)∣∣
y′′=0

∥∥∥∥
Lq(Qγ

0 )
≤ cγβ2‖v1 − v2‖W 2,1

q (Qγ) ≤ c2γβ2‖q1 − q2‖Lq(Qγ
0 ),

with β2 = min(τ1, τ2). The last summand is estimated as
∥∥∥∥

n∑

j=s+1

(
β1l
j C

1
yj
− β2l

j C
2
yj

)∣∣
y′′=0

∥∥∥∥
Lq(Qγ

0 )
.

We have
β1l
j C

1
yj
− β2l

j C
2
yj

=
(
β1l
j − β2l

j

)
C1

yj
+ β2l

j

(
C1

yj
− C2

yj

)
.

Hence,
∥∥(β1l

j − β2l
j

)
C1

yj
+ β2l

j

(
C1

yj
− C2

yj

)∥∥
Lq(Qγ

0 )

≤ ∥∥(β1l
j − β2l

j

)
C1

yj

∥∥
Lq(Qγ

0 ) + ‖β2l
j

(
C1

yj
− C2

yj

)∥∥
Lq(Qγ

0 )

≤ c1
∥∥β1l

j − β2l
j

∥∥
C(Qγ

0 )‖C1
yj
‖Lq(Qγ

0 ) + c2
∥∥β2l

j

∥∥
C(Qγ

0 )

∥∥C1
yj
− C2

yj

∥∥
Lq(Qγ

0 )

≤ c1γτ1
∥∥β1l

j − β2l
j

∥∥
W 2,1

q (Qγ) + c2(R)γτ2‖C1 − C2‖W 2,1
q (Qγ )

≤ c1γτ1‖q1 − q2‖Lq(Qγ
0 ) + c2(R)γτ2‖q1 − q2‖Lq(Qγ

0 ) ≤ c3(R)γβ3‖q1 − q2‖Lq(Qγ
0 ),

where β3 = min(τ1, τ2). Summing all summands, we infer

‖S(q1)− S(q2)‖Lq(Qγ
0 ) ≤ c1γβ1‖q1 − q2‖Lq(Qγ

0 )

+c2γβ2‖q1 − q2‖Lq(Qγ
0 ) + c3(R)γβ3‖q1 − q2‖Lq(Qγ

0 ).

For β0 = min(β1, β2, β3), we derive finally that

‖S(q1)− S(q2)‖Lq(Qγ
0 ) ≤ c(R)γβ0‖q1 − q2‖Lq(Qγ

0 ). (37)

Obtain an additionally estimate for ‖S(0)‖Lq(Qγ
0 ). Repeating the arguments in the

proof of (37) and taking (28) and (29) into account, we arrive at the estimate

‖S(0)‖Lq(Qγ
0 ) ≤ γβ0c1(R), γ ≤ γ1. (38)

Rewrite (34) as
q1 = S(0) + (S(q1)− S(0)),

By (37)
‖S(q1)− S(0)‖Lq(Qγ

0 ) ≤ c(R)γβ0‖q1‖Lq(Qγ
0 ), γ ≤ γ1.

In view of (38), there exists γ2 ≤ γ1 such that

γβ0c1(R) ≤ R/(6c1), γβ0c(R) ≤ 1/2 ∀γ ≤ γ2.
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In this case, for all γ ∈ (0, γ2] and q1 ∈ Bγ
R/3c1 , we have

‖S(q1)‖Lq(Qγ
0 ) = ‖S(0) + (S(q1)− S(0))‖Lq(Qγ

0 )

≤ ‖S(0)‖Lq(Qγ
0 ) + ‖(S(q1)− S(0))‖Lq(Qγ

0 ) ≤ R

6c1
+

1
2
‖q1‖Lq(Qγ

0 ) ≤ R

6c1
+

R

6c1
≤ R

3c1
,

i.e. the operator S takes the ball Bγ2
R/(3c1) into itself and as contractive in this

ball. The fixed point theorem implies that (34) has the unique solution q1 in this
ball. Take τ0 = γ2. Define the vector-function ω as the solution to (22)–(24). It
satisfies the homogeneous conditions (4) and (5). Demonstrate that (7) holds. Fix
l = 1, 2, . . . , r. After the change of variables x→ y in (21), we infer

C1t − LlC1 = g0c −
n∑

j=1

αl
jvj −

n∑

j=1

βl
jC1yj +

m∑

j=1

fjq1j . (39)

Taking the trace at y′′ = 0, we can rewrite (39) as
(
C1t − LlC1 +

n∑

j=1

αl
jvj +

n∑

j=1

βl
jC1yj

)∣∣∣∣
y′′=0

=
m∑

j=1

fj(y′, ϕl(y′), t)q1j(y′, t). (40)

In view of (33), we have

C̃t − Ll
1C̃t +

s∑

j=1

βl
jC1yj = 0, C̃ = C1(y′, 0, t). (41)

Moreover, C̃(y′, 0, 0) = 0 and C̃|∂×(0,γ) = 0. Uniqueness of solutions implies that
C(y′, 0, t) = 0.

Proceed with the proof of stability estimates. Fix R0. Obviously, R, defined in
the proof, satisfies the condition R ≤ cR0 (c is some constant). Choosing cR0 as R
and repeating the arguments, we see that the parameter γ1 chosen in the proof is
the same for all data from our class and thus estimates (28) and (29) hold with the
constants independent of the data from our class. Repeating the proof of existence,
we find that the interval of solvability is the same for all data. It depends only on R.
A solution q1 lies in the ball of radius R/3c1 and the norms od solutions, as it follows
from (28) and (29) are bounded by the same constant depending on R, i.e.,

‖ω‖Hγ + ‖∇x′′C1‖W 2,1
q (Qδ1

γ ) ≤ c0(R), (42)

where δ1 < δ is fixed. Take two solutions corresponding to the two different col-
lections (Ci, �i, vi, qi) (vi = (vi1, vi2, . . . , vin), i = 1, 2) of the data. Each of them
satisfies (22)–(24), where on the right-hand side the functions gi, giθ, and gi0c are
used rather than g, gθ, and g0c. Subtracting the systems, we can estimate the norm
of the difference of solutions and obtain the estimate

‖ω1 − ω2‖Hγ + ‖∇x′′(C1 − C2)‖
W 2,1

q (Qδ1
γ ) ≤ c1(‖q1 − q2‖Lq(Qγ

0 )

+‖g1 − g2‖Lq(Qγ) +
∥∥g1

θ − g2
θ

∥∥
Lq(Qγ ) +

∥∥g1
0c − g2

0c
∥∥
Lq(Qγ )). (43)

rather than (30) and (31). Next, we repeat the arguments employed in the proof
of (37) and (38). Consider (33) written for these two solutions. Subtracting them
from one another and repeating the above arguments, we arrive at the estimates

‖q1 − q2‖Lq(Qγ
0 ) ≤ c(R)γβ(‖ω1 − ω2‖Hγ + ‖∇x′′(C1 − C2)‖

W 2,1
q (Qδ1

γ )),



50 E. M. Korotkova and S. G. Pyatkov

with β > 0 and c(R) positive constants. Replacing the norms on the right-hand side
of the last inequality with the use of (43) and choosing γ3 ≤ γ2 sufficiently small,
we arrive at the inequality

‖q1−q2‖Lq(Qγ
0 ) ≤ c2

(‖g1−g2‖Lq(Qγ)+
∥∥g1

θ−g2
θ

∥∥
Lq(Qγ)+

∥∥g1
0c−g2

0c
∥∥
Lq(Qγ )

)
, γ ≤ γ3.

Employing this inequality on the right-hand side of (43), we obtain

‖ω1 − ω2‖Hγ + ‖∇x′′(C1 − C2)‖
W 2,1

q (Qδ1
γ )

≤ c2
(‖g1 − g2‖Lq(Qγ) +

∥∥g1
θ − g2

θ

∥∥
Lq(Qγ) +

∥∥g1
0c − g2

0c
∥∥
Lq(Qγ)

)
. (44)

The last two estimates ensure the stability estimate for the formulation of the the-
orem. The theorem is proven.
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AN OPTIMAL TILT ANGLE OF A FLAT

CRACK IN THE EQUILIBRIUM PROBLEM

FOR THE KIRCHHOFF–LOVE PLATE
N. P. Lazarev

Abstract. We study the equilibrium problem for a plate in the Kirchhoff–Love model
with the nonpenetration condition in the form of an inequality for a flat oblique crack.
Solvability of the corresponding control problem is proven. The derivative of the quality
functional serves as the cost functional and the tilt angles of the plane crack as the
control functions.

Keywords: oblique crack, optimal control, Kirchhoff–Love plate, variational inequality

Introduction

We examine the well-known variational statement of the equilibrium problem
for an elastic plate with an oblique crack [1]. The rigid clamping condition and
the nonpenetration condition of the crack edges are given on the respective exterior
and interior boundaries of a domain with a cut corresponding to the middle part
of the plate. We prove solvability of the optimal control problem with a parameter
characterizing the tilt angle of a flat oblique crack. The derivative of the energy
functional with respect to the perturbation parameter of a flat oblique crack found
in [2] serves as the quality functional.

The derivative of the energy functional with respect to the length of a crack is
often used in the statements of fracture criterions [3]. The problem of differentia-
tion of the energy functional in linear problems is sufficiently well studied (see, for
instance, [4, 5]). The articles [6, 7] are devoted to nonlinear problems with the non-
penetration condition in the form of inequalities and the analysis of the behavior of
the energy functional and a solution under the perturbation of the length of a crack
or the form of a volume. At present, the mathematical models for problems of the
crack theory with Signorini-type conditions are well studied (see, for instance, the
monographs [7, 8] and the survey [9]). In particular, for the models of elastic two-
and three-dimensional bodies and the Timoshenko and Kirchhoff–Love plates, the
smoothness properties of solutions are described, the fictitious domain method is
justified, invariant integrals were found, the different control problems are studied,
and for some problems, the dependence of a solution and physical characteristics of
the problem on variation of the elasticity coefficients or the geometry of a domain is
analyzed. Moreover, there are some results connected with the mathematical models
of inhomogeneous bodies with rigid inclusions (see, for instance, [7, 10, 11]).

1. Statement of the Equilibrium Problem for a Plate

Let � ⊂ R2 be a bounded domain with smooth boundary ∂�. Denote by �δ
the set {(x1, x2) | 0 < x1 < l + δ, x2 = 0}, δ ∈ [−δ0, δ0], l > δ0 > 0, describing the

c© 2015 Lazarev N. P.
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intersection of the crack with the middle plane in the initial undistorted state of the
plate.

Assume that � δ0 ⊂ �. The parameter δ stands for the crack perturbation.
Given a fixed δ ∈ [−δ0, δ0], the middle surface of the plate occupies the domain
�δ = � \ � δ. The domain �0 = � \ � 0 corresponds to the unperturbed crack.
The middle surface of the plate lies in the plane z = 0 and the coordinate system
(x1, x2, z) is assumed Cartesian. Suppose that the thickness of the plate is equal
to 2. The crack is a surface in R3 described by the relations x2 + z tanα = 0,
−1 ≤ z ≤ 1, 0 < x1 < l + δ, α = const, 0 ≤ α ≤ α0 < π

2 . The number α specifies
the tilt angle of the crack. Let χ = (W,w) be the displacement vector of the points
on the middle surface of the plate, with W = W (x) = (u(x), v(x)) the horizontal
displacement along the middle plane and w(x) the vertical displacement.

The strain tensor of the middle surface of the plate is denoted by [12]:

εij(W ) =
1
2
(
w,ij +w,ji

)
, w1 = u, w2 = v, i, j = 1, 2,

where the index after the comma stands for the derivative with respect to the cor-
responding coordinate. The stress tensors are written as [12]:

σ11(W ) = ε11(W ) + kε22(W ), σ22(W ) = ε22(W ) + kε11(W ),

σ12(W ) = σ21(W ) = (1− k)ε12(W ), k = const, 0 < k <
1
2
.

We assume that the boundary conditions

w =
∂w

∂n
= W = 0 on ∂� (1)

hold on the outer boundary, with n the outer normal to ∂�. These conditions
describe the rigid clamping of a plate.

Let the subspace H1,0(�δ) of the Sobolev space H1(�δ) comprise the func-
tions vanishing on ∂�. Similarly, the subspace H2,0(�δ) of H2(�δ) consists of the
functions that vanish on ∂� together with their first derivatives. Put

H(�δ) = H1,0(�δ)×H1,0(�δ)×H2,0(�δ).

The nonpenetration condition for oblique cracks can be written as follows [1]:

[v] + [w] tanα ≥ |[w,2 ]| on �δ, (2)

where [V ] = V + − V − stands for the jump of V on �δ, while V + = V |�+
δ

and
V − = V |�−δ designate the traces on the positive and negative banks of the cut �δ (in
accord with the direction of the axis x2). For α = 0 in (2), we obtain the well-known
nonpenetration condition for plates with vertical cracks (see [6–8]). Given parame-
ters δ ∈ [−δ0, δ0] and α ∈ [−α0, α0], examine the sets of admissible displacements

K(α, δ, �δ) = {χ = (W,w) ∈ H(�δ) | χ satisfies (2)}.
For a fixed δ ∈ [−δ0, δ0], we consider the energy functional of a plate


(�δ, χ) =
1
2
Bδ(w,w) +

1
2

∫

�δ

σij(W )εij(W ) d�δ −
∫

�δ

Fχd�δ, (3)
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where F = (f1, f2, f3) ∈ C1(�) is a given vector of external forces and the bilinear
form Bδ(·, ·) is defined as

Bδ(w,w) =
∫

�δ

b(w,w) d�δ,

with b(w,w) = w,11 w,11 +w,22 w,22 +kw,11 w,22 +kw,22 w,11 +2(1−k)w,12 w,12. The
Korn inequality [13]

c1‖W‖2H1,0(�δ)2 ≤
∫

�δ

σij(W )εij(W ) d�δ

and the inequality obtained by the repeated application of the Poincaré inequality [7]

c2‖w‖2H2,0(�δ) ≤ Bδ(w,w)

are valid with constants c1 > 0 and c2 > 0 independent of w and W . Basing on the
previous two inequalities we establish the equivalence in H(�δ) of the conventional
norm and the norm defined as

{∫

�δ

σij(W )εij(W ) d�δ + Bδ(w,w)
} 1

2

. (4)

The equilibrium problem for a plate whose solution satisfies (1) and (2) can be
stated as the following minimization problem for the energy functional on the set of
all admissible displacements:

min
χ̄∈K(α,δ,�δ)


(�δ, χ̄). (5)

As is known, for fixed δ ∈ [−δ0, δ0] and α ∈ [−α0, α0], there exists a unique solu-
tion χα

δ to (5) [1]. Moreover, (5) is equivalent to the variational inequality (see [1]):

Bδ

(
wα

δ , w − wα
δ

)
+
∫

�δ

σij

(
Wα

δ

)
εij
(
W −Wα

δ

)
d�δ

≥
∫

�δ

F
(
χ̄− χα

δ

)
d�δ, χ̄ ∈ K(α, δ, �δ). (6)

Note that if a solution to the variational inequality (6) is sufficiently smooth
then the problem is equivalent to the differential statement (see [1]):

−σij,j = fi in �δ, i = 1, 2,

�2w = f3 in �δ,

[σ22(W )] = [t(w)] = [m(w)] = 0 on �δ,

σ22(W ) tanα + t(w) = 0, σ12(W ) = 0, −σ22(W ) ≥ |m(w)| on �δ,

[v] + [w] tanα ≥ |[w,2]| on �δ,

(−σ22(W )−m(w))([v] + [w] tanα + [w,2]) = 0 on �δ,

(−σ22(W ) + m(w))([v] + [w] tanα− [w,2]) = 0 on �δ,
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where t(w) and m(w) are defined on �δ as follows:

t(w) =
∂

∂x2

(
�w + (1− κ)

∂2w

∂x2
1

)
, m(w) = κ�w + (1− κ)

∂2w

∂x2
2
.

The derivative of the energy functional with respect to the perturbation parameter δ
of a crack for the problem (5) is written as (see [2]):

G
(
α, χα

0
)

=
d

(
�δ, χα

δ

)

dδ

∣
∣
∣∣
δ=0

= lim
δ→0


(�δ, χα
δ )−
(�0, χα

0 )
δ

= −1
2

∫

�0

θ,1

(
(
uα

0,1
)2 − (vα0,2

)2 +
1
2
(1− k)

((
vα0,1
)2 − (uα

0,2
)2)
)
d�0

−1
2

∫

�0

θ,2
(
2vα0,1v

α
0,2 + (1 + k)vα0,1u

α
0,1 + (1− k)uα

0,1u
α
0,2
)
d�0

−
∫

�0

(
wα

0,11P
1
α + wα

0,22P
2
α + k

(
wα

0,11P
2
α + wα

0,22P
1
α

)
+ 2(1− k)wα

0,12P
3
α

)
d�0

+
1
2

∫

�0

θ,1 b
(
wα

0 , w
α
0
)
d�0 −

∫

�0

(Fθ),1 χα
0 d�0, (7)

where
P 1 = 2θ,1 wα

0,11 + θ,11 w
α
0,1, P 2 = 2θ,2 wα

0,12 + θ,22 w
α
0,1,

P 3 = θ,1 w
α
0,12 + θ,2 w

α
0,11 + θ,12 w

α
0,1.

The auxiliary function θ ∈ C∞0 (�) (7) is chosen so that θ = 1 in a neighborhood
about xl = (l, 0), θ = 0 in a neighborhood about x0 = (0, 0), and θ,2 = 0 on �δ0 .
Observe that this function can be used to define some one-to-one correspondence
between the domains �0 and �δ of the form

y1 = x1 − δθ(x1, x2), y2 = x2,

where y = (y1, y2) ∈ �0 and (x1, x2) ∈ �δ. Moreover, if χ(x) ∈ K(α, δ, �δ) is an
arbitrary function then the function χ̂(y), defined as χ̂(y) = χ(x), with x = x(y, δ),
belongs to K(α, 0, �0). The reverse inclusion also holds. The membership of χ̂(y)
in K(α, 0, �0) implies that χ(x) ∈ K(α, δ, �δ) [2].

3. An Optimal Control Problem

For convenience, a solution to (6) corresponding to the parameter δ = 0 is used
below without the subscript 0, i.e. χα

0 = χα. In accord with the results of Section 2,
G(α, χα) is given by (7) for all α ∈ [−α0, α0].

Let us state now the optimal control problem: Find α∗ ∈ [−α0, α0] satisfying
G(α∗, χα∗) = sup

α∈[−α0,α0]
G(α, χα). (8)

Theorem. The optimal control problem (8) is solvable.
Proof. Let {αn} be a maximizing sequence corresponding to (8). Since the

interval [−α0, α0] is bounded, we can assume, extracting a subsequence if need be,
that {αn} tends to some number α∗ ∈ [−α0, α0]. By the lemma proven below, we can
extract a subsequence (preserving the notation) such that αn → α∗ and χαn → χα∗

as n → ∞ strongly in H(�0). By strong convergence, this sequence satisfies the
relation

G(αn, χ
αn)→ G(α∗, χ∗) as n→∞.

Hence, α∗ is a solution to (8). The theorem is proven.
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Lemma. Let αn → α∗. Then there exists a subsequence of {αn} (we preserve
the old notation) such that

χαn → χα∗ as n→∞
strongly in H(�0).

Proof. Indeed, we have the relations
∫

�0

σij(Wα)εij(Wα) d�0 + B0(wα, wα) =
∫

�0

Fχα d�0, α ∈ [−α0, α0]

which easily imply the uniform estimate

‖χα‖ ≤ C,

where C > 0 is independent of α ∈ [−α0, α0]. In view of the above estimate and
reflexivity of H(�0), there exist a subsequence of {χαn} (we preserve the notation
for a new sequence) convergent weakly in H(�0) to a function χ̃ as αn → α∗.

Prove now that χ̃ ∈ K(α∗, 0, �0). In view of the weak convergence of χαn

to χ̃ in H(�0), choosing a subsequence if need be we infer that χαn → χ̃ strongly
in L2(�0)3 and w,αn

2 → w̃,α
∗

2 strongly in L2(�0) as αn → α∗ (see [14, Theorem 5.19]).
Extracting a subsequence once again if need be we can assume that χαn → χ̃ and
w,αn

2 → w̃,α
∗

2 a.a. on �0 as αn → α∗. Therefore, passing to the limit as αn → α∗ in
the inequalities

[vαn ] + [wαn ] tanαn ≥
∣∣[w,αn

2
]∣∣ on �0,

we derive that
[ṽ] + [w̃] tanα∗ ≥ |[w̃,2 ]| on �0.

The latter means that χ̃ ∈ K(α∗, 0, �0).
Let us verify that for every test function η̂ = (Ŵ , ŵ) ∈ K(α∗, 0, �0) there exists

a sequence η̂α such that η̂α ∈ K(α, 0, �0) and η̂α → η̂ strongly in H(�0). It suffices
to examine the functions of the form

η̂α = (Ŵα, ŵα) = η̂ + (0, ŵ(tanα∗ − tanα), 0).

It is easy to check that the function constructed satisfies the required properties.
Indeed, the inclusion ηα ∈ H(�0) is obvious. Let us verify the nonpenetration
condition. By construction, [v̂α] = [v̂]+[ŵ](tanα∗−tanα), [ŵ,α2 ] = [ŵ,2 ], [ŵα] = [ŵ]
on �0. Hence, we infer

[v̂α] + [ŵα] tanα = [v̂] + [ŵ](tanα∗ − tanα) + [ŵ] tanα

= [v̂] + [ŵ] tanα∗ ≥ |[ŵ,2 ]| = |[ŵ,α2 ]| on �0. (9)

The strong convergence η̂α → η̂ in H(�0) is obvious. Thereby, {η̂α} has the required
properties.

Now we can demonstrate that χ̃ = χα∗ . To this end, we insert test functions
of the form η̂αn in the variational inequalities (6) with δ = 0 corresponding to αn,
n = 1, 2, . . . , and pass to the limit as n→∞. In result, we see that

B0(w̃, ŵ − w̃) +
∫

�0

σij(W̃ )εij(Ŵ − W̃ ) d�0 ≥
∫

�0

F (η̂ − χ̃)d�0,

η̂ = (Ŵ , ŵ) ∈ K(α∗, 0, �0).

(10)
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Taking the unique solvability of (10) into account, we have χ̃ = χα∗ . The weak
convergence yields

lim
n→∞

∫

�0

σij(Wαn)εij(Wαn) d�0 + B0(wαn , wαn)

= lim
n→∞

∫

�0

Fχαn d�0 =
∫

�0

Fχα∗d�0. (11)

Since the conventional norm and the norm on H(�δ) defined by (4) are equivalent,
the last equality implies the strong convergence χαn → χα∗ in H(�0) as n → ∞.
The lemma is proven.
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SINGULAR SOLUTIONS OF THE (3 + 1)–D PROTTER

PROBLEM FOR THE WAVE EQUATION

N. Popivanov, T. Popov, and R. Scherer

Abstract. We study some boundary value problems for the nonhomogeneous wave
equation with three space and one time variables. The problems could be viewed as R4

analogs of Darboux problems in R2. In contrast to the planar Darboux problem the four-
dimensional version is ill-posed, since its homogeneous adjoint problem has infinitely
many classical solutions. Thus, in the framework of the classical solvability the problem
is not Fredholm. Alternatively, it is known that for smooth right-hand side functions,
there is a uniquely determined generalized solution that may have strong power-type
singularity at one boundary point. This singularity is isolated at the vertex of the
characteristic light cone and does not propagate along the cone. In this article we give
a general existence result and find a priori estimates for singular solutions. A lengthy
reference list is appended.

Keywords: wave equation, boundary value problems, generalized solution, singular
solutions, propagation of singularities, special functions

1. Introduction

We study some boundary value problems for the wave equation in R4 that were
proposed by Murrey Protter in the 1950s. Consider the wave equation with three
space and one time variables

ux1x1 + ux2x2 + ux3x3 − utt = f(x, t) (1)

for (x, t) = (x1, x2, x3, t) ∈ R4 in the domain

� = {(x, t) : 0 < t < 1/2, t <
√
x2

1 + x2
2 + x2

3 < 1− t}.
This domain is bounded by the two characteristic cones

�1 = {(x, t) : 0 < t < 1/2,
√
x2

1 + x2
2 + x2

3 = 1− t},

�2 = {(x, t) : 0 < t < 1/2,
√
x2

1 + x2
2 + x2

3 = t}
and the ball

�0 = {t = 0,
√
x2

1 + x2
2 + x2

3 < 1},
centered at the origin O; i.e., x = 0 and t = 0. The right-hand side function f of (1)
satisfies some smoothness conditions in � that will be fixed later. We will study the
following BVPs:

N. Popivanov and T. Popov were partially supported by the Bulgarian NSF Under Grant
DCVP 02/1/2009 “Centre of Excellence on Supercomputer Applications” and by Sofia University
Grants 94/2014 and 142/2015.
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Problem P1. Find a solution of (1) in � satisfying the boundary conditions

P1 : u|�0 = 0, u|�1 = 0.

Problem P1∗. Find a solution of (1) in � satisfying the adjoint boundary
conditions

P1∗ : u|�0 = 0, u|�2 = 0.

In this paper we give a general existence result and discuss the behavior of the
generalized solution of Problem P1.

First, we present a brief historical overview here and provide an extensive list of
references. Protter arrived at these problems while examining BVPs for mixed type
equations which describe transonic flows in fluid dynamics. In particular, the clas-
sical two-dimensional Guderley–Morawetz problem for the Gellerstedt equation of
hyperbolic-elliptic type which models flows around airfoils. The Guderley–Morawetz
problem is well studied in the 1950s—see the surveys for the 2-D mixed type BVPs
and the transonic models by Morawetz [1, 2]. For example, the existence of weak
solutions and the uniqueness of strong solutions were proved by Morawetz [3], while
Lax and Phillips [4] showed that the weak solutions are strong. In 1954 Protter
[5, 6] formulated for 3D mixed-type equations (with two space and one time vari-
ables) some multidimensional analogs of the planar Guderley–Morawetz problem.
The assumption was that the methods used to attack the 2D case could be applied
for the multidimensional problems. However, the multidimensional case turns out
to be rather different and the situation there is still unclear. Although, the unique-
ness of the so-called quasiregular solutions is proved by Aziz and Schneider in [7],
there are no general existence results for the Protter mixed-type problems. Even
the question of well-posedness is not resolved completely.

As regards the results for existence or nonexistence of nontrivial solutions of
related quasilinear problems of mixed hyperbolic-elliptic type in the multidimen-
sional case, see [8, 9]. About results on BVPs for the multidimensional mixed-type
Lavrent′ev–Bitsadze equation, see [10, 11].

In relation to the mixed-type problems, Protter also formulated and studied
in [6] some BVPs in the hyperbolic part of the domain both for degenerated hyper-
bolic equations and for the wave equation—the 3D variants of Problems P1 and P1∗.
Later Paul Garabedian [12] gave the statement of such problems in R4 and proved
the uniqueness of the classical solutions of Problem P1. Problems P1 and P1∗ in �
could be considered as four-dimensional analogs of the planar Darboux problems
(or the Cauchy–Goursat problems) for the string equations in a characteristic trian-
gle. Initially, the expectation was that such multidimensional BVPs are classically
solvable for very smooth right-hand side functions. Contrary to this traditional
belief, soon it became clear that unlike the planar Darboux problem, the Protter
problems are ill-posed. In fact, the homogeneous adjoint problem P1∗ has smooth
classical solutions and the linear space they span is infinite-dimensional. Thus, in the
frame of the classical solvability the Protter Problem P1 is not Fredholm, since it has
infinite-dimensional cokernel. Alternatively, the notion of generalized solution that
may have singularity on �2 was introduced in [28]. In fact, it is known that the gener-
alized solution has singularity isolated at only one point—the origin O. The point O
lies both on the characteristic part of the boundary �2 and on the noncharacteristic
part �0, and this case is different from the standard propagation of singularities (see
Hörmander [13, Chapter 24.5]). A short survey and comparison of various recent
results for Protter problems are in [14, 15]. In [16] the semi-Fredholm solvability of
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Problem P1 is discussed. According to the classical and singular solutions let us
mention here some results of Serik Aldashev in [10, 11, 17, 18] and a series of papers
of Khe Kan Cher [19–22] and also the joint papers with his co-authors [23, 24].

Results for the wave equation but with lower order terms could be found
in [25, 26]. Regarding results for degenerated hyperbolic equations we refer to
[18, 27, 28], and for equations of Keldysh type—to [29]. Some other multidimensional
analogs of the classical Darboux problem are considered in [30–33].

In the present article we give sufficient conditions on the right-hand function f
for the existence of a generalized solution of Problem P1 and discuss its exact be-
havior. On the one hand, we need a priori estimates away from the origin to ensure
the existence of the solution (like in Theorems 1 and 2). On the other hand, our
goal is to study singularity near O. We find upper estimates for the growth the
generalized solution at O in Theorem 2 and Corollary 1, and a lower estimate is
given in Theorem 3.

2. Classical and Generalized Solutions

In order to construct the solutions of the homogeneous adjoint problem P1∗ we
need in R3 the orthonormal system of the spherical functions Y m

n (n ∈ N∪ {0}, and
m = 1, . . . , 2n+1). They are defined usually on the unit sphere S2 := {(x1, x2, x3) :
x2

1 + x2
2 + x2

3 = 1} in spherical polar coordinates (see [34]). Expressed in Cartesian
coordinates here, we can define them by

Y 2k
n (x1, x2, x3) = Cn,k

dk

dxk
3
Pn(x3) Im{(x1 + ix2)k} for k = 1, . . . , n; (2)

Y 2k+1
n (x1, x2, x3) = Cn,k

dk

dxk
3
Pn(x3) Re{(x1 + ix2)k} for k = 0, . . . , n,

where Cn,k are constants and Pn are the Legendre polynomials. The Legendre poly-
nomials are defined by the Rodrigues formula as

Pn(s) :=
1

2nn!
dn

dsn
(s2 − 1)n =

[n2 ]∑
k=0

an,2ks
n−2k,

with the coefficients

an,2k = (−1)k
(2n− 2k)!

2nk!(n− k)!(n− 2k)!
.

The constants Cn,m are such that Y m
n form a complete orthonormal system

in L2(S2) (see [34]). For convenience in the discussions that follow, we extend
the spherical functions beyond S2 radially, keeping the same notation Y m

n for the
extended functions, i.e., Y m

n (x) := Y m
n (x/|x|) for x ∈ R3\O.

Let us define, for k ∈ N ∪ {0}, the functions

hk(ξ, η) =

ξ∫

η

skPn

(
ξη + s2

s(ξ + η)

)
ds.

Then Lemmas 1.1 and 2.3 from [35] give the following solutions of the homoge-
neous adjoint problem.
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Lemma 1 [35]. The functions

vnk,m(x, t) = |x|−1hn−2k−2

( |x|+ t

2
,
|x| − t

2

)
Y m
n (x)

are classical solutions from C∞(�) ∩ C(�) of the homogeneous problem P1∗ for
n ∈ N, m = 1, . . . , 2n + 1 and k = 0, 1, . . . , [(n− 1)/2]− 2.

Actually, the functions vnk,m here are practically the same as the solutions from
[35, Lemma 1.1]. On the other hand, [16, Theorem 1] suggests that there are no
other linearly independent nontrivial classical solutions of the homogenous adjoint
Problem P1∗. Solutions for the homogenous adjoint problem were first found by
Tong Kwang-Chang [39]. Some different representations of the solutions of the ho-
mogeneous problem P1∗ and the functions vnk,m are given by Khe Kan Cher [22].

Naturally, a necessary condition for the existence of a classical solution for Prob-
lem P1 is the orthogonality of the right-hand side function f to all vnk,m(x, t). To
avoid infinitely many necessary conditions in the framework of the classical solvabil-
ity, we introduce generalized solutions for Problem P1, eventually with singularity
at the origin O.

Definition 1 [36]. A function u = u(x, t) is called a generalized solution of
Problem P1 in �, if the following are satisfied:

1) u ∈ C1(�\O), u|�0\O = 0, u|�1 = 0, and
2) we have∫

�

(utwt − ux1wx1 − ux2wx2 − ux3wx3 − fw) dxdt = 0 (3)

for all w ∈ C1(�) such that w = 0 on �0 and a neighborhood of �2.

Here we find some appropriate conditions for f under which there exists a gen-
eralized solution of Problem P1.

3. Existence of a Generalized Solution

The spherical functions form a complete orthonormal system in L2(S2), and,
generally, each smooth function f(x, t) can be expanded as a harmonic series

f(x, t) =
∞∑
n=0

2n+1∑
m=1

fm
n (|x|, t)Y m

n (x) (4)

with the Fourier coefficients

fm
n (r, t) :=

∫

S(r)

f(x, t)Y m
n (x) dσr , (5)

where S(r) is the three-dimensional sphere in x = (x1, x2, x3) variables; i.e., S(r) :=
{x ∈ R3 : |x| = r}. In the previous paper [36], the Protter problem was studied
in the special case when the right-hand side function is a finite Fourier sum, while
in [16] for the general case f ∈ C1(�) the necessary and sufficient conditions for the
existence of bounded solutions were found. In fact, the behavior of the generalized
solution depends strongly on the inner product (with respect to the L2(�) inner
product) of the right-hand side function f(x, t) with the functions vnk,m(x, t) from
Lemma 1. Thus, let us denote by βn

k,m the parameters

βn
k,m :=

∫

�

vnk,m(x, t)f(x, t) dxdt, (6)

where n = 0, . . . , l, k = 0, . . . ,
[
n−1

2

]
and m = 1, . . . , 2n+ 1.
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Theorem 1 [16]. Let f(x, t) belong to C10(�). Then the necessary and suffi-
cient conditions for existence of a bounded generalized solution u(x, t) of Protter’s
Problem P1 are ∫

�

vnk,m(x, t)f(x, t) dxdt = 0 (7)

for all n ∈ N, k = 0, . . . ,
[
n−1

2

]
, and m = 1, . . . , 2n + 1.

Moreover, this generalized solution u(x, t) ∈ C1(�\O) satisfies the a priori
estimates

|u(x, t)| ≤ C‖f‖C10(�), (8)
3∑

i=1

|uxi(x, t)| + |ut(x, t)| ≤ C(|x|2 + t2)−1‖f‖C10(�), (9)

where C is a constant independent of f(x, t).
We turn now to investigation of the singular solution of Problem P1.
In order to formulate a general existence result, let us introduce, for p ∈ R and

k ∈ N, the series

‖f ;np;Ck‖ :=
∥∥f0

0 (|x|, t)∥∥
C0(�) +

∞∑
n=1

np

∥∥∥∥
2n+1∑
m=1

fm
n (|x|, t)Y m

n (x)
∥∥∥∥
Ck(�)

and the power series

�(s) :=
∞∑

n=1

[ 2n+1∑
m=1

[n/2]∑
k=0

∣∣βn
k,m

∣∣
]
sn.

Obviously, ‖f ;np1;Ck1‖ ≥ ‖f ;np2;Ck2‖ for p1 ≥ p2 and k1 ≥ k2.
Now we can formulate the main result in the present paper.

Theorem 2. Let f(x, t) belong to C1(�). Suppose that the series ‖f ;n6;C0‖
and ‖f ;n4;C1‖ are convergent and the power series �(s) has an infinite radius of
convergence. Then there exists a unique generalized solution u(x, t) ∈ C1(�\O) of
Protter’s Problem P1 and it satisfies in �\O the a priori estimates

|u(x, t)| ≤ C

[
�

(
C1

|x|+ t

)
+ |x|−1‖f ;n4;C0‖

]
,

|u(x, t)| ≤ C

[
�

(
C1

|x|+ t

)
+ ‖f ;n6;C0‖+ ‖f ;n4;C1‖

]
,

3∑
i=1

|uxi(x, t)| + |ut(x, t)| ≤ C|x|−2
[
�

(
C2

|x|+ t

)
+ ‖f ;n6;C0‖

]
,

where C, C1, and C2 are constants independent of f(x, t).
In these estimates, the singularity of the generalized solution at O is controlled

by the function �(s), while ‖f ;np;Ck‖ bounds the “regular part” of u(x, t).
Let us compare the situation here for the (3+1)-D case (three space and one

time dimensions) with the results of [37] for (2+1)-D Protter Problems. According
to Theorem 5.3 of [37], the sufficient condition for existence of generalized solution
is the convergence of the series

∞∑
n=1

1
n
I0

(
2n
ε

)(∥∥f1
n

∥∥
C0(�) +

∥∥f2
n

∥∥
C0(�)

)
for all ε > 0, (10)
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where f i
n are the Fourier coefficients of the right-hand side which could be viewed as

the analogs of the functions fm
n given by (5). The function I0 is the modified Bessel

function of the first kind:

I0(s) :=
∞∑
k=0

1
(k!)2

(
s

2

)2k

.

Notice that we have the estimate

I0(s) ≤ es for s ≥ 0.

Using the exponential function in (10) instead of I0, we then get the following result
somewhat weaker than [37, Theorem 5.3]. Suppose that the power series

�1(s) :=
∞∑

n=1

(∥∥f1
n

∥∥
C0(�) +

∥∥f2
n

∥∥
C0(�)

)
n−1sn

converges for all s. Then for the singularity of the unique generalized solution u(x, t)
for the (2+1)-D Protter Problem, near the origin we have the estimate

|u(x, t)| ≤ C�1

[
exp
(

2
|x|
)]

. (11)

Here, in the (3+1)-D case, note that from the definition of vnk,m in Lemma 1 it
follows that

|vnk,m(x, t)| ≤ |Y m
n (x)| ≤ C1n

1/2

and so ∣∣βn
k,m

∣∣ ≤ C2n
1/2∥∥fm

n

∥∥
C0(�).

Then, to compare with [37, Theorem 5.3] and (11), we can formulate the next result
that ensues from Theorem 2.

Corollary 1. Let f(x, t) belong to C1(�). Suppose that the series ‖f ;n6;C0‖
and ‖f ;n4;C1‖ are convergent and the power series

�2(s) :=
∞∑

n=1

[ 2n+1∑
m=1

∥∥fm
n

∥∥
C0(�)

]
sn

has an infinite radius of convergence. Then the unique generalized solution u(x, t) ∈
C1(�\O) of Protter’s Problem P1 satisfies near the origin the estimate

|u(x, t)| ≤ C�2

(
C0

|x|+ t

)
, (12)

where C and C0 are constants independent of f(x, t).

4. Construction of Singular Solutions

In the special case when the right-hand side function f is a harmonic polynomial,
the exact asymptotic formula for the generalized solution at O is found in [36]. It
shows that the solution can have only power type singularity. However, in the general
case f(x, t) ∈ C1(�) some stronger singularities are also possible. Actually, in [38]
the existence of generalized solutions with at least exponential growth at the origin
is announced. The next theorem could be used to construct other singular solutions.
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Theorem 3. Let f(x, t) belong to C1(�), while the series ‖f ;n6;C0‖ and
‖f ;n4;C1‖ are convergent, and the power series �(s) has an infinite radius of con-
vergence. Let the numbers αp ≥ 0, p = 0, 1, 2, . . . , be such that the series

φ(s) :=
∞∑
p=0

αps
p

converges for all s ∈ R. Suppose that there is x∗ = (x∗1, x∗2, x∗3) ∈ R3 such that

∞∑
k=0

2p+4k+1∑
m=1

pa2kβ
p+2k
m,k Y m

p+2k(x∗) ≥ αp. (13)

Then there exists a number δ ∈ (0, 1/2) that the unique generalized solution u(x, t)
of Problem P1 satisfies the estimate

|u(tx∗1, tx
∗
2, tx

∗
3, t)| ≥ φ

(
1
2t

)

for t ∈ (0, δ).
Remark. We can find a right-hand side f(x, t) ∈ C1(�) by choosing suitable

Fourier coefficients fm
n (r, t) “small enough” so that the required series ‖f ;np4;Ck‖

and �(s) be convergent. At the same time, selecting the functions fm
n that sat-

isfy (13) with larger constants αp will produce solutions with a stronger singularity.
In accordance with the result from [38], it is possible to obtain an appropriate func-
tion f with constants αp = (p!)−1 for all p, and so the corresponding solution has
exponential growth at O.
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Birkhäuser, 2006. P. 371–390 (Progr. Non-Linear Differ. Equ. Their Appl.; V. 66).

9. Lupo D., Payne K., and Popivanov N. On the degenerate hyperbolic Goursat problem for
linear and nonlinear equations of Tricomi type // Nonlinear Anal.. 2014. V. 108. P. 29-56.

10. Aldashev S. A. Problem of Tricomi for the many-dimensional Lavrent′ev–Bitsadze equation //
Ukr. Math. J.. 1991. V. 43. P. 526–530.

11. Aldashev S. A. Eigenvalues and eigenfunctions of the Gellerstedt problem for the multidimen-
sional Lavrent′ev–Bitsadze equation // Ukr. Math. J.. 2011. V. 63, N 86. P. 962–968.

12. Garabedian P. R. Partial differential equations with more than two variables in the complex
domain // J. Math. Mech.. 1960. V. 9. P. 241–271.
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STABILITY ESTIMATES AND APPROXIMATE

SOLUTIONS TO A BOUNDARY VALUE

PROBLEM FOR A FORTH ORDER

PARTIAL DIFFERENTIAL EQUATION

K. S. Fayazov and I. O. Khajiev

Abstract. Under study is some initial-boundary value problem for a forth order equa-
tion of mixed type. The problem belongs to the class of strongly ill-posed problems of
mathematical physics. In accord with A. N. Tikhonov’s ideas, we establish conditional
well-posedness of this problem. Involving spectral decompositions and energy integrals,
we prove uniqueness of a solution and its conditional stability on the well-posedness set.
An approximate solution is constructed by the regularization method, and an estimate
of the norm of the difference between the exact and approximate solutions is obtained.
The regularization parameter is calculated from the minimality condition for an estimate
of the norm of the difference between the exact and regularized solutions.

Keywords: mixed type equation, ill-posed problem, a priori estimate, uniqueness, sta-
bility, well-posedness set, regularization

Consider the equation

sgnx
∂4u(x, t)

∂t4
+

∂2u(x, t)
∂x2 = 0 (1)

in the domain � = {−1 < x < 1, x �= 0, 0 < t < T}.
Problem. Find a function u(x, t) satisfying (1) in �, the initial conditions

∂ju(x, t)
∂tj

∣
∣
∣
∣
t=0

= ϕj(x), j = 0, 1, 2, 3, −1 ≤ x ≤ 1, (2)

the boundary conditions

u(−1, t) = u(1, t) = 0, 0 ≤ t ≤ T, (3)

and the gluing conditions

u(−0, t) = u(+0, t), ux(−0, t) = ux(+0, t), 0 ≤ t ≤ T. (4)

The ill-posed boundary value problems for model differential equations were
examined by many authors, in particular, by Carleman, Hörmander, Nirenberg,
Lavrent′ev, Landis, Jon, Levin, Krĕın, et al.; and for operator-differential equations,
by Krĕın, Levin, Fayazov, and some other authors.

The problem (1)–(4) is Hadamard ill-posed. In this article we study the condi-
tional well-posedness of (1)–(4) and construct an approximate solution stable under
changes of data on the well-posedness set. In Section 1 an a priori estimate for a so-
lution is derived, and the uniqueness of a solution and conditional stability of (1)–(4)

c© 2015 Fayazov K. S. and Khajiev I. O.
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are proven in Section 2. In Section 3 the regularization method is applied to con-
struct an approximate solution and an estimate of the difference between the exact
and approximate solutions is obtained. A formula for the regularization parameter
is derived from the optimality condition for the estimate.

Gevrey’s articles were the first devoted to forward-backward parabolic equa-
tions. The solvability theory of boundary value problems for these equations was
developed in the articles by Tersenov, Nakhushev, Egorov, Kislov, Pyatkov, Popov,
and many other authors. The mixed type equations are studied in the articles by
Bitsadze, Salakhitdinov, Vragov, Kozhanov, Pyatkov, et al. (see [1, 2] and the bib-
liography therein). The ill-posed problems are treated in [3–5].

1. An A Priori Estimate

In what follows, we use properties of eigenfunctions of the spectral problem
⎧

⎪⎨

⎪⎩

sgnxX ′′(x) + λX(x) = 0,
X(−1) = X(1) = 0,
X(−0) = X(+0), X ′(−0) = X ′(+0).

(5)

Let {X+
k }∞k=1 and {X−k }∞k=1 be the eigenfunctions of (5) with positive and nega-

tive eigenvalues λ+
k and λ−k such that the sequences λ+

k and −λ−k are nondecreasing.
Note that

X±k (x) =

⎧

⎨

⎩

sinh
√

λ±k sin
√

λ±k (1 − x), 0 ≤ x ≤ 1,

sin
√

λ±k sinh
√

λ±k (1 + x), 0 ≤ x ≤ 1,

where ±λ±k = μ2
k, k = 1, 2, . . . , with μk a positive root of the equation tanμ =

− tanhμ.
Denote by (u, v) =

∫ 1
−1 uv dx the inner product on L2(−1, 1), ‖u‖2 = (u, u),

(sgnxX±k , X±j ) = δkj , δkj =
{

1, k = j,

0, k �= j.

Let P± be the spectral projections defined by the equalities

P±u =
∞∑

k=1

(sgnxu,X±k )X±i .

In accord with [2], we have

(P+ − P−)u = u, (sgnx(P+ − P−)u, u) = ‖u‖20,

(sgnxP±u, v) = (sgnxu, P±v), u, v ∈ H0 = L2(−1, 1),

‖u(x, t)‖20 =
∞∑

k=1

{|(sgnxu(x, t), X+
k )|2 + |(sgnxu(x, t), X−k )|2}. (6)

In accord with the results of [2], the eigenfunctions of (5) form a Riesz basis for H0
and the norm (6) in L2(−1; 1) is equivalent to the initial norm.
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By a generalized solution to the boundary value problem (1)–(4) we mean a func-
tion u(x, t) such that u(x, t) ∈ (C[0, T ]; L2(−1, 1)),

T∫

0

1∫

−1

u(x, t)(sgn xVtttt + Vxx) dxdt

=
T∫

0

1∫

−1

sgnx(ϕ3(x)V (x, 0)− ϕ2(x)Vt(x, 0) + ϕ1(x)Vtt(x, 0)− ϕ0(x)Vttt(x, 0)) dxdt

for all V (x, t) ∈ W 4
2 (�), V (x, T ) = Vt(x, T ) = Vtt(x, T ) = Vttt(x, T ) = 0, and

V (−1, t) = V (1, t) = 0.
Assume that a solution to (1)–(4) exists and is representable as

u(x, t) =
∞∑

k=1

u+
k (t)X+

k +
∞∑

k=1

u−k (t)X−k ,

where

u±k (t) =
1∫

−1

sgnxu(x, t)X±k (x) dx, k = 1, 2, 3, . . . .

As is easily seen, the functions u±k (t) for all k = 1, 2, 3, . . . solve the problems
{ {u+

k (t)}tttt − μ2
ku

+
k (t) = 0,

u+
k (0) = ϕ+

0k
, {u+

k (0)}t = ϕ+
1k
, {u+

k (0)}tt = ϕ+
2k
, {u+

k (0)}ttt = ϕ+
3k
,

(7)

{ {u−k (t)}tttt + μ2
ku
−
k (t) = 0,

u−k (0) = ϕ−0k
, {u−k (0)}t = ϕ−1k

, {u−k (0)}tt = ϕ−2k
, {u−k (0)}ttt = ϕ−3k

,
(8)

where

ϕ±jk =
1∫

−1

sgnxϕj(x)X±k (x) dx, j = 0, 1, 2, . . . .

Lemma 1 [6]. A solution to the equation φ′′(t) − θφ(t) = 0 (0 < t < T )
satisfying the conditions φ(0) = p and φ′(0) = q meets the estimate

φ2(t) ≤ (p2 + |δ|)T−t
T (φ2(T ) + |δ|) t

T e2t(T−t) − |δ|,
where θ is a constant and δ = 1

2 (θp2 − q2).
Consider (7) and introduce the notations

1
μk

d2u+
k

dt2
= ϑ+

k , w+
k = u+

k − ϑ+
k , v+

k = u+
k + ϑ+

k .

Some transformations lead to the following:

{v+
k }tt − μkv

+
k = 0, v+

k (0) = ϕ+
0k

+ μ−1
k ϕ+

2k
, {v+

k (0)}t = ϕ+
1k

+ μ−1
k ϕ+

3k
, (9)

{w+
k }tt + μkw

+
k = 0, w+

k (0) = ϕ+
0k
− μ−1

k ϕ+
2k
, {w+

k (0)}t = ϕ+
1k
− μ−1

k ϕ+
3k
. (10)

By Lemma 1, solutions to (9), (10) satisfy the estimates

{v+
k (t)}2 ≤ ({v+

k (0)}2 + |α+
k |)

T−t
T ({v+

k (T )}2 + |α+
k |)

t
T e2t(T−t) − |α+

k |,
{w+

k (t)}2 ≤ ({w+
k (0)}2 + |β+

k |)
T−t
T ({w+

k (T )}2 + |β+
k |)

t
T e2t(T−t) − |β+

k |,
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where α+
k = 0.5

(

μk{v+
k (0)}2 − {v+

k (0)}2t
)

and β+
k = 0.5

(

μk{w+
k (0)}2 + {w+

k (0)}2t
)

.
Note that u+

k = 0.5(v+
k + w+

k ) and {u+
k }2 ≤ 0.5({v+

k }
2 + {w+

k }
2). In this case

{u+
k }2 ≤

e2t(T−t)

2

(

({v+
k (0)}2 + |α+

k |)
T−t
T

(

{u+
k (T )}2 +

1
μ2
k

{u+
k (T )}2tt + |α+

k |
) t

T

+({w+
k (0)}2 + |β+

k |)
T−t
T

(

{u+
k (T )}2 +

1
μ2
k

{u+
k (T )}2tt + |β+

k |
) t

T
)

. (11)

Proceed with an estimate for a solution to (8). Consider the equation

d4h

dt4
= −μ2h (12)

for 0 < t < T with the conditions

djh

dtj

∣
∣
∣
∣
t=0

= fj , j = 0, 1, 2, . . . , (13)

where μ is a constant. Rewrite (12) as

(∂t − r1)(∂t − r2)(∂t − r3)(∂t − r4)h = 0, (14)

where

r1 = l + il, r2 = −l + il, r3 = −l − il, r4 = l − il, l =
√

2μ
2

,

and rj , j = 1, 2, 3, 4, are the roots of the equation r4 + μ2 = 0.
Equation (14) can be rewritten as the system

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(∂t − r4)h = v,

(∂t − r3)v = w,

(∂t − r2)w = z,

(∂t − r1)z = 0.

(15)

Let z(t) be a solution to the equation

zt − r1z = 0. (16)

Obviously, it is representable as z(t) = x(t)+ iy(t), where x(t) and y(t) are solutions
to the system

{
xt = l(x− y),
yt = l(x + y).

As is easily seen, z(t) satisfies the estimate

|z(t)|2 ≤ (|z(0)|2)1− t
T (|z(T )|2) t

T ,

where |z(t)|2 = x2(t) + y2(t). In this case (14) yields |z(t)|2 ≤ γ1(t), with

γ1(t) = (μ3|f0|2 + μ2|f1|2 + μ|f2|2 + |f3|2)1− t
T

×(μ3|h(T )|2 + μ2|ht(T )|2 + μ|htt(T )|2 + |httt(T )|2) t
T .

Let w(t) be a solution to the nonhomogeneous equation

wt − k2w = z, (17)
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which is representable as
w(t) = ω(t) + ω̃(t),

where ω(t) is a general solution of the homogeneous equation and ω̃(t) is a particular
solution to (17). Since ω̃(t) = x̃(t) + iỹ(t), we have

{
x̃t = −l(x̃ + ỹ) + x,

ỹt = l(x̃− ỹ) + y.
(18)

Obviously, a particular solution to (18) is representable as

x̃(t) =
cos lt

2

t∫

0

(x(τ) sin lτ + y(τ) cos lτ)el(τ−t) dτ

+
sin lt

2

t∫

0

(x(τ) sin lτ − y(τ) cos lτ)el(τ−t) dτ ,

ỹ(t) =
sin lt

2

t∫

0

(x(τ) sin lτ + y(τ) cos lτ)el(τ−t) dτ

−cos lt
2

t∫

0

(x(τ) sin lτ − y(τ) cos lτ)el(τ−t) dτ .

We conclude that

|x̃(t)| ≤
t∫

0

(|x(τ)|+ |y(τ)|) dτ, |ỹ(t)| ≤
t∫

0

(|x(τ)|+ |y(τ)|) dτ

or

x̃(t)2 ≤ 2T
t∫

0

(x(τ)2 + y(τ)2) dτ, ỹ(t)2 ≤ 2T
t∫

0

(x(τ)2 + y(τ)2) dτ ;

in this case

x̃(t)2 + ỹ(t)2 ≤ 4T
t∫

0

(x(τ)2 + y(τ)2) dτ,

i.e., |ω̃(t)|2 = x̃(t)2 + ỹ(t)2 ≤ 4T
∫ T
0 |z(t)|2 dt.

The function ω(t) satisfies the estimate

|ω(t)|2 ≤ (|ω(0)|2)1− t
T (|ω(T )|2) t

T .

Hence,
|w(t)|2 ≤ (|w(0)|2)1− t

T (|w(T )|2 + |ω̃(T )|2) t
T + |ω̃(T )|2.

From (15) it follows that |w(t)|2 ≤ γ2(t), where

γ2(t) = (μ2|f0|2 + μ|f1|2 + |f2|2)1− t
T

×
(

μ2|h(T )|2 + μ|ht(T )|2 + |htt(T )|2 + 2T
T∫

0

γ1(t) dt
) t

T

+ 4T
T∫

0

γ1(t) dt.
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Similar arguments for solutions to the equations vt − r3v = w and ht − r4h = v
validate the estimates

|v(t)|2 ≤ (|v(0)|2)1− t
T (|v(T )|2 + |ṽ(T )|2) t

T + |ṽ(T )|2,
|h(t)|2 ≤ (|h(0)|2)1− t

T (|h(T )|2 + |h̃(T )|2) t
T + |h̃(T )|2,

(19)

where

|ṽ(T )|2 ≤ 4T
T∫

0

|w(t)|2 dt, |h̃(T )|2 ≤ 4T
T∫

0

|v(t)|2 dt.

From the above we infer
|v(t)|2 ≤ γ3(t),

|h(t)|2 ≤ (|f0|2)1− t
T

(

|h(T )|2 + 4T
T∫

0

γ3(t) dt
) t

T

+ 4T
T∫

0

γ3(t) dt,

where

γ3(t) = (μ|f0|2 + |f1|2)1− t
T

(

μ|h(T )|2 + |ht(T )|2 + 2T
T∫

0

γ2(t) dt
) t

T

+4T
T∫

0

γ2(t) dt(t).

Thus, a solution to (8) satisfies the estimate

|u−k (t)|2 ≤ (|ϕ−0k
|2)1− t

T

(

|u−k (T )|2 + 4T
T∫

0

γ3k(t) dt
) t

T

+ 4T
T∫

0

γ3k(t) dt, (20)

where
γ3k(t) = (μk|ϕ−0k

|2 + |ϕ−1k
|2)1− t

T

×
(

μk|u−k (T )|2 + |{u−k (T )}t|
2 + 2T

T∫

0

γ2k(t) dt
) t

T

+ 4T
T∫

0

γ2k(t) dt,

γ2k(t) =
(

μ2
k|ϕ−0k

|2 + μk|ϕ−1k
|2 + |ϕ−2k

|2)1− t
T

×
(

μ2
k|u−k (T )|2 + μk|{u−k (T )}t|

2 + |{u−k (T )}tt|
2 + 2T

T∫

0

γ1k(t) dt
) t

T

+ 4T
T∫

0

γ1k(t) dt,

γ1k(t) =
(

μ3
k|ϕ−0k

|2 + μ2
k|ϕ−1k

|2 + μk|ϕ−2k
|2 + |ϕ−3k

|2)1− t
T

×(μ3
k|u−k (T )|2 + μ2

k|{u−k (T )}t|
2 + μk|{u−k (T )}tt|

2 + |{u−k (T )}ttt|
2) t

T .

Here k = 1, 2, . . . .

2. Uniqueness and Conditional Stability Theorems

Introduce the notations

M =
{

u :
∞∑

k=1

( 3∑

j=0

μ3−j
k

(
dju+

k (T )
dtj

)2

+ μ3−j
k

(
dju−k (T )

dtj

)2)

≤ m2
}

,

and put

‖ϕ0(x)‖3 =
∞∑

k=1

μ3
k({ϕ+

0k
}2 + {ϕ−0k

}2), ‖ϕ1(x)‖2 =
∞∑

k=1

μ2
k({ϕ+

1k
}2 + {ϕ−1k

}2), (21)

‖ϕ2(x)‖1 =
∞∑

k=1

μk({ϕ+
2k
}2 + {ϕ−2k

}2), ‖ϕ3(x)‖0 =
∞∑

k=1

({ϕ+
3k
}2 + {ϕ−3k

}2). (22)
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Theorem 1. Let a solution u(x, t) ∈M to (1)–(4) exist. Then it is unique.
Proof. Let u1(x, t), u2(x, t) be two solutions to (1)–(4) with the same data.

The function u(x, t) = u1(x, t)− u2(x, t) is a solution to (1)–(4) with the zero data.
Since

‖u(x, t)‖20 =
∞∑

k=1

|u+
k |

2+
∞∑

k=1

|u−k |
2
,

(11) and (20) imply that
∑∞

k=1 |u−k |
2 +
∑∞

k=1 |u+
k |

2 ≤ 0. Therefore, ‖u(x, t)‖0 ≤ 0
and so u(x, t) = 0, or u1(x, t) = u2(x, t) for all (x, t) ∈ �.

Theorem 2. Let a solution u(x, t) ∈M to (1)–(4) exist. Assume that

‖ϕ0(x) − ϕ0ε(x)‖3 ≤ ε, ‖ϕ1(x)− ϕ1ε(x)‖2 ≤ ε,

‖ϕ2(x) − ϕ2ε(x)‖1 ≤ ε, ‖ϕ3(x)− ϕ3ε(x)‖0 ≤ ε.

Then every solution to (1)–(4) for (x, t) ∈ � satisfies the inequality

‖u(x, t)‖0 ≤ �(ε,m),

where �(ε,m) = inft{(2(8ε2)
T−t
T (m2 + s)

t
T e2t(T−t) + s)

1/2
}.

Proof. Assume that a solution to (1)–(4) exists, while (21) and (22) hold.
Consider the difference

U(x, t) = u(x, t)− uε(x, t),
with u(x, t) and uε(x, t) solutions to (1)–(4) with the exact and approximate data,
respectively. The function U(x, t) is a solution to the equation

sgnx
∂4U(x, t)

∂t4
+

∂2U(x, t)
∂x2 = 0

in � satisfying the initial conditions

U(x, 0) = ϕ0(x)− ϕ0ε(x), Ut(x, 0) = ϕ1(x) − ϕ1ε(x),

Utt(x, 0) = ϕ2(x) − ϕ2ε(x), Uttt(x, 0) = ϕ3(x) − ϕ3ε(x), −1 ≤ x ≤ 1,
the boundary conditions

U(−1, t) = U(1, t) = 0, 0 ≤ t ≤ T,

and the gluing conditions

U(−0, t) = U(+0, t), Ux(−0, t) = Ux(+0, t), 0 ≤ t ≤ T.

A solution to this problem satisfies the inequality
∞∑

k=1

{U+
k }

2 ≤ e2t(T−t)

2

∞∑

k=1

(

({v+
kε(0)}2 + |α+

k |)
T−t
T ({U+

k (T )}2 + μ−2
k {U+

k (T )}2tt + |α+
kε|
) t

T

+({ω+
kε

(0)}2 + |β+
kε
|)T−t

T
({U+

k (T )}2 + μ−2
k {U+

k (T )}2tt + |β+
kε
|) t

T
)

,

where
∞∑

k=1

{v+
kε(0)}2 =

∞∑

k=1

(

ϕ+
0k
− ϕ+

0kε
+ μ−1

k (ϕ+
2k
− ϕ+

2kε
)
)2 ≤ 4ε2,

∞∑

k=1

|α+
kε| = 0, 5

∞∑

k=1

∣
∣μk{v+

kε(0)}2 − {v+
kε(0)}2t

∣
∣ ≤ 4ε2,

∞∑

k=1

{ω+
kε(0)}2 ≤ 4ε2,

∞∑

k=1

|β+
k |

2 ≤ 4ε2,
∞∑

k=1

({U+
k (T )}2 + μ−2

k {U+
k (T )}2tt

) ≤ m2.
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Simple transformations lead to the inequality

∞∑

k=1

{U+
k }

2 ≤ (8ε2)
T−t
T (m2 + 4ε2)

t
T e2t(T−t).

Similarly, the expression
∑∞

k=1 {U−k }
2 is estimated as

∞∑

k=1

|U−k (t)|2 ≤ (ε2)1−
t
T

(

m2 + 4T
T∫

0

γ3kε(m, t) dt
) t

T

+ 4T
T∫

0

γ3kε(m, t) dt,

where

γ3kε(m, t) = (2ε2)1−
t
T

(

m2 + 2T
T∫

0

γ2kε(m, t) dt
) t

T

+ 4T
T∫

0

γ2kε(m, t) dt,

γ2kε(m, t) = (3ε2)1−
t
T

(

m2 + 2T
T∫

0

γ1kε(m, t) dt
) t

T

+ 4T
T∫

0

γ1kε(m, t) dt,

γ1kε(m, t) = (4ε2)1−
t
T (m2)

t
T .

Let

s = max
{

4ε2, 4T
T∫

0

γ3kε(m, t) dt
}

.

In this case
‖U(x, t)‖20 ≤ 2(8ε2)

T−t
T (m2 + s)

t
T e2t(T−t) + s.

Hence,
‖U(x, t)‖ ≤ �(ε,m),

where

�(ε,m) = inf
t
{(2(8ε2)

T−t
T (m2 + s)

t
T e2t(T−t) + s)

1/2
}.

3. Approximate Solutions

Without loss of generality, we assume that ϕ1(x) = 0, ϕ2(x) = 0, and ϕ3(x) = 0.
A solution to (1)–(4), if existent, is representable as

u(x, t) =
∞∑

k=1

(
ϕ+

0k

2
cosh(

√
μkt) +

ϕ+
0k

2
cos(
√
μkt)
)

X+
k (x)

+
∞∑

k=1

(

ϕ−0k
cosh

(√
μk

2
t

)

cos
(√

μk

2
t

))

X−k (x),

where

ϕ±0k
=

1∫

−1

sgnxϕ0(x)X±k (x) dx, k = 1, 2, . . . .
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The approximate solution is defined as

uN (x, t) =
N∑

k=1

(
ϕ+

0k

2
cosh(

√
μkt) +

ϕ+
0k

2
cos(
√
μkt)
)

X+
k (x)

+
∞∑

k=1

(

ϕ−0k
cosh

(√
μk

2
t

)

cos
(√

μk

2
t

))

X−k (x),

where N is an integer parameter of regularization, and an approximate solution with
approximate data as

uNε(x, t) =
N∑

k=1

(
ϕ+

0kε

2
cosh(

√
μkt) +

ϕ+
0kε

2
cos(
√
μkt)
)

X+
k (x)

+
∞∑

k=1

(

ϕ−0kε
cosh

(√
μk

2
t

)

cos
(√

μk

2
t

))

X−k (x),

where

ϕ±0kε
=

1∫

−1

sgnxϕ0ε(x)X±k (x) dx, k = 1, 2, . . . .

Let ‖ϕ0(x) − ϕ0ε(x)‖3 ≤ ε and u ∈M . Estimate the difference

‖u− uNε‖0 ≤ ‖u− uN‖0 + ‖uN − uNε‖0. (23)

The second term on the right-hand side of (23) is estimated as

‖uN − uNε‖20 =
N∑

k=1

(
1
2
(ϕ+

0k
− ϕ+

0kε
) cosh(

√
μkt) +

1
2
(ϕ+

0k
− ϕ+

0kε
) cos(

√
μkt)
)2

+
N∑

k=1

(

(ϕ−k − ϕ−kε
) cosh

(√
μk

2
t

)

cos
(√

μk

2
t

))2

≤
N∑

k=1

cosh2(
√
μkt)((ϕ+

0k
− ϕ+

0kε
)2 + (ϕ−0k

− ϕ−0kε
)2) ≤ cosh2(

√
μN t)ε2. (24)

Consider the first term on the right-hand side of (23) taking it into account that
u ∈M . We have

‖u− uN‖20 =
∞∑

k=N+1

|u+
k |

2+
∞∑

k=N+1

|u−k |
2
.

The relations (11) and (20) yield

‖u− uN‖20 ≤ σ2(m,N), (25)

where

σ2(m,N) =
( ∞∑

k=N+1

(1 + 0, 5μk){ϕ+
0k
}2
)T−t

T
(

m2 +
∞∑

k=N+1

0, 5μk{ϕ+
0k
}2
) t

T

e2t(T−t)

+
( ∞∑

k=N+1

{ϕ−0k
}2
)1− t

T
(

m2 + 4T
T∫

0

∞∑

k=N+1

γ3k(t) dt
) t

T

+ 4T
T∫

0

∞∑

k=N+1

γ3k(t) dt
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and σ(m,N)→ 0 as N →∞. In view of (24) and (25), from (23) we obtain that

‖u− uNε‖0 ≤ cosh(
√
μN t)ε + σ(m,N).

As ε → 0, there exists a choice of the parameter N such that cosh(√μN t)ε +
σ(m,N) tends to zero. Indeed, if

ω(t, ε) = inf
N
{cosh(

√
μN t)ε + σ(m,N)}

then we can show that
lim
ε→0

ω(t, ε) = 0. (26)

Assume that δ is sufficiently small. From the equality limN→∞ σ(m,N) = 0 it
follows that there exists N(δ) such that σ(m,N) ≤ δ

2 for all N ≥ N(δ). Put
η(δ) = infN≥N(δ) cosh(√μN t). If ε ≤ 1

2
δ

η(δ) , then ω(t, ε) satisfies the inequality
ω(t, ε) ≤ δ, which proves (26).
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ON THE CARDINALITY OF A FINALLY COMPACT

T1–SPACE OF COUNTABLE PSEUDOCHARACTER

P. V. Chernikov

Abstract. A. V. Arkhangel′skĭı posed the following problem: Estimate the cardinality
of a finally compact T1-space X of countable pseudocharacter. We obtain such an
estimate; namely, we prove that |X| < β, where β is the first measurable cardinal. The
estimate is sharp.

Keywords: countably complete ultrafilter, finally compact space

1. Preliminaries. A topological space X is called finally compact if each finite
covering of X has a countable subcovering of this space.

A topological space X is said to have countable pseudocharacter if each point
in X is representable as the intersection of countably many open sets.

A ultrafilter D over a set A is called countably complete, if
⋂∞

i=1 Ai belongs to D
for all Ai ∈ D, i = 1, 2, . . . .

The cardinality of a set X is called a measurable cardinal if there exists a non-
trivial countably complete ultrafilter over X .

The following problem is formulated in [1, p. 34]: Estimate the cardinality of
a finally compact T1-space of countable pseudocharacter.

At the beginning of the 1980s, I. Juhasz and P. V. Chernikov proved indepen-
dently that if X is a finally compact T1-space of countable pseudocharacter then
|X | < β, where β is the first measurable cardinal [2, p. 31; 3]. Juhasz stated this
without proof. The author’s proof is contained in the rare article [3]. We will provide
this assertion with a proof, so solving the above-formulated problem.

Below we will need

Lemma. Suppose that A is an arbitrary nonempty set, and D is a countably
complete ultrafilter over A, while X is a finally compact T1-space of countable pseu-
docharacter, f ∈ XA. Then there exists a unique point x0 ∈ X such that, for every
neighborhood V of x0,

{i : f(i) ∈ V } ∈ D.

Proof. Suppose that, for every x ∈ X , there is a neighborhood Vx such that
{i : f(i) ∈ Vx} �∈ D. The space X is finally compact, and so we can refine a countable
subcovering {Vxn}∞n=1 of the covering {Vx}x∈X of X . Since

∞⋃

n=1

{i : f(i) ∈ Vxn} = A,

there is a number m for which {i : f(i) ∈ Vxm} ∈ D; a contradiction. Thus, the
existence of x0 is established.

c© 2015 Chernikov P. V.
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Prove uniqueness. Suppose that there exist two different points x1, x2 ∈ X with
the above property. We have

{xj} =
∞⋂

n=1

σj
n, j = 1, 2,

where σj
n are open subsets in X (n = 1, 2, . . . ). Consequently,

Aj = {i : f(i) = xj} =
∞⋂

n=1

{
i : f(i) ∈ σj

n

} ∈ D, j = 1, 2.

Take i0 ∈ A1 ∩ A2. Then f(i0) = x1, f(i0) = x2; a contradiction. The lemma is
proved.

The point x0 is called the D-limit of f ∈ XA [4]. Following [4], we denote this
point by D-lim f .

Theorem 1. Let X be a finally compact T1-space of countable pseudocharac-
ter. Then |X | is a nonmeasurable cardinal.

Proof. Let D be a countably complete ultrafilter over X and let id : X → X
be the identity mapping. Put x0 = D-lim id. By hypothesis, there exist open sets
σn, n ≥ 1, in X such that {x0} =

⋂∞
n=1 σn. For all n ≥ 1, we have σn ∈ D; therefore,

{x0} ∈ D; i.e., D is a principal ultrafilter. The theorem is proved.

Thus, if X is a finally compact T1-space of countable pseudocharacter then
|X | < β, where β is the first measurable cardinal.

This result was known earlier in the case when X is a regular finally compact
space of countable pseudocharacter [1, p. 34; 5, Chapter IV, Problem 119].

Remark. Juhasz proved in [2] that, for every set X0, |X0| < β, there exists
a finally compact T1-space X∗ of countable pseudocharacter such that |X0| < |X∗| <
β. This implies that the (above) estimate |X | < β is sharp.

2. Focus on the convergence of D-limits.

Theorem 2. Suppose that A is an arbitrary nonempty set, and D is a count-
ably complete ultrafilter over A, while X is a finally compact T1-space of countable
pseudocharacter, {fn}∞n=1 ⊂ XA, f ∈ XA. For the sequence {D-lim fn}∞n=1 to
converge to a point D-lim f , it is necessary and sufficient that

S = {i ∈ A : lim
n→∞ fn(i) = f(i)} ∈ D.

Proof. Necessity: Suppose that the sequence {D-lim fn}∞n=1 converges to D-
lim f . Put an = D-lim fn, n ≥ 1, a0 = D-lim f . There exists a countable family of
open sets {σn

k }∞k=1 in X such that

{an} =
∞⋂

k=1

σn
k (n = 0, 1, . . . ).

We have

Mn = {i ∈ A : fn(i) = an} =
∞⋂

k=1

{i ∈ A : fn(i) ∈ σn
k } ∈ D, n ≥ 1,

M0 = {i ∈ A : f(i) = a0} =
∞⋂

k=1

{i ∈ A : f(i) ∈ σ0
k} ∈ D.
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Let M =
⋂∞

n=0 Mn ∈ D. If i0 ∈M then

fn(i0) = an → a0 = f(i0).

Therefore, S ⊃M , and hence S ∈ D.
Sufficiency: Suppose that S belongs to D. Let us show that then the sequence

{D-lim fn}∞n=1 converges to D-lim f . Put an = D-lim fn, n ≥ 1, a0 = D-lim f .
There exists a countable family of open sets

{
V n
k }∞k=1 in X such that

{an} =
∞⋂

k=1

V n
k (n = 0, 1, . . . ).

We infer

Mn = {i ∈ A : fn(i) = an} =
∞⋂

k=1

{i ∈ A : fn(i) ∈ V n
k } ∈ D, n ≥ 1,

M0 = {i ∈ A : f(i) = a0} =
∞⋂

k=1

{i ∈ A : f(i) ∈ V 0
k } ∈ D.

We also have

M =
∞⋂

n=0

Mn ∈ D, S ∩M ∈ D.

If i0 ∈ S ∩M then {D-lim fn}∞n=1 converges to D-lim f . The theorem is proved.
The convergence of D-limits is also considered in [6, 7].
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THE METHOD OF LAGRANGE MULTIPLIERS

FOR SOLVING A MODEL CRACK PROBLEM

A. V. Zhil′tsov and R. V. Namm

Abstract. We consider a method for solving a model crack problem constructed from
modified Lagrangian functionals. The weak lower semicontinuity of the sensitivity func-
tional is proved. Basing on the proven property, a dual method for solving the model
problem is constructed. The results of numerical computations are given.

Keywords: model crack problem, Lagrangian functional, duality method, sensitivity
functional, saddle point, convex programming, minimization, numerical experiment

Introduction

The classical approach to describing the problem of the equilibrium of an elastic
body with a crack consists in that boundary conditions in the form of equalities on
the faces of the crack are given. Many works are devoted to the study of such bound-
ary value problems. At the same time, it is well known that, from the standpoint of
applications, the obtained linear models have an obvious defect: the opposite faces
of the crack can penetrate each other.

The monograph [1] deals with a more complicated model, in which the faces of
the crack cannot penetrate each other. The mutual nonpenetration of the faces of
the crack is attained by defining nonlinear boundary conditions on the faces.

Analysis of similar problems can be found in [2–6]. Various approaches and
tricks are applied for their solving there; numerical computations are also given.

In this article, we consider the possibility of applying modified Lagrangian func-
tionals to solving a crack problem with mutual nonpenetration. In the general case,
solutions to such problems are just H1-smooth, which does not make it possible to
prove the existence of a saddle point for the Lagrangian. However, we can prove
that if the dual problem is solvable then an Uzawa-type algorithm converges to the
solution in the functional. For the classical Lagrangian functionals, the solvability
of the dual problem does not guarantee that.

1. The Modified Duality Scheme

Consider the problem of equilibrium of a membrane containing a cut on whose
faces nonlinear boundary conditions are given [1, p. 58]. We assume that � ⊂ R2 is
a bounded convex domain with boundary � , while γ ⊂ � is a continuous nonclosed
curve without self-intersections (for definiteness, we consider the case when γ is
a rectilinear crack parallel to the axis x2). Put �γ = �\γ.

It is required to find a function u in the domain �γ such that
−�u = f in �γ ,

u = 0 on � ,

[u] ≥ 0, [ux2 ] = 0, ux2 ≤ 0, ux2[u] = 0 on γ.

(1)

c© 2015 Zhil′tsov A. V. and Namm R. V.
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Here f ∈ L2(�) is a given function; ux2 = ∂u
∂x2

is the derivative with respect to
the normal to the crack; [u] = u+ − u− is the jump of the function u on γ (at every
point x ∈ γ, the function takes two values: u+ and u− corresponding to the top and
bottom faces of the crack).

Let
H1

� (�γ) = {v ∈ H1(�γ) : v = 0 on �}.
Problem (1) corresponds to the problem of the minimization of the energy functional

J(v) =
1
2

∫

�γ

|∇v|2 dx−
∫

�γ

fv dx→ min
v∈K

,

K =
{
v ∈ H1

� (�γ) : [v] ≥ 0 a.e. on γ
}
.

(2)

Given m ∈ L2(γ), introduce the set

Km =
{
v ∈ H1

� (�γ) : −[v] ≤ m i.e. on γ
}
.

If m is bounded below then Km is nonempty. But if m ∈ L2(γ)\H1/2(γ) is not
bounded below then Km can be empty.

Given m ∈ L2(γ), define the sensitivity functional

χ(m) =

{
inf

v∈Km

J(v) if Km 
= ∅,
+∞ if Km = ∅.

Its effective domain domχ = {m ∈ L2(γ) : χ(m) < +∞} is a convex nonclosed set
in L2(γ); moreover, domχ = L2(γ).

Under the condition that m ∈ domχ, by the coerciveness of l J(v), the problem

J(v) =
1
2

∫

�γ

|∇v|2 dx−
∫

�γ

fv dx→ min
v∈Km

,

Km =
{
v ∈ H1

� (�γ) : −[v] ≤ m a.e. on γ
} (3)

has a unique solution which we will denote by um = argmin−[v]≤m J(v). Then, by
definition, χ(m) = J(um), and χ(0) = inf−[v]≤0 J(v) = J(u).

Show that χ(m) is a convex functional on domχ. Suppose that m′,m′′ ∈ L2(γ)
and χ(m′) = J(v′), χ(m′′) = J(v′′). We have

−[v′] ≤ m′, −[v′′] ≤ m′′.

Multiplying the above inequalities by (1 − λ) and λ (for 0 ≤ λ ≤ 1), and summing
up the results, we infer

−(1− λ)[v′]− λ[v′′] ≤ (1− λ)m′ + λm′′, λ ∈ (0, 1).

Then

χ((1 − λ)m′ + λm′′) = inf
−[v]≤(1−λ)m′+λm′′

J(v)

≤ J((1− λ)[v′] + λ[v′′]) ≤ (1 − λ)J(v′) + λJ(v′′)

= (1 − λ)χ(m′) + λχ(m′′).

Lemma 1. If {ui} is a bounded sequence in H1(�γ) then {[ui]} is a compact
sequence in L2(γ).
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�

�
�

�

�

��

�′

�′′

γ

Fig. 1

Proof. Assume that γ can be extended to the
intersection with the exterior boundary � so that �
is partitioned into two subdomains �′ and �′′, with
Lipschitz boundaries ∂�′ and ∂�′′ respectively and,
moreover, γ+ = ∂�′′∩γ and γ− = ∂�′∩γ (Fig. 1).
The embeddings H1(�′) ⊂ H1/2(∂�′) ⊂ H1/2(γ−)
and H1(�′′) ⊂ H1/2(∂�′′) ⊂ H1/2(γ+) are contin-
uous; hence, the following estimates for the norms
hold:

‖u′‖H1/2(γ−) ≤ C1‖u′‖H1(�′),

‖u′′‖H1/2(γ+) ≤ C2‖u′′‖H1(�′′),

where u′ and u′′ are the restrictions of some function u (possibly taking different
values on γ− and γ+) on �′ and �′′ respectively.

Summing them up the squares of these inequalities, we get

‖u′′‖2H1/2(γ+) + ‖u′‖2H1/2(γ−) ≤ C2‖u′′‖2H1(�′′) + C1‖u′‖2H1(�′), C1, C2 > 0,

or else ‖u+‖2H1/2(γ) + ‖u−‖2H1/2(γ) ≤ max{C1, C2}‖u‖2H1(�γ).
From the well-known inequality ‖u− v‖2X ≤ 2

(‖u‖2X + ‖v‖2X
)

we infer

‖u+‖2H1/2(γ) + ‖u−‖2H1/2(γ) ≥
1
2
‖u+ − u−‖2H1/2(γ).

Here, on the right-hand side, we have obtained the norm of the jump of the function.
Thus, ‖[u]‖H1/2(γ) ≤ C‖u‖H1(�γ), where C =

√
2 max{C1, C2}.

This means that if {ui} is a bounded sequence in H1(�γ) then {[ui]} is a bound-
ed sequence in H1/2(γ). The space H1/2(γ) is compactly embedded in L2(γ), which
implies that {[ui]} is a compact sequence in L2(γ). �

It is necessary to clarify that [u] ∈ H
1/2
00 (γ). The norm in H

1/2
00 (γ) is defined as

follows:
‖v‖2

H1/2
00 (γ)

= ‖v‖2H1/2(γ) + ‖ v√
ρ
‖2L2(γ),

where ρ(x) = dist(x, ∂γ) (see [1, p. 53]).

Theorem 1. The sensitivity functional χ(m) is weakly semicontinuous on L2(γ).
Proof. Since χ(m) is convex, for proving the theorem, it suffices to show that

it is lower semicontinuous (in norm-convergence) in L2(γ). Take an arbitrary conver-
gent sequence {mi} ⊂ L2(γ); let m = limi→∞mi. The sensitivity functional χ(m)
is lower semicontinuous if the following are fulfilled:

(1) lim
i→∞

χ(mi) = +∞ for m /∈ domχ;

(2) lim
i→∞

χ(mi) ≥ χ(m) for m ∈ domχ.

Consider the two cases consecutively. In proving the theorem, we may confine
exposition to a sequence {mi} from the effective domain χ(m), mi ∈ domχ, since,
outside the domain, the functional takes the value +∞ and the inequality of lower
semicontinuity holds.

1. Let m /∈ domχ. Consider the sequence {umi}, where umi = argminv∈Kmi
J(v).

Prove that limi→∞ ‖umi‖H1(�γ) = +∞. Suppose the contrary, i.e., suppose that
a sequence {umi} has a bounded subsequence. Assume without loss of generality
that {umi} is itself bounded in H1(�γ). By Lemma 1, {[umi ]} is a compact sequence
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in L2(γ). Let t ∈ H1/2
00 (γ) be a weak limit point of this sequence which, without loss

of generality, we will assume to be the weak limit. Then {[umi]} converges to t in
the norm in L2(γ).

Since mi −→ m in L2(γ) and umi −→ t in L2(γ), the condition −[umi ] ≤ mi

implies that −t ≤ m, and this means that Km 
= ∅ or m ∈ domχ. The obtained
contradiction shows that limi→∞ ‖umi‖H1(�γ) = +∞.

The coerciveness of J(v) yields

lim
i→∞

χ(mi) = lim
i→∞

J(umi) = +∞.

2. Suppose now that m ∈ domχ. From the sequence {mi} extract a subsequence
{mj} ⊂ {mi} for which

lim
j→∞

χ(mj) = lim
i→∞

χ(mi).

As above, consider the sequence {umj}, where umj = argminv∈Kmj
J(v).

If the sequence {umj} is not bounded in H1(�γ) then, by the coerciveness of
the functional, J(umi) −→ +∞, and then limi→∞ χ(mi) = +∞, and the desired
inequality of lower semicontinuity holds.

In the case when the sequence {umj} is bounded in H1(�γ), again argue as in
the first part of the proof and obtain −t ≤ m.

Let ũ = argmin[v]=t on γ J(v). We have

J(umj )− J(ũ) =
1
2

∫

�γ

|∇umj |2 d�−
∫

�γ

fumj d�−
1
2

∫

�γ

|∇ũ|2 d� +
∫

�γ

fũ d�

=
1
2

∫

�γ

|∇(ũ + (umj − ũ))|2 d�− 1
2

∫

�γ

|∇ũ|2 d�−
∫

�γ

f(umj − ũ) d�

=
∫

�γ

∇ũ∇(umj − ũ) d� +
1
2

∫

�γ

|∇(umj − ũ)|2 d�−
∫

�γ

f(umj − ũ) d�

= 〈	, [umj − ũ]〉+ 1
2

∫

�γ

|∇(umj − ũ)|2 d�,

where
〈	, [v]〉 =

∫

�γ

∇ũ∇v d�−
∫

�γ

fvd�;

moreover, 	 ∈ H−1/2
00 (γ) [1, 7].

Since {[umj ]} converges weakly to t in H1/2
00 (γ), by the uniqueness of the weak

limit, we infer
lim
j→∞
〈	, [umj − ũ]〉 = 0.

Therefore, we have the estimate

lim
j→∞

J(umj ) ≥ J(ũ) ≥ χ(m);

consequently,
lim
j→∞

χ(mj) ≥ χ(m). �
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In H1(�γ)× L2(γ), define the modified Lagrangian functional

M(v, l) = J(v) +
1
2r

∫

γ

(((l − r[v])+)2 − l2) dσ,

where r = const > 0, (l − r[v])+ = max{0, l− r[v]}.
Definition 1. A pair (v∗, l∗) ∈ H1(�γ)×L2(γ) is called a saddle point of the

functional M(v, l) if the two-sided inequality

M(v∗, l) ≤M(v∗, l∗) ≤ (v, l∗), (v, l) ∈ H1(�γ)× L2(γ)

holds.

The dual functional for M(v, l) has the two equivalent representations [8]:

M(l) = inf
v∈H1(�γ )

{
J(v) +

1
2r

∫

γ

(((l − r[v])+)2 − l2) dσ
}
, (4)

M(l) = inf
m∈L2(γ)

{
χ(m) +

∫

γ

lm dσ +
r

2

∫

γ

m2 dσ

}
, (5)

where χ(m) is the above-defined sensitivity functional.
Using the same scheme as in [9], we can prove the following

Theorem 2. The dual functional M(l) is continuous in L2(γ).

Theorem 3. The dual functional M(l) is Gâteaux differentiable in L2(γ) and
its derivative ∇M(l) is Lipschitz continuous with constant 1/r; i.e.,

‖M(l1)−M(l2)‖L2(γ) ≤ 1
r
‖l1 − l2‖L2(γ), l1, l2 ∈ L2(γ).

Consider the dual problem

M → max, l ∈ L2(γ). (6)

For solving problem (6), we can use the gradient maximization method [9–11]

lk+1 = lk + θkm(lk), k = 0, 1, 2, . . . (l0 ∈ L2(γ)), (7)

where

m(lk) = argmin
m∈L2(γ)

{
χ(m) +

∫

γ

lkmdσ +
r

2

∫

γ

m2 dσ

}
, θk ∈ [β, 2r − β], β ∈ (0, r].

Theorem 4. Algorithm (7) satisfies the limit equality [9]

lim
k→∞

‖m(lk)‖L2(γ) = 0.

Algorithm (7) is rewritten as [8]:

uk+1 = argmin
v∈H1(�γ)

{
J(v) +

1
2r

∫

γ

(((lk − r[v])+)2 − (lk)2) dσ
}

lk+1 = lk + θk max
{
− uk+1,− lk

r

}
, l0 ∈ L2(γ), θk ∈ [β, 2r − β], β ∈ (0, r]. (8)

Under the condition of the solvability of (6), algorithm (8) converges in the func-
tional; i.e.,

lim
k→∞

J(uk) = min
v∈K

J(v) = J(u∗).

Here u∗ is the solution to (2).
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Indeed, χ(m) is a weakly lower semicontinuous functional on L2(γ). Therefore,

lim
k→∞

{
χ(m(lk)) +

∫

γ

lkm(lk) dσ +
r

2

∫

γ

m2(lk) dσ
}

= lim
k→∞

χ(m(lk)) ≥ χ(0) = J(u∗).

On the other hand,

M(lk) = χ(m(lk)) +
∫

γ

lkm(lk) dσ +
r

2

∫

γ

m2(lk) dσ

= inf
m∈L2(γ)

{
χ(m) +

∫

γ

lkmdσ +
r

2

∫

γ

m2 dσ

}
≤ χ(0), k = 0, 1, 2, . . . .

Therefore,

lim
k→∞

{
χ(m(lk)) +

∫

γ

lkm(lk) dσ +
r

2

∫

γ

m2(lk) dσ
}
≤ χ(0).

Consequently, there exists a limit

lim
k→∞

{
χ(m(lk)) +

∫

γ

lkm(lk) dσ +
r

2

∫

γ

m2(lk) dσ
}

= χ(0) = J(u∗).

Then Theorem 4 implies that
lim
k→∞

J(uk) = lim
k→∞

χ(m(lk)) = χ(0) = J(u∗).

Under the assumption that the solution u∗ to the initial problem belongs to H2(�γ),
we can prove [9] that method (8) converges to a saddle point (u∗, l∗) ∈ H1(�γ) ×
L2(γ) of the Lagrangian functional.

2. A Numerical Experiment by
the Finite Element Method

Let � = {(x1, x2) ∈ R2 : 0 < x1 < 1, 0 < x2 < 1} and γ = {(x1, x2) ∈ R2 :
0.2 < x1 < 0.8, x2 = 0.4}. The domain � was triangulated with the use of the
uniform mesh with meshsize h = 1/20. The criteria of finishing the calculations on
the internal and external iterations are as follows:

max
i

∣∣u(n+1)
i − u(n)

i

∣∣ ≤ ε, max
i

∣∣l(n+1)
i − l(n)

i

∣∣ ≤ 102ε,

respectively, where ε = 10−8. The parameter r ∈ {1, 10, 102, 103, 104}. The starting
point (u(0), l(0)) is taken to be equal to (0, 0).

Fig. 2
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As f , we took piecewise-constant functions. We considered the three different
variants of f (Fig. 2) giving fundamentally different solutions.

Fig. 3. The form of the plate for f1

Fig. 4. The form of the plate for f2

Fig. 5. The form of the plate for f3

We considered the effect caused by each of the versions of the definition of f ,
gave the number of external and internal iterations and the implementation time for
the demonstration of the complexity of the problems being solved with respect to
each other (Table 1).

In the first variant, the faces of the crack diverge completely (Fig. 3), and this
means that the dual variable corresponding to the value of the jump of the normal
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Table 1. The relative complexity of the problems solved

r f Number of internal Number of external Implementation
iterations iterations time (ms)

f1 438 1 11
1 f2 5172 125 134

f3 4510 124 117
f1 348 1 11

10 f2 1277 22 33
f3 1108 22 28
f1 438 1 11

102 f2 644 6 17
f3 536 6 14
f1 438 1 11

103 f2 484 4 12
f3 404 4 10
f1 438 1 11

104 f2 394 3 11
f3 342 3 9

Fig. 6. Dependence of the number of internal iterations on r

derivative on γ, vanishes at all points of γ. Since we initially took the zero function
for the dual variable l, only one iteration of the external cycle is implemented.

For the second example, the constraints of the problem do not allow the faces
to diverge (Fig. 4), so that the jump of u on γ is zero; in addition, the dual variable
takes nonzero values.

In the third variant, the faces of the crack diverged to parts of the crack (Fig. 5).
In studying the modified duality methods, the parameter r can be defined arbi-
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Fig. 7. Dependence of the number of external iterations on r

Fig. 8. Dependence of the implementation time on r

trarily; moreover, by Theorem 3, as r increases, the convergence rate of the solution
to the dual problem also increases. Figs. 6–8 contain the graphs of the number of
internal and external iterations and of the run time of the algorithm depending on r.
The graphs are presented in the logarithmic scale. The value of f depicted in Fig. 4
was used. The solution was searched for with accuracies ε1 = 10−8, ε2 = 10−10,
and ε3 = 10−12.

The graphs show that the increase of r leads stably to the asymptotic decrease
of the number of iterations and the run time of the algorithm.
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UNIFORM PARTITION OF A SPHERE

AND APPLICATION TO COMPUTING

THE IRRADIANCE COEFFICIENTS
M. F. Semenov and V. Yu. Shadrin

Abstract. We propose a method of uniform partition of a sphere which can be applied
for the numerical integration of surface integrals over the sphere. The results of numerical
experiments for calculating the irradiance coefficients are given.

Keywords: sphere, partition, nodes of a cubature formula, irradiance coefficient

Consider the sphere with center the origin O(0, 0, 0) and radius R. Choose a natural
number n and put α = αn = π

2n+1 . Around the north pole with coordinates (0, 0, R),
circumscribe a segment with central angle αn and then partition the upper hemi-
sphere from top downward into n layers with identical central angles αn. The area
of the segment at the pole is equal to

S = 2πRh, where h = R−R cos
αn

2
.

If we number the layers from top downward by i = 1, 2, . . . , n then the area of the
ith layer equals

Si = 2πRhi,

where hi = R sin (n− i + 1)αn −R sin (n− i)αn = 2R sin αn
2 sin iαn.

Consider the ratio of the area of the ith layer Si to the area of the pole S:

μni =
Si

S
=

2 sin iαn

tan αn
4

.

The integer part [μni] of this number means the number of the equiareal sectors with
the areas equal to the area of the pole which constitute the ith pole.

Put ϕi = π
2 − αni and θij = π(2j−1)

μni
, i = 1, 2, . . . , n, j = 1, 2, . . . , [μni].

Define an ordered set of uniformly distributed points on the upper hemisphere
UN = {(xij , yij , zij)}. The coordinates of the points are calculated by the formulas

xij = R cosϕi cos θij , yij = R cosϕi sin θij , zij = R sinϕi,

i = 1, 2, . . . , n, j = 1, 2, . . . , [μni].

Similarly, define an ordered set of uniformly distributed points on the lower
hemisphere US = {(xij , yij , zij)}. The coordinates of the points are calculated by
the formulas

xij = R cosϕi cos θij , yij = R cosϕi sin θij , zij = −R sinϕi,

i = 1, 2, . . . , n, j = 1, 2, . . . , [μni].

c© 2015 Semenov M. F. and Shadrin V. Yu.
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To these sets, add the north pole PN with coordinates

x2n+1,1 = 0, y2n+1,1 = 0, z2n+1,1 = R

and the south pole PS with coordinates

x2n+2,1 = 0, y2n+2,1 = 0, z2n+2,1 = −R.

Thus, we obtain an ordered set of points (nodes) that are distributed uniformly over
the whole sphere:

U = UN ∪ US ∪ PN ∪ PS .

Theorem 1. The following hold:
(1) lim

n→∞μn1 = 8;

(2) lim
n→∞

μnn

n = 16
π ;

(3) 16
π ≤ μni

i ≤ 8, i = 1, 2, . . . , n.
Proof. (1) We have

lim
n→∞μn1 = lim

n→∞
μn1

1
= lim

n→∞
2 sinαn

tan αn

4
= lim

n→∞
2 sin π

2n+1

tan π
4(2n+1)

= 8.

This means that, in the first layer near the north pole, as n → ∞, the number of
the sectors of the area equal to the area of the pole tends to 8. Note that, as was
shown in [1], in the planar case, under a similar partition of the disk, the first ring
contains exactly 8 sectors of area equal to the area of the central disk.

(2) We infer

lim
n→∞

μnn

n
= lim

n→∞
1
n
· 2 sinnαn

tan αn
4

= lim
n→∞

1
n
· 2 sinn π

2n+1

tan
( 1

4 · π
2n+1

) = 2· lim
n→∞

4(2n + 1)
nπ

=
16
π
.

(3) Obviously, 16
π ≤ μni

i ≤ 8 for all i = 1, 2, . . . , n. The theorem is proved.

Consider an application of the proposed partition for the approximate calcula-
tion of the irradiance coefficients in the radiant heat exchange between surfaces one
of which is a sphere.

The set of nodes U can be taken as nodes for a cubature formula analogous to
the formula proposed in [1, 2].

The irradiance coefficient (angular coefficient) F1−2 from surface 1 with area A1
to surface 2 with area A2 is defined as follows (see [3]):

F1−2 =
1
A1

∫∫

A1A2

cosβ1 cosβ2 dA1dA2

πR2 , (1)

where R is the distance from the area element dA1 on A1 to the area element dA2
on A2, β1, and β2 are the angles between R and the normal vectors �N1 and �N2 to dA1
and dA2 respectively directed towards the other surface. The irradiance coefficient
shows the share of the radiant flow getting onto surface 2 in the entire flow radiated
by surface 1.

Carry out the approximate calculation of the surface integral of the second
kind (1) by a cubature formula that is a multidimensional analog of the mean rectan-
gle formula based on the definition of this integral. The idea consists in partitioning
the surfaces that are involved in the radiant heat exchange into area elements and
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choosing the “mean” points of these surfaces as the nodes of the cubature formula.
Then the cubature formula takes the form

F1−2 =
1

πA1

n1∑

i1=1

m1∑

j1=1

n2∑

i2=1

m2∑

j2=1

f(Mi1j1 ,Mi2j2)�si1j1�si2j2 , (2)

where n1 ×m1 is the number of area elements on surface 1, n2 ×m2 is the number
of area elements on surface 2, Mi1j1 ∈ �si1j1 and Mi2j2 ∈ �si2j2 are the nodes of
the cubature formula,

f(Mi1j1 ,Mi2j2) =
cosβ1 cosβ2

R2
12

,

�R12 =
−−−−−−−→
Mi1j1Mi2j2 , �R21 =

−−−−−−−→
Mi2j2Mi1j1 ,

β1 = ∠( �N1, �R12), β2 = ∠( �N2, �R21),

�si1j1 and �si2j2 are the areas of the area elements. The cosines are calculated
through the inner product:

cosβ1 =
�N1 · �R12

| �N1||�R12|
, cosβ2 =

�N2 · �R21

| �N2||�R21|
.

The four-fold summation (2) includes only the summands with angles involved in
the radiant heat exchange, i.e., only the summands for which cosβ1 > 0, cosβ2 > 0.

Table 1 contains the results of the computations for embedded concentric spheres
with common center and radii R1 = 2 and R2 = 1. Obviously, the irradiance coeffi-
cient of the exterior sphere from the interior sphere is equal to 1. The first column
contains the values of the area of the area elements �S. In the second column, UP
stands for the “uniform partition,” GP designates the “geographic partition.” Under
the uniform partition (Fig. 1), all area elements have the almost identical indicated
area; under the geographic partition (Fig. 2), the areas situated above and below
the “equator” have the almost identical indicated area; the remaining area elements
obviously have lesser area. However, a refinement of the mesh near the “poles” in the
geographic partition does not lead to an improvement of the computation results.
As is seen from Table 1, the cubature formula converges as the number of the nodes
of the partition of the sphere grows; here the uniform partition is preferable not only
as regards the computation rate but also the exactness of the cubature formula.

Fig. 1. The uniform partition Fig. 2. The geographic partition

Table 2 contains the results of the test problem of calculating the irradiance
coefficient from a sphere of radius R = 1 onto the interior surface of a cube containing
the sphere. The centers of the cube and the sphere coincide, and the edge of the
cube is equal to 4.
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Table 1. Numerical results for embedded spheres

Area Partition Number of nodes Number of nodes Error Computation time

�S method S1 S2 in seconds

0.0671150 UP 726 202 0.000115448 < 1

GP 2354 589 0.005913457 < 1

0.0082660 UP 6060 1574 0.000002844 < 1

GP 19105 4777 0.000800807 4

0.0046685 UP 10676 2746 0.000007244 1

GP 33826 8457 0.000463989 11

0.0021060 UP 23788 6060 0.000000447 7

GP 74984 18747 0.000210775 67

0.0011890 UP 42094 10676 0.000000200 20

GP 132813 33204 0.000119545 130

0.0006285 UP 79290 20022 0.000000145 70

GP 251256 62815 0.000063867 480

0.0003915 UP 128128 32294 0.000000122 190

GP 403356 100840 0.000039819 1335

0.0001925 UP 260866 65590 0.000000106 780

GP 820332 205084 0.000019831 5460

By the closedness property of the irradiance coefficient, the sum of the irradi-
ance coefficients onto separate faces of the cube must equal 1. Each of the faces of
the cube was partitioned into 400×400 elementary squares of area 0.0001, an elemen-
tary sector of the sphere has area 0.0001181 in the uniform partition, the greatest
elementary sector near the “equator” in the geographic partition has the same area
0.0001181. Here FS−i stands for the irradiance coefficient of the sphere onto the ith
face, and ε is the computation error.

Table 2. Numerical results for a sphere embedded in a cube

Uniform partition Geographic partition

FS−1 0.1667937281 0.1666543690

FS−2 0.1667937281 0.1666543690

FS−3 0.1666035189 0.1666656458

FS−4 0.1666035191 0.1666656458

FS−5 0.1666035189 0.1666656457

FS−6 0.1666035191 0.1666656458

Sum 1.0000015322 0.9999713211

ε 0.0000015322 −0.0000286789

As we see, the results of the numerical experiment also show that the application
of the nodes of the above-proposed uniform partition is preferable to the usual
geographic partition.
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