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LINEAR INSTABILITY OF SOLUTIONS TO

A MATHEMATICAL MODEL THAT DESCRIBES THE

FLOWS OF POLYMERS IN AN INFINITE CHANNEL
A. M. Blokhin, D. L. Tkachev,

and A. V. Yegitov

Abstract. We study the new rheological model that describes the flow of an incom-
pressible viscoelastic polymer fluid. We establish the linear Lyapunov instability of an
analog of the Poiseuille flow for the Navier–Stocks system in an infinite flat channel.

Keywords: incompressible viscoelastic polymer fluid, rheological relation, Brownian
particle, dumbbell, Poiseuille-type solutions, well-posedness of the mixed problem, linear
instability.

1. Introduction

In the article we study the new rheological model accounting for nonlinear
effects in a moving polymer medium being a suspension of noninteracting elastic
dumbbells [1]. Each dumbbell is formed by two Brownian particles connected by
an elastic force and moving in an anisotropic fluid formed by a solvent and other
dumbbells.

This model based on a new rheological relation establishing the connection
between the kinematic characteristics of a flow and interior thermodynamics param-
eters is a modification of the celebrated Pokrovskĭi–Vinogradov model [2, 3]. In the
author’s opinion of the models, the model demonstrates its high effectiveness under
the numerical study of polymer flows in domains with complex geometry [4, 5].

In the article we examine the question of linear stability of an experimentally
observable analog of the Poiseuille flow for the Navier–Stokes system.

2. Statement of the Problem, Auxiliary
Facts, and Statement of the Main Results

In [1] there is given the new mathematical model that describes flows of an
incompressible viscoelastic polymer fluid. In the plane case the nonstationary flows
of polymer media are described with the help of the following rheological model (in
dimensionless form):

ux + vy = 0, (2.1)
du

dt
+ px =

1
Re
{(a11)x + (a12)y}, (2.2)

dv

dt
+ py =

1
Re
{(a12)x + (a22)y}, (2.3)

da11

dt
− 2A1ux − 2a12uy + KIa11 = −β(a2

11 + a2
22
)
, (2.4)
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da12

dt
−A1vx −A2uy + K̃Ia12 = 0, (2.5)

da22

dt
− 2A2vy − 2a12vx + KIa22 = −β(a2

12 + a2
22
)
. (2.6)

Here t is time, u and v are the components of the velocity in a Cartesian coordinate
system (x, y), while p is the hydrostatic pressure, aij is the symmetric anisotropy
tensor of the second rank, and d

dt = ∂
∂t + (u,∇) is the substantial derivative.

The remaining quantities are defined as follows: I = a11 + a22 is the first
invariant of the anisotropy tensor, k̄ = k − β, k, β are the scalar phenomenological
parameters of the rheological model (0 < β < 1), η0 and τ0 are the initial values of
the shear viscosity and the relaxation time,

A1 = a11 +
1
W

, A2 = a22 +
1
W

,

KI =
1
W

+
k̄

3
I, K̃I =

1
W

+
k̂

3
I = KI + βI,

k̂ = k + 2β = k̄ + 3β,

Re =
ρuH l

η0
is the Reynolds number,

ρ (= const) is the density of a medium, uH is the characteristic velocity, l is the
characteristic length, and W = τ0uH

l is the Weissenberg number (see [5]).

Remark 1. The Reynolds and Weissenberg numbers occur in the rheological
model (2.1)–(2.6) as well as the phenomenological parameters k and β defining the
process of a physical experiment. It follows from [6] that the most adequate relation
in experiments with polymer fluids is the equality k = 1.2β.

The linear system of equations was obtained in [7] arising as linearization of the
system (2.1)–(2.6) with respect to a chosen stationary solution (in what follows its
components are furnished with )̂ in the case of a fluid in an infinite flat channel.

In vector form it is written as follows: In the domain

G = {(t, x, y) | t > 0, (x, y) ∈ � = {(x, y) | |x| <∞, 0 < y < 1}},

the problem is to find a solution to the system of equations

Ut + B̂Ux + ĈUy + R̂U + F = 0, (2.7)

�� =
1
Re
{σxx + 2(a12)xy} − 2ω̂vx. (2.8)

Here U =

⎛

⎜
⎜
⎜
⎝

u
v
a11
a12
a22

⎞

⎟
⎟
⎟
⎠

is an unknown vector-function, σ = a11 − a22, � = p − 1
Rea22,

the matrices B̂ = B(Û), Ĉ = C(Û ), R̂ = R(Û) are written out with the use of the
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components of the stationary solution Û(y) as follows:

Û(y) =

⎛

⎜
⎜
⎜
⎝

û(y)
0

â11(y)
â12(y)
â22(y)

⎞

⎟
⎟
⎟
⎠

, B̂ =

⎛

⎜⎜
⎜
⎜
⎝

û 0 − 1
Re 0 0

0 û 0 − 1
Re 0

−2Â1 0 û 0 0
0 −Â1 0 û 0
0 −2â12 0 0 û

⎞

⎟⎟
⎟
⎟
⎠

,

Ĉ =

⎛

⎜⎜
⎜
⎜
⎝

0 0 0 − 1
Re 0

0 0 0 0 − 1
Re−2â12 0 0 0 0

−Â2 0 0 0 0
0 −2Â2 0 0 0

⎞

⎟⎟
⎟
⎟
⎠

, R̂ =

⎛

⎜⎜
⎜
⎝

0 ω̂ 0 0 0
0 0 0 0 0
0 â′11 R33 R34 R35
0 â′12 R43 R44 R45
0 â′22 R53 R54 R55

⎞

⎟⎟
⎟
⎠

,

(2.9)
where

Â1 = â11 +
1
W

, Â2 = â22 +
1
W

,

R33 =
1
W

+
k̄

3
Î +

k + 5β
3

â11, R34 = −2(ω̂ − βâ12), ω̂ = ûy, R35 =
k̄

3
â11,

R43 =
k̂

3
â12, R44 =

1
W

+
k̂

3
Î , R45 = −ω̂ +

k̂

3
â12,

R53 =
k̄

3
â22, R54 = 2βâ12, R55 =

1
W

+
k̄

3
Î +

k + 5β
3

â22,

F =

⎛

⎜⎜
⎜
⎝

px
py
0
0
0

⎞

⎟⎟
⎟
⎠

, and � designates the Laplace operator.

We assume the fulfillment of the boundary conditions

u|y=0 = v|y=0 = u|y=1 = v|y=1 = 0; (2.10)

�y =
1
Re

(a12)x for y = 0, 1, (2.11)

‖U(t, x, y)‖ = (U,U)
1
2 → 0, p(t, x, y)→ 0, px(t, x, y)→ 0 as |x| → ∞ (2.12)

on the boundary of G and the initial conditions

U |t=0 = U0(x, y), p|t=0 = p0(x, y), (2.13)

with the initial data satisfying (2.8) and (2.12).
Remark 2. As the basic solution, we can take, for example, a solution that

similar to the Poiseuille solution for the Navier–Stokes system (see [4, 8, 9]), which
is symmetric with respect to the axis y = 1

2 of the channel (in this case p̂(x, y) =
1
Re â22(y)+ p̂0 = Âx, p̂0 is the value of the pressure on the axis and Â is a parameter
connected with the dimensionless change of the pressure on the segment h).

Remark 3. It is proven in [7] that the system (2.7) for a given pressure p(t, x, y)
is t-hyperbolic [10] whenever Â1 > 0, Â2 > 0 and Â1Â2 − â2

12 > 0 (see the repre-
sentation (2.9) of the matrices B̂ and Ĉ). These inequalities are valid, in particular,
when the «Poiseuille solution» is taken as the basic solution (for k = β, this fact
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Fig. 1

is verified directly and, for k �= β, numerically). The information about the roots
of the characteristic equation plays an essential role in posing mixed problems for
t-hyperbolic systems.

In view of the geometry of �, the system of equations (2.7) and the Poisson
equation (2.8) admit the Fourier transform in the variable x. Therefore, we consider
the problem (2.7), (2.8), (2.10)–(2.13) assuming that u, v ∈ D′+,a

(
P ′x(R), C1

y [0, 1]
)
,

the pressure p and the components of the anisotropy tensor a11, a12, a22 belong to the
class D+,a

(
P ′x(R), C2

y [0, 1]
)
, where D′+,a

(
P ′x(R), C1

y [0, 1]
)
, and D+,a

(
P ′x(R), C2

y [0, 1]
)

are the spaces of distributions u(t, x, y) vanishing for t < 0 and such that u(t, x, y)e−σt

∈ P+,t for all σ > a, P ′+ = D′+ ∩P , D′+ is the collection of distributions from D′(R)
vanishing for t < 0, P is the space of tempered distributions [11, 12] in the variables
x belonging to the spaces C1

y [0, 1] and C2
y [0, 1], respectively, in the variable y. The

index in the notation of the space, for example in Px(R) denotes the active variable.
Thus, the mixed problem (2.7), (2.8), (2.10)–(2.13) is understood to be the

boundary value problem for generalized functions in the variables t, y, and x, and
the initial data (2.13) are fulfilled in the sense of passing to the limit as t → +0
[11, 12].

The following are valid:

Theorem 1. The mixed problem (3.4)–(3.6) has the unique solution in
D′+,a(Cy [0, 1]) for every real parameter ξ (ξ is the dual variable to x).

Theorem 2. A solution to the mixed problem (3.4)–(3.6) as |ξ| → ∞ does not
belong to the space D′+,a(Cy [0, 1]) for every positive a. Thus, the problem is not
well-posed in D+,a.

3. Statement of the One-Dimensional Problem
with a Parameter. Proof of Theorem 1

Consider (2.8) together with the boundary conditions (2.11), (2.12) and apply
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the Fourier transform in x to this problem. We obtain the boundary value problem

�̃yy − ξ2�̃ = −ξ2 1
Re

(ã11 − ã22)− 2iξ
Re

(ã12)y + 2iξω̂ṽ, 0 < y < 1, (3.1)

�̃y = − iξ

Re
ã12 for y = 0, 1 (3.2)

(it is assumed that the basic stationary solution depends only on y, in what follows
the symbol ,̃ used to denote the Fourier images of functions, is omitted).

The Green’s function of the boundary value problem (3.1), (3.2) (ξ is a real
parameter, ξ �= 0) is of the form

G(y, η) =

{ − 1
2ξ(e2ξ−1) (e

ξη + e−ξηe2ξ)(eξy + e−ξy), 0 ≤ y ≤ η,

− 1
2ξ(e2ξ−1) (e

ξη + e−ξη)(eξy + e−ξye2ξ), η < y ≤ 1.
(3.3)

Applying the Fourier transform, we can find a solution to (3.1), insert it in the
right-hand side F , and derive the system

Ut + C̃Uy + (−iξB̃ + R̂)U + F = 0, 0 < y < 1, (3.4)

where

C̃ =

⎛

⎜
⎜⎜
⎝

0 0 0 − 1
Re 0

0 0 0 0 0
−2â12 0 0 0 0
−Â2 0 0 0 0

0 −2Â2 0 0 0

⎞

⎟
⎟⎟
⎠

, B̃ =

⎛

⎜
⎜
⎜⎜
⎝

û 0 − 1
Re 0 1

Rea22

0 û 0 − 1
Re 0

−2Â1 0 û 0 0
0 −Â1 0 û 0
0 −2â12 0 0 û

⎞

⎟
⎟
⎟⎟
⎠

,

and the components −iξp and py of F (t, ξ, y) =

⎛

⎜⎜
⎜
⎝

−iξp
py
0
0
0

⎞

⎟⎟
⎟
⎠

are determined with the

use of the Green’s function (3.3).
Moreover, the components u and v of the velocity satisfy the boundary condi-

tions
u|y=0 = v|y=0 = u|y=1 = v|y=1 = 0, (3.5)

and the unknown vector-function U(t, x, y) the initial condition

U |t=0 = U0(ξ, y). (3.6)

Simplify (3.4) reducing the matrix C̃ to upper Jordan form [13]. Note that the
eigenvalues of C̃ are such that

λ1,2,3 = 0, λ4,5 = ±
√

Â2

Re
(3.7)

(it is assumed that the condition of t-hyperbolicity of (2.7) is fulfilled and thereby
Â2 > 0 on [0, 1] as it noted in Remark 3).

Direct calculations demonstrate that the Jordan form of C̃ is of the form

K =

⎛

⎜
⎜
⎜
⎜⎜
⎝

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0

√
̂A2
Re 0

0 0 0 0 −
√
̂A2
Re

⎞

⎟
⎟
⎟
⎟⎟
⎠

. (3.8)



6 A. M. Blokhin, D. L. Tkachev, and A. V. Yegitov

After the change
U = TZ (3.9)

of the unknown vector-function, (3.4) is transformed equivalently to the system with
a block-diagonal matrix K (see (3.8)) in front of the derivative Zy as

Zt + KZy − iξLZ + [T−1C̃Ty + M ]Z + G = 0, t > 0, 0 < y < 1, (3.10)

where the matrices L and M depend only on a stationary solution while the vector

G =

⎛

⎜
⎜⎜
⎝

0
0
g3
g4
g5

⎞

⎟
⎟⎟
⎠

has, for example, the component

g3 = −2Â2

{
ξ sinh(ξ(y − 1))

sinh ξ

y∫

0

cosh(ξη)
(

ξ

Re

(
Z1 − Z2 + 2

â12

Â2
Z4 + 2

â12

Â2
Z5

)
+

iω̂

Â2
Z3

)
dη

+
ξ sinh(ξy)

sinh ξ

1∫

y

cosh(ξ(η − 1))
(

ξ

Re

(
Z1 − Z2 + 2

â12

Â2
Z4 + 2

â12

Â2
Z5

)
+

iω̂

Â2
Z3

)
dη

}

+
2Â2

Re

iξ

sinh ξ
[(Z4(t, ξ, 0) + Z5(t, ξ, 0)) sinh(ξ(y − 1))− (Z4(t, ξ, 1) + Z5(t, ξ, 1)) sinh(ξy)].

(3.11)

The boundary conditions (3.5) are reduced to
⎧
⎪⎨

⎪⎩

Z3(t, ξ, 0) = Z3(t, ξ, 1) = 0,
Z4(t, ξ, 0) = Z5(t, ξ, 0),
Z4(t, ξ, 1) = Z5(t, ξ, 1),

(3.12)

respectively, the initial condition (3.6) for U(t, ξ, y) to

Z|t=0 = T−1U0 = Z0(ξ, y). (3.13)

Next, we study the mixed problem (3.10), (3.12), (3.13). Applying the Laplace
transform technique and employing the form of K, we can express the components
Z1 and Z2 through Z3, Z4, and Z5.

In view of (3.10) the function Z3(t, ξ, y) meets the integral equation

Z3(t, ξ, y) = eiξû(t)Z30(ξ, y) +
t∫

0

eiξû(t−τ)
[
2Â2

Re
iξZ4 +

2Â2

Re
iξZ5 − g3

]
dτ, (3.14)

and (3.11) implies that g3(t, ξ, y) depends on Z3(t, ξ, y), Z4(t, ξ, y), and Z5(t, ξ, y)
(we can take into account the possibility of integrating by parts in the integral of ∂Z3

∂y

with respect to η and the first two boundary relations in (3.12)).
Applying the method of successive approximations for the available boundary

values Z4(t, ξ, 0) and Z5(t, ξ, 1), we can uniquely determine Z3(t, ξ, y) from (3.15)
expressing this function through the components Z4(t, ξ, y) and Z5(t, ξ, y).

Thus, to solve the problem (3.10), (3.12), (3.13), we need to define the two com-
ponents Z4(t, ξ, y) and Z5(t, ξ, y) with given initial data Z40(t, ξ, y) and Z50(t, ξ, y)
and the unknown boundary values Z4(t, ξ, 0) and Z5(t, ξ, 1).



Linear Instability of Solutions 7

Assume that the boundary values are available as well. In this case, accounting
for the structure of K (see (3.8)), integrating two last equations of the system (3.10)
along the characteristics, and applying the method of successive approximations
again, we can uniquely determine the unknowns Z4(t, ξ, y) and Z5(t, ξ, y) moving on
“layers” in the half-strip t > 0, 0 ≤ y ≤ 1 [10].

Hence, to find the functions Z4(t, ξ, y) and Z5(t, ξ, y), it suffices to know the
boundary values Z4(t, ξ, 0) and Z5(t, ξ, 1). Assume some analog of the consistency
conditions to be fulfilled, i.e.,

Z30(ξ, 0) = Z30(ξ, 1) = 0 (3.15)

(see the first two relations in (3.12)).
Put y = 0 and y = 1 in (3.14). In view of (3.15), we obtain the two relations

t∫

0

eiξû(0)(t−τ) 8Â2

Re
iξZ4(τ, ξ, 0) dτ = 0,

t∫

0

eiξû(1)(t−τ) 8Â2

Re
iξZ4(τ, ξ, 1) dτ = 0

(3.16)

which imply that

Z4(t, ξ, 0) = Z5(t, ξ, 0) = 0, Z4(t, ξ, 1) = Z5(t, ξ, 1) = 0.

Thus, all components of the unknown vector-function U(t, ξ, y) are determined for
all real parameters ξ. Theorem 1 i proven.

Remark 4. The fulfillment of (3.15) is not a necessary condition of unique
solvability of (3.4)–(3.6). They are adopted for simplicity of the exposition. In the
general case the transfer to the boundary conditions in (3.14) leads to a system of
Volterra equations of the first kind which is uniquely solvable [9].

4. Proof of Theorem 2

Represent Z3 as

Z3t − iξûZ3 − iξ
2Â2

Re
Z4 − iξ

2Â2

Re
Z5 − 2Â2

(
ξ sinh(ξ(y − 1))

sinh ξ

y∫

0

{
cosh(ξη)

ξ

Re

×
[
− (P1 + L1)

t∫

0

e(iξû+λ1)(t−τ) + (P2 + L2)
t∫

0

e(iξû+λ2)(t−τ)
]
− ξ

Re

(
cosh(ξη)

×
{[(

R35 − 2â12

Â2
R45

)
1√
D

+
K1√
D

] t∫

0

e(iξû+λ1)(t−τ) −
[(

R35 − 2â12

Â2
R45

)
1√
D

+
K2√
D

]

×
t∫

0

e(iξû+λ2)(t−τ)
})

η

})
Z3(τ, ξ, η) dτdη − ξ2

Re

{[(
R35 − 2â12

Â2
R45

)
1√
D

+
K1√
D

]

×
t∫

0

e(iξû+λ1)(t−τ) −
[(

R35 − 2â12

Â2
R45

)
1√
D

+
K2√
D

] t∫

0

e(iξû+λ2)(t−τ)
}
Z3(τ, ξ, y) dτ
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+
ξ sinh(ξ(y − 1))

sinh ξ

y∫

0

cosh(ξη)
iω

Â2
Z3 dη +

ξ sinh(ξ(y − 1))
sinh ξ

[ y∫

0

{
cosh(ξη)

ξ

Re

×
[
(M1 + G1)

t∫

0

e(iξû+λ1)(t−τ) − (M2 + G2)
t∫

0

e(iξû+λ2)(t−τ)
]}

Z4(τ, ξ, η) dτdη

+

y∫

0

{
cosh(ξη)

ξ

Re

[
(K1 + E1)

t∫

0

e(iξû+λ1)(t−τ) − (K2 + E2)
t∫

0

e(iξû+λ2)(t−τ)
]}

×Z5(τ, ξ, η) dτdη
]
− ξ sinh(ξ(y − 1))

sinh ξ

{ y∫

0

{
cosh(ξη)

ξ

Re

[(
R35 − 2â12

Â2
R45

)
1√
D

+
K1√
D

]

×e(iξû+λ1)t −
[(

R35 − 2â12

Â2
R45

)
1√
D

+
K2√
D

]
e(iξû+λ2)t

}
Z20(ξ, η) dη

}
+

ξ sinh(ξ(y − 1))
sinh ξ

×
y∫

0

{
cosh(ξη)

ξ

Re

{[(
R35 − 2â12

Â2
R45

)
R53

1
K1
√
D

+
1√
D

]
e(iξû+λ1)t

−
[(

R35 − 2â12

Â2
R45

)
R53

1
K2
√
D

+
1√
D

]
e(iξû+λ2)t

}
Z10(ξ, η)

}
dη +

ξ sinh(ξ(y − 1))
sinh ξ

×
y∫

0

cosh(ξη)
(

2
â12

Â2
Z4 + 2

â12

Â2
Z5

)
dη +

ξ sinh(ξy)
sinh ξ

1∫

y

{
cosh(ξ(η − 1))

ξ

Re

[
− (P1 + L1)

×
t∫

0

e(iξû+λ1)(t−τ) + (P2 + L2)
t∫

0

e(iξû+λ2)(t−τ)
]
− ξ

Re

(
cosh(ξ(η − 1))

×
{[(

R35 − 2â12

Â2
R45

)
1√
D

+
K1√
D

] t∫

0

e(iξû+λ1)(t−τ) −
[(

R35 − 2â12

Â2
R45

)
1√
D

+
K2√
D

]

×
t∫

0

e(iξû+λ2)(t−τ)
})

η

}
Z3(τ, ξ, η) dτdη +

ξ sinh(ξy)
sinh ξ

1∫

y

cosh(ξ(η − 1))
iω̂

Â2
Z3(t, ξ, η) dη

+
ξ sinh(ξy)

sinh ξ

[ y∫

0

{
cosh(ξ(η − 1))

ξ

Re

[
(M1 + G1)

t∫

0

e(iξû+λ1)(t−τ) − (M2 + G2)

×
t∫

0

e(iξû+λ2)(t−τ)
]}

Z4(τ, ξ, η) dτdη +
1∫

y

{
cosh(ξ(η − 1))

ξ

Re

[
(K1 + E1)

t∫

0

e(iξû+λ1)(t−τ)

−(K2 + E2)
t∫

0

e(iξû+λ2)(t−τ)
]}

Z5(τ, ξ, η) dτdη
]
− ξ sinh(ξy)

sinh ξ

1∫

y

cosh(ξ(η − 1))

×
{[(

R35 − 2â12

Â2
R45

)
1√
D

+
K1√
D

]
e(iξû+λ1)t −

[(
R35 − 2â12

Â2
R45

)
1√
D

+
K2√
D

]
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×e(iξû+λ2)t
}
Z20(ξ, η) dη +

ξ sinh(ξy)
sinh ξ

1∫

y

cosh(ξ(η − 1))
ξ

Re

{[(
R35 − 2â12

Â2
R45

)

×R53
1

K1
√
D

+
1√
D

]
e(iξû+λ1)t −

[(
R35 − 2â12

Â2
R45

)
R53

1
K2
√
D

+
1√
D

]
e(iξû+λ2)t

}

×Z10(ξ, η) dη +
ξ sinh(ξy)

sinh ξ

y∫

0

cosh(ξ(η − 1))
(

2
â12

Â2
Z4 + 2

â12

Â2
Z5

)
dη. (4.1)

Here P1, P2, M1, M2, G1, G2, E1, E2, K1, K2, L1, and L2 are coefficients depending
only on a stationary solution. Consider the parts of the integrals connected with the
component Z3(t, ξ, y). Namely, we have

I1 =
ξ sinh(ξ(y − 1))

sinh ξ

y∫

0

{
cosh(ξη)

ξ

Re

[
− (P1 + L1)

t∫

0

e(iξû+λ1)(t−τ)

+(P2 + L2)
t∫

0

e(iξû+λ1)(t−τ)
]}

Z3(τ, ξ, η) dτdη +
ξ sinh(ξy)

sinh ξ

1∫

y

{
cosh(ξ(η − 1))

ξ

Re

×
[
− (P1 + L1)

t∫

0

e(iξû+λ1)(t−τ) + (P2 + L2)
t∫

0

e(iξû+λ1)(t−τ)
]}

Z3(τ, ξ, η) dτdη.
(4.2)

We can use the Taylor formula expanding the integrands at y. We infer

I1 =
t∫

0

{
 ′(y, t− τ)

sinh ξ − sinh(ξy)− sinh(ξ(1− y))
sinh ξ

+ ′′′(y, t− τ)
sinh ξ − sinh(ξy)− sinh(ξ(1− y))

sinh ξ

1
ξ2

+V (y, t− τ)
sinh ξ − sinh(ξy)− sinh(ξ(1 − y))

sinh ξ

1
ξ4 + · · ·

}
Z3(τ, ξ, y) dτ

+
t∫

0

{
 (y, t− τ)

sinh ξ − sinh(ξy)− sinh(ξ(1 − y))
sinh ξ

+ ′′(y, t− τ)
sinh ξ − sinh(ξy)− sinh(ξ(1 − y))

sinh ξ

1
ξ2

+ IV (y, t− τ)
sinh ξ − sinh(ξy)− sinh(ξ(1− y))

sinh ξ

1
ξ4 + · · ·

}
Z3y(τ, ξ, y) dτ

+
t∫

0

{
 ′(y, t− τ)

sinh ξ − sinh(ξy)− sinh(ξ(1 − y))
sinh ξ

1
ξ2 + · · ·

}
Z3yy(τ, ξ, y) dτ + · · · ,

(4.3)

where

 (y, t− τ) =
1
Re

[−(P1 + L1)e(iξû+λ1)(t−τ) + (P2 + L2)e(iξû+λ2)(t−τ)], (4.4)

and the derivatives of this function are taken with respect to y.
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Note that the summands

sinh(ξ(y − 1))
sinh ξ

y +
sinh(ξy)
sinh ξ

(1− y), 0 < y < 1,

in (4.4), decaying exponentially as |ξ| → ∞, are omitted.
Arguing similarly in the case of the remaining integrals leads to the spectral

equation:

s− iξû− 2Â2

{{[
− (P1 + L1)′

1
s− iξû(y)− λ1

+ (P2 + L2)′
1

s− iξû(y)− λ2

−(P1 + L1)
iξû′(y) + λ′1

(s− iξû(y)− λ1)2
+ (P2 + L2)

iξû′(y) + λ′2
(s− iξû(y)− λ2)2

]
+

1
ξ2

[
− (P1 + L1)′′′

s− iξû(y)− λ1

+
(P2 + L2)′′′

s− iξû(y)− λ2
− 3(P1 + L1)′′

iξû′(y) + λ′1
(s− iξû(y)− λ1)2

+ 3(P2 + L2)′′
iξû′(y) + λ′2

(s− iξû(y)− λ2)2

−3(P1 + L1)′
iξû′′(y) + λ′′1

(s− iξû(y)− λ1)2
+ 3(P2 + L2)′

iξû′′(y) + λ′′2
(s− iξû(y)− λ2)2

− (P1 + L1)(iξû′′′ + λ′′′1 )
(s− iξû(y)− λ1)2

+
(P2 + L2)(iξû′′′ + λ′′′2 )

(s− iξû(y)− λ2)2
− 6

(P1 + L1)(iξû′ + λ′1)(iξû′′ + λ′′1 )
(s− iξû(y)− λ1)3

+6
(P2 + L2)(iξû′ + λ′2)(iξû′′ + λ′′2 )

(s− iξû(y)− λ2)3
− 6

(P1 + L1)′(iξû′ + λ′1)2

(s− iξû(y)− λ1)3

+6
(P2 + L2)′(iξû′ + λ′2)2

(s− iξû(y)− λ2)3
− 6

(P1 + L1)(iξû′ + λ′1)3

(s− iξû(y)− λ1)4
+ 6

(P2 + L2)(iξû′ + λ′2)3

(s− iξû(y)− λ2)4

]

+
1
ξ4 [̂V (y, s) + · · · ] + i

[(
ω̂

Â2

)′ 1
ξ

+
(

ω̂

Â2

)′′′ 1
ξ3 + · · ·

]}}
= 0. (4.5)

Expanding the fractions 1/(s− iξû− λ1)k, 1/(s− iξû− λ2)k, k = 1, 2, . . . , as
|ξ| → ∞ in the powers of 1/(s− iξû) and equating the coefficients of the same
powers we can obtain a formal asymptotic expansion for the roots of (4.5).

The method of indefinite coefficients allows us to justify the following decom-
position of the roots of the equation (3.14) in the powers of ξ

1
3 as |ξ| → ∞:

s = iξû + 3
√
Q(y)ξ

2
3 + R(y)ξ

1
3 + · · · . (4.6)

Remark 5. The main point connected with the decomposition (4.6) is as fol-
lows: at least one of the roots satisfies the property Re s→ +∞ as |ξ| → ∞.

Differentiating the expressions for Z3 with respect to y, we obtain an integral
equation for Z3y(t, ξ, y) through the higher order derivatives Z3yy, Z3yyy, . . . , the
components Z4(t, ξ, y), Z5(t, ξ, y) and their first derivatives, and the initial data
Z10(ξ, y), Z20(ξ, y), and Z30(ξ, y). Arguing by analogy, we can state that Z3y also
satisfies some spectral equation. The formal asymptotic expansions of the roots of
this equation are found with the use of the Newton diagram [15–17].

Thus, the derivative Z3y(t, ξ, y) is determined through the higher order deriva-
tives Z3yy(t, ξ, y), Z3yyy(t, ξ, y), . . . , and the above-mentioned data.

Arguing by induction and inserting the values of the derivatives of the com-
ponent Z3(t, ξ, y) into the right-hand side of (4.1), we arrive at a solution to the
Cauchy problem for the integro-differential equation (4.2) in the form of a formal
asymptotic series as |ξ| → ∞.

Theorem 2 is proven.
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OPTIMAL DISTRIBUTION OF NODES OF

A QUADRATURE FORMULA WITH WEIGHT

E. N. Bulgatova and E. B. Pavlova

Abstract. The authors consider the quadrature formulas with weight. Some method
is given for finding the asymptotically optimal distribution of nodes of these formulas.

Keywords: weighted quadrature formula, optimal distribution of nodes

We consider a distribution of nodes of a weighted quadrature formula in dependence
on properties of the weight and the behavior of the integrand from a certain function
space.

Assume that g(x) ∈ Lp′ is a weight, 1 < p ≤ ∞, f ∈ Wm
p , and we need to

calculate the integral

If =
1∫

0

g(x)f(x) dx.

Divide the integration interval [0, 1] into parts [xβ−1, xβ ], β = 1, 2, . . . , N , x0 = 0,
xN = 1, and consider on each of the parts the Lagrange interpolation formula

Lm(x− xβ−1) =
m∑

γ=0

ωm(x− xβ−1)
ω′m(xβ−1+γ)(x − xβ−1+γ)

f(xβ−1+γ)

with an arbitrary distribution of the nodes xβ−1 < xβ < xβ+1 < · · · < xβ−1+m,
β = 1, 2, . . . , N , and ωm(x−xβ−1) = (x−xβ−1)(x−xβ)(x−xβ+1) . . . (x−xβ−1+m).

The integral If is representable as the sum

If =
N∑

β=1

xβ∫

xβ−1

g(x)f(x)dx.

The integral over each of the parts is calculated by the formula

xβ∫

xβ−1

g(x)f(x) dx ≈
xβ∫

xβ−1

g(x)Lm(x− xβ−1) dx = h∗
m∑

γ=0

Cγ(β)f(xβ−1+γ),

where the coefficients are determined as follows:

Cγ(β) =

xβ∫

xβ−1

ωm(x − xβ−1)g(x)
ω′m(xβ−1+γ)(x − xβ−1+γ)

dx.

c© 2015 Bulgatova E. N. and Pavlova E. B.
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Using the error of the Lagrange interpolation formula, we infer

f(x)− Lm(x− xβ−1) =
(x − xβ−1)(x− xβ)(x− xβ+1) . . . (x− xβ−1+m)

(m + 1)!
fm+1(ξ),

where ξ ∈ (xβ−1, xβ−1+m).
Note that g(x + xβ) = g(xβ) + o(1), maxx∈[xβ−1+γ ,xβ+γ ] |x − xβ+γ | = |xβ+γ −

xβ−1+γ | + o(1), γ = 0, 1, 2, . . . ,m − 1 as N → ∞, and x ∈ [xβ−1, xβ ]. We can
estimate the error

xβ∫

xβ−1

g(x)f(x) dx − h∗
m∑

γ=0

Cγ(β)f(xβ−1+γ)

≤ g(xβ)
|xβ+γ − xβ−1+γ |m+1

(m + 1)!
max

x∈[xβ−1+γ,xβ+γ ]
|f (m+1)(x)|(1 + o(1)).

Assume that f(x) ∈ Wm∞ and max
x∈[0,1]

|f (m+1)| ≤ M . In this case the total error

is equal to

R =
N∑

β=1

g(xβ)|xβ − xβ−1|m+1 M

(m + 1)!
(1 + o(1)). (1)

Consider two increasing number sequences

x0 = 0 < x1 < x2 < · · · < xγ < · · · < xN = 1,

0 < h < 2h < · · · < γh < · · · < Nh = 1.

Involving these sequences, we can construct a differentiable function x = ϕ(t) with
values xγ = ϕ(hγ), γ = 1, 2, . . . , N , such that x(0) = 0 and x(1) = 1.

Theorem. Assume that f ∈Wm∞ , maxx∈[0,1] |f (m+1)(x)| ≤M , g(x) ∈ L1(0, 1),
and

1∫

0

g(x)f(x) dx ≈
N∑

β=1

m∑
γ=0

Cγ(β)f(xβ−1+γ)

is a weighted formula. Then the optimal distribution of the nodes xβ , β = 1, 2, . . . , N ,
is defined by the function x = ϕ(t) satisfying the differential equation

d

dt
(g(ϕ(t))(ϕ′(t))m+1 = 0,

the initial conditions ϕ(0) = 0 and ϕ(1) = 1 and given (in implicit form) by the
integral

x∫

0

(g(x))
1

m+1 dx =
1∫

0

(g(x))
1

m+1 dx · t

.
Proof. Take the values ϕ

( β
N

)
of the twice differentiable function ϕ(t) such

that ϕ(0) = 0 and ϕ(1) = 1 at xβ .
By continuity of ϕ(t), we have

xβ − xβ−1 = ϕ

(
β

N

)
− ϕ

(
β − 1
N

)
= ϕ′
(
β

N

)
1
N

+ o

(
1

Nm+1

)
.
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The formula (1) takes the form

R =
1

Nm+1

N−1∑
β=0

[(
ϕ′
(
β

N

))m+1

g(xβ)
M

(m + 1)!

]
+ o

(
1

Nm+1

)
.

The expression in brackets is a Riemann quadrature sum for the integral

1∫

0

(ϕ′(t))m+1g(ϕ(t))
M

(m + 1)!
dt. (2)

In view of (2), we infer

R =
1

Nm

1∫

0

(ϕ′(t))m+1g(ϕ(t))
M

(m + 1)!
dt + o

(
1

Nm+1

)
. (3)

To determine the optimal distribution of nodes, we minimize the main term

A =
1∫

0

(ϕ′(t))m+1g(ϕ(t)) dt

in (3). Take the function ϕ as a new independent variable in the integral A. Then

A =
1∫

0

(t′(ϕ))−mg(ϕ) dϕ.

Write out the Lagrange function

F (t(ϕ) + λτ(ϕ)) =
1∫

0

(t′(ϕ) + λτ ′(ϕ))−mg(ϕ) dϕ,

where τ(0) = 0, τ(1) = 0. Calculate the derivative at λ = 0 and put it equal to zero,
i.e.,

F ′(t(ϕ)) =
1∫

0

( −m
(t′(ϕ))m+1 g(ϕ)τ ′(ϕ) + (t′(ϕ))−m dg(ϕ)

dλ

)
dϕ = 0. (4)

Note that g(ϕ) is independent of λ and so dg(ϕ)
dλ = 0.

Integrating by parts in (4) yields

d

dϕ

[
1

(t′(ϕ))m+1 g(ϕ)
]

= 0 (5)

or g(ϕ)(ϕ′(t))m+1 = C0.
The initial conditions implies that

x∫

0

(g(x))
1

m+1 dx =
1∫

0

(g(x))
1

m+1 dx · t

The theorem is proven.
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Next, we examine the simplest weight g(x) = |x|s, −1 < s < 1. In this case (5)
takes the form

d

dϕ

[
1

(t′(ϕ))m+1ϕ
s

]
= 0.

Integrating the equation and using the initial conditions we conclude that x =
t

m+1
m+s+1 . In this case an optimal node distribution corresponds to the points

xβ =
(
β

N

) m+1
m+s+1

, β = 0, 1, . . . , N − 1.

Assume that we need to calculate
∫ 1
0 xsϕ(x) dx, −1 < s < 1, with ϕ(0) �= 0.

The integration interval is divided into the parts [xβ−1, xβ ], β = 1, 2, . . . , N , x0 = 0,
xN = 1. In this case we have

1∫

0

xsϕ(x) dx =
N∑

β=1

xβ∫

xβ−1

xsϕ(x) dx.

Each of the integrals is calculated by the formula
xβ∫

xβ−1

xsϕ(x) dx ≈ h∗
m∑

γ=0

Cγ(β)ϕ(xβ−1+γ),

where h∗ = xβ − xβ−1 and the coefficients are determined from the system
1∫

0

(xβ−1 + h∗x)sxα dx =
m∑

γ=0

Cγ(β)(xβ−1+γ)α, α = 0, 1, 2, . . . ,m, β = 1, 2, . . . , N.

The integral over [0, 1] is equal to
1∫

0

xsϕ(x) dx ≈
N∑

β=1

(xβ − xβ−1)
m∑

γ=0

Cγ(β)ϕ(xβ−1+γ).

Arrange the weighted formula for s = − 1
2 and m = 2. The coefficients Cγ(β)

are determined from the system
1∫

0

(xβ−1 + h∗x)−
1
2xα dx =

2∑
γ=0

Cγ(β)(xβ−1+γ)α, α = 0, 1, 2, β = 1, 2, . . . , N.

Assume that ϕ(t) is a continuously differentiable function on [0, 1], ϕ(0) = 0
and ϕ(1) = 1, xβ =

(
β
N

) 6
5 = (hβ)

6
5 , maxx∈[0,1] |ϕm(x)| ≤ M . The system for the

coefficients is representable as
1∫

0

(((β − 1)h)
6
5 + ((βh)

6
5 − ((β − 1)h)

6
5 )x)−

1
2xα dx =

2∑
γ=0

Cγ(β)((β − 1 + γ)h)
6α
5 ,

α = 0, 1, 2, β = 1, 2, . . . , N , h = 1
N .

The integral is approximately equal to
1∫

0

x−
1
2ϕ(x) dx ≈

N∑
β=1

((βh)
6
5 − ((β − 1)h)

6
5 )

2∑
γ=0

Cγ(β)ϕ
((

β − 1 + γ

N

) 6
5
)
.
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AN UPPER ESTIMATE FOR THE ERROR

FUNCTIONAL OF QUADRATURE FORMULAS

WITH A SYMMETRIC BOUNDARY LAYER

E. G. Vasil′eva and N. B. Tsyrenzhapov

Abstract. We obtain an upper estimate for the error functional of the quadrature
formulas with a symmetric boundary layer. We singled out the constant in this estimate
in explicit form.
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Cubature formulas with a regular boundary layer for a domain � and the corre-
sponding error functionals are defined in [1].

To begin with, we choose an error functional for a quadrature formula on (0, 1)
in the set of error functionals with a regular boundary layer, and estimate its norm
from above in the Lm

p (E1) space.
Put

l(x) = ε(0,1)(x)−
m∑

γ=0

Cγδ(x− γ), 〈l, xα〉 = 0, α = 0, 1, . . . ,m,

‖l‖C∗ = 1 +
m∑

γ=0

|Cγ | <∞,

l1(x) = ε(0,m)(x)−
m∑

γ=0

Fγδ(x− γ), 〈l1, xα〉 = 0, α = 0, 1, . . . ,m,

‖l1‖C∗ = m +
m∑

γ=0

|Fγ | <∞, (a, b) = [0, 1),
1
N

= h.

Summing the elementary functionals l
(
x
h − β

)
, β = 0, 1, . . . , N −m− 1, and l1

(
x
h −

N+m
)
, we can construct the error functional of a quadrature formula with a regular

boundary layer for the half-interval [0, 1) as follows:

lh(0,1)(x) =
N−m−1∑

β=0

l

(
x

h
− β

)
+ l1

(
x

h
−N + m

)
.

By construction, lh(0,1)(x) ∈ Lm∗
p .
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Theorem. Assume that lh(0,1)(x) is an error functional of the quadrature for-
mula with a regular boundary layer for the half-interval (0, 1), supp lh(0,1)(x) ⊆ [0, 1]
and lh(0,1)(x) ∈ Lm∗

p . Then the norm of lh(0,1)(x) as h→ 0 satisfies the estimate

∥∥lh(0,1)(x)
∥∥
Lm∗

p
≤ hm

[∫ 1

0

∣∣∣∣
∑

β �=0

e2πiβx

(2πiβ)m

∣∣∣∣
p′

dx

] 1
p′

+hm

[(m + 2) +
m∑

γ=0
(|Fγ |+ 2|Cγ |)

2(m− 1)!

]
mm+1− 1

ph1− 1
p .

Proof. Transform the periodic error functional l̃0(xh ) as follows:

l̃0

(
x

h

)
=

∞∑

β=−∞
l

(
x

h
− β

)

=
−1∑

β=−∞
l

(
x

h
− β

)
+

N−m−1∑

β=0

l

(
x

h
− β

)
+

∞∑

φ=N−m

l

(
x

h
− β

)

=
N−m−1∑

β=0

l

(
x

h
− β

)
+ lh(0,1)∗(x), (1)

where

lh(0,1)∗(x) =
−1∑

β=−∞
l

(
x

h
− β

)
+

∞∑

β=N−m

l

(
x

h
− β

)
.

Equality (1) implies that the above error functional with a regular boundary
layer is representable as

lh(0,1)(x) = l̃0

(
x

h

)
+ l1

(
x

h
−N + m

)
− lh(0,1)∗(x). (2)

By construction, the support of lh(0,1)(x) coincides with supp lh(0,1)(x) = [0, 1]. In this
case the norm of the error functional is written out explicitly [2] and

∥∥lh(0,1)(x)
∥∥
Lm∗

p
=
[ ∞∫

−∞

∣∣ε(m)
2m (x) ∗ lh(0,1)(x)

∣∣p′ dx
] 1

p′
,

If x ∈ (−∞, 0)∪(1,∞) and y ∈ supp lh(0,1)(x) then the expression (x−y) has constant

sign. Hence, ε(m)
2m (x) ∗ l(xh − β

)
= 0 for all h, β ∈ [0, 1). Therefore, we can state that

∥∥lh(0,1)(x)
∥∥
Lm∗

p
=
[ 1∫

0

∣∣ε(m)
2m (x) ∗ lh(0,1)(x)

∣∣p′ dx
] 1

p′
.

The representation (2) of lh(0,1)(x), the relation supp l1
(
x
h−N+m

) ⊂ [hN−hm, hN ],
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and the Minkowski inequality yield
∥∥lh(0,1)(x)

∥∥
Lm∗

p

≤
[ 1∫

0

∣∣∣∣ε
(m)
2m (x) ∗ l̃0

(
x

h

)∣∣∣∣
p′

dx

] 1
p′

+
[ hN∫

hN−hm

∣∣∣∣ε
(m)
2m (x) ∗ l1

(
x

h
−N + m

)∣∣∣∣
p′

dx

] 1
p′

+
[ 1∫

0

∣∣∣∣
−1∑

β=−∞
ε(m)
2m (x) ∗ l

(
x

h
− β

)∣∣∣∣
p′

dx

] 1
p′

+
[ 1∫

0

∣∣∣∣
∞∑

β=N−m

ε(m)
2m (x) ∗ l

(
x

h
− β

)∣∣∣∣
p′

dx

] 1
p′

= I1 + I2 + I3 + I4. (3)
Estimate I1 as follows:

I1 =
[ ∑

hγ∈[0,1)

∫

�hγ

∣∣∣∣
∑

β �=0

e2πih−1βx

(2πih−1β)m

∣∣∣∣
p′

dx

] 1
p′

=

〈x→ hγ + x
x→ hx

dx→ hdx

〉

= hm

[ 1∫

0

∣∣∣∣
∑

β �=0

e2πiβx

(2πiβ)m

∣∣∣∣
p′

dx

] 1
p′

= hmJm, (4)

where 	hγ = {x ∈ E1, hγ ≤ x < hγ + h}.
We can transform the convolution

ε(m)
2m (x) ∗ l1

(
x

h
−N + m

)
=
〈 y
h
→ y
〉

=
∞∫

−∞

(x− hy)m−1 sgn(x − hy)
2(m− 1)!

l1(y −N + m)h dy = 〈y −N + m→ y〉

=
m∫

0

(x− hy + hN − hm)m−1

2(m− 1)!
sgn(x− hy + hN − hm)hl1(y) dy. (5)

In view of (5), I2 in (3) is estimated as

I2 =
[ hN∫

hN−hm

∣∣∣∣

m∫

0

(x− hy + hN − hm)m−1

2(m− 1)!
sgn(x − hy + hN − hm)l1(y)h dy

∣∣∣∣
p′

dx

] 1
p′

= 〈x→ hx + hN − hm〉 = hm+ 1
p′
[ m∫

0

∣∣∣∣

m∫

0

(x− y)m−1 sgn(x − y)
2(m− 1)!

l1(y) dy
∣∣∣∣
p′

dx

] 1
p′

≤ hm+1− 1
p

[ m∫

0

∣∣∣∣ max
x,y∈[0,m]

|x− y|m−1‖l1‖C∗ 1
2(m− 1)!

∣∣∣∣
p′

dx

] 1
p′

≤ hm+1− 1
pmm+1− 1

p

m +
m∑

γ=0
|Fγ |

2(m− 1)!
. (6)

Taking the equality
−m∑

β=−∞
ε(m)
2m ∗ l

(
x

h
+ β

)
= 0 for x ∈ [0, h(m− 1))
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into account, we can transform the convolution
−1∑

β=−m+1

∫
(x− y)m−1 sgn(x− y)

2(m− 1)!
l

(
x

h
+ β

)
dy =

〈 y
h
→ y, y − β → y

〉

=
−1∑

β=−m+1

∫
(x− hy + hβ)m−1 sgn(x− hy + hβ)

2(m− 1)!
l(y)h dy. (7)

To estimate I3 on the base of (7), we derive that

I3 =
[ h(m−1)∫

0

∣∣∣∣
−1∑

β=−m+1

hβ+hm∫

hβ

(x− hy + hβ)m−1

2(m− 1)!
sgn(x− hy + hβ)l(y)h dy

∣∣∣∣
p′

dx

] 1
p′

= 〈x→ hx, x− β → x〉

= hm+ 1
p′
[ h(m−1)∫

0

∣∣∣∣
−1∑

β=−m+1

m∫

0

(x− y)m−1 sgn(x− y)
2(m− 1)!

l(y) dy
∣∣∣∣
p′

dx

] 1
p′

≤ hm+1− 1
p

[ m−1∫

0

∣∣∣∣
−1∑

β=−m+1

max
x,y∈[0,m]

|x− y| ‖l‖C∗
2(m− 1)!

∣∣∣∣
p′

dx

] 1
p′

≤ hm+1− 1
pmm+1− 1

p

1 +
m∑

γ=0
|Cγ |

2(m− 1)!
. (8)

Since x ∈ [0, 1+h(m−1)] and ε(m)
2m ∗ l

(
x
h −β

)
= 0 for all β > N +m−1, similar

arguments validate the inequality

I4 ≤ hm+1− 1
pmm+1− 1

p

1 +
m∑

γ=0
|Cγ |

2(m− 1)!
. (9)

Collecting (3), (4), (6), (8), and (9), we infer that

∥∥lh(0,1)
∥∥
Lm∗

p
≤ hmJm +

(m + 2) +
m∑

γ=0
(|Fγ |+ 2|Cγ |)

2(m− 1)!
mm+1− 1

phmh1− 1
p .

The theorem is proven.
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THE ∂̄∂–EQUATION ON A POSITIVE CURRENT

T. N. Nikitina

Abstract. We study the induced ∂̄∂-equation on a positive current on a complex man-
ifold. We show that L2-estimates hold for the ∂̄∂-equation on a positive closed (1, 1)-
current in a pseudoconvex domain in Cn. We also discuss currents of higher bidegree.

Keywords: ∂̄∂-equation, positive current, differential form, complex manifold, primi-
tive form, definite quadratic form, differential operator on a current, existence theorem
for ∂̄∂ on a closed current, current of higher bidegree

1. Introduction

Let M be a complex manifold and let T be a positive current on M . If u and f
are smooth differential forms on M then we say that

∂̄∂u = f on T if ∂̄∂u ∧ T = f ∧ T.

Initially, the ∂̄∂-operator is thus defined only on smooth forms but it can be extended
(in various ways) to the forms defined only on T . The present article deals with the
following question: Can the ∂̄∂-equation be solved on T and, if so, what kind of
estimates can be found for its solution?

The solvability of ∂̄∂-equations is classical (see [1–8]). We can also similarly
consider smooth (1, 1)-currents that are strictly positive in a subdomain D in M
and vanish outside D, which means that we study our equation in D.

Let V be a complex vector space of dimension n. A (q, q)-form v is strictly
positive if it belongs to the cone generated by the forms iα1 ∧ ᾱ1 ∧ · · · ∧ iαq ∧ ᾱq,
where αj ∈ �1,0(V ∗).

A form u ∈ �p,p(V ∗) is positive if and only if u∧ v is positive for every strictly
positive (q, q)-form v with q + p = n. On a complex manifold M , a differential form
u ∈ C∞p,p(M) is strictly positive (respectively, positive) if so is u(z) positive for every
z ∈M as an element of �p,p(T ∗M).

The space D ′(r,s)(M) of (r, s)-currents on M is by definition equal to the space
D(r,s)(M) of test (r, s)-forms on M with respect to the usual inductive limit topology
on the space of test forms.

A (p, p)-current T is positive (strictly positive) if 〈T, u〉 ≥ 0 for all test forms
u ∈ D(p,p)(M) that are strictly positive (positive).

Put cq = (−1)q(q+1)/2iq = (−i)q2
.

The operators ∂ and ∂̄ act on currents. A current T is closed if dT = 0.

2. Linear Algebra and the L2-Spaces on (1, 1)-Currents

For the ∂̄∂-problem on currents of higher bidimension, we will first discuss in
more detail the linear algebra of forms on a current. This is necessary for developing

c© 2015 Nikitina T. N.
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a version of Kähler identities on a current, which we will later use in proving an
a priori Kodaira–Nakano–Hörmander estimate.

Let us begin with discussing forms and currents at a fixed point; i.e., we will con-
sider T—a nonnegative element in �1,1(Cn+1), and forms f ∈ �∗,∗(Cn+1). The space
of (p, q)-forms on T , denoted by �p,q

T , is defined as the space of all f ∈ �p,q(Cn+1)
modulo the subspace of forms such that f ∧ T = 0. To avoid burdensome notation,
we use the same symbol for an element of �p,q(Cn+1) and the corresponding element
in �p,q

T .
On a manifold, the space of (0, q)-forms is the exterior algebra of the space

of (0, 1)-forms but it is important to clearly understand that this is not so in our
case [9].

In any case, for defining norms on �T , we also need an auxiliary (1, 1)-form
ω > 0 which will define a metric on T . Let ωk = ωk/k!.

Let σT be the trace of T with respect to ω regarded as a form of maximal
degree; i.e., σT = T ∧ωn. This means that σT = tr(T )ωn+1, where tr(T ) is the trace
consider as a number.

It can be proved (see, for example, [10, p. 170]) that a k-form f on an n-
manifold is primitive if and only if k ≤ n and f ∧ωn−k+1 = 0. This condition makes
sense on �T .

Definition 1 [9]. A k-form f is primitive on T if k ≤ n and f∧ωn−k+1∧T = 0.
The following proposition is a key ingredient of the proof of the a priori inequal-

ity for the ∂̄∂-operator.
Let e1, . . . , en+1 be a basis for the space of (1, 0)-forms on Cn+1. Write γ =∑

γJKeJ ∧ ēK and partition γ into the sum τ + σ depending on whether J belongs
to K (the τ -part) or not:

γ =
∑

j1∈K
ej1 . . .

∑

jp∈K
γJKejp ∧ ēK

+
(p−1∑

r=1

∑

|M|=r

∑

j1 /∈K
ej1 . . .

∑

jm1−1 /∈K
ejm1−1

∑

jm1∈K
ejm1

∑

jm1+1 /∈K
ejm1+1

. . .
∑

jmr−1 /∈K
ejmr−1

∑

jmr∈K
ejmr

∑

jmr+1 /∈K
ejmr+1 . . .

∑

jp /∈K
γJKejp ∧ ēK

+
∑

j1 /∈K
ej1 . . .

∑

jp /∈K
γJKejp ∧ ēK

)

= τ +
(p−1∑

r=1

σr + σ0

)

= τ + σ.

Proposition 1. The quadratic form
[γ, γ]σT = cq+pγ ∧ γ̄ ∧ ωn−q−p ∧ T, (1)

defined on the space of primitive forms in �p,q
T splits into positive definite forms

[σr, σr]σT if (−1)p+r = −1 and into negative definite forms [τ, τ ]σT , [σr, σr]σT ,
1 ≤ r ≤ p − 1, if (−1)p+r = 1 (If p = 0 then the form [τ, τ ]σT is positive definite;
for p = 2k + 1, the form [σ0, σ0]σT is negative definite, and for p = 2k, it is positive
definite.)

Proof. Let us first choose a basis e1, . . . , en+1 for the space of (1, 0)-forms in
Cn+1 that diagonalizes both ω and T . Put dVj = iej ∧ ēj and dVJ =

∧
J dVj . Then

ω =
∑

dVj , T =
∑

λjdVj , and

T ∧ ωn−q−p+1 =
∑

|K|=n−q−p+2

λKdVK
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if we put λJ =
∑

J λj .
It is easy to check that

[σ, σ] =
p−1∑

r=0

p−1∑

t=0

[σr, σt] =
p−1∑

r=0

[σr, σr]

since [σr, σt]σT = 0 for r 	= t. Consider

[σr, σr]σT = cq+p

∑

|K|=q−r

∑

|M|=r

∑

j1 /∈K
ej1 . . .

∑

jp /∈K
σr
JKejp [M ] ∧ dVJM ∧ ēK

∧
∑

|L|=q−r

∑

|P |=r

∑

s1 /∈L
ēs1 . . .

∑

sp /∈L
σr
SLēsp [P ] ∧ dVSP ∧ eL ∧ ωn−q−p ∧ T

= (−1)p+r
∑

|K|=q−r

∑

|M|=r

∑

|P |=r

∑

JM∩SP=∅

σr
JK

×σr
(j1,...,jm1−1,jm1+1,...,sp1 ,...,spr ,...,jmr−1,jmr+1,...,jp)K

∑

|L|=n−q−p+1

λLdVL∪J∪SP∪K ,

1 ≤ r ≤ p− 1,

[σ0, σ0]σT = (−1)p
∑
|γJK |2

∑

|L|=n−q−p+1

λLdVL∪J∪K .

Here the notation (j1, . . . , jm1−1, jm1+1, . . . , sp1 , . . . , spr , . . . , jmr−1, jmr+1, . . . , jp) means
that, in the index S, the expression S[P ] = (s1, . . . , sp1−1, sp1+1, . . . , spr−1, spr+1,
. . . , sp) is replaced by J [M ].

The condition that σr, r ≥ 1, is primitive (σ0 is always primitive since
∑

j1 /∈K
ej1 . . .

∑

jp /∈K
γJKejp ∧ ēK ∧ ωn−q−p+1 ∧ T

=
∑

j1 /∈K
ej1 . . .

∑

jp /∈K
γJKejp ∧ ēK ∧

∑

|L|=n−q−p+2

λLdVL = 0)

means that

σr ∧ ωn−q−p+1 ∧ T =
∑

|K|=q−r

∑

|M|=r

∑

|L|=n−q−p+2

∑

j1 /∈K
ej1 . . .

∑

jp /∈K
σr
JK

×λLejp [M ] ∧ dVJM∪L ∧ ēK = 0.

We have

[σr, σr] = (−1)p+r
∑

|K|=q−r

∑

|M|=r

∑

|P |=r

∑

JM∩LP=∅

×σr
JK

¯σr
(j1,...,jm1−1,jm1+1,...,lp1 ,...,lpr ,...,jmr−1,jmr+1,...,jp)Kλ(J∪LP∪K)c , 1 ≤ r ≤ p− 1,

[σ0, σ0] = (−1)p
∑
|γJK |2λ(J∪K)c .

Fix K, j1, . . . , jm1−1, jm1+1, . . . , jmr−1, jmr+1, . . . , jp and rename the remaining in-
dices as 1, . . . , N . Put

λ̂JM =
N∑

1

λi − (λjm1
+ · · ·+ λjmr

) =
N∑

1

λi − λJM
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and

λ̂JMLP =
N∑

1

λi − λJM − λLP .

We can prove that

if
∑

σr
JM

λ̂JM = 0 then
∑

JM∩LP=∅

σr
JM

¯σr
LP

λ̂JMLP ≤ 0.

We have

[τ, σ] =
p−1∑

r=0

[τ, σr] = 0

because

[τ, σr]σT = cq+p

∑

|K|=q−p

τJKdVJ ∧ ēK

∧
∑

|P |=r

∑

s1 /∈L
ēs1 . . .

∑

sp1−1 /∈L
ēsp1−1

∑

sp1∈L
ēsp1

∑

sp1+1 /∈L
ēsp1+1

. . .
∑

spr−1 /∈L
ēspr−1

∑

spr∈L
ēspr

∑

spr+1 /∈L
ēspr+1 . . .

∑

sp /∈L
γ̄SLēsp ∧ eL ∧ ωn−q−p ∧ T = 0.

The primitivity of τ means that

τ ∧ ωn−q−p+1 ∧ T =
∑

|K|=q−p

∑

|L|=n−q−p+2

τJKλLdVJ∪L ∧ ēK = 0,

and
[τ, τ ]σT =

∑

|K|=q−p

∑

J∩S=∅

τJK τ̄SK

∑

|L|=n−q−p+1

λLdVL∪J∪S∪K .

Hence,
[τ, τ ] =

∑

|K|=q−p

∑

J∩L=∅

τJK τ̄LKλ(J∪L∪K)c .

Fix K and rename the remaining indices as 1, . . . , N . Put

λ̂J =
N∑

1

λi − (λj1 + · · ·+ λjp) =
N∑

1

λi − λJ

and

λ̂JL =
N∑

1

λi − λJ − λL.

We can prove that if
∑

τJ λ̂J = 0 then
∑

J∩L=∅ τJ τ̄Lλ̂JL ≤ 0. �
Proposition 5.7 in [9] is a particular case of Proposition 1 for p = 1.
Definition 2. Let f ∈ �p,q(Cn+1). The norm of f on T is defined as

|f |2ω,TσT = cq+pf ∧ f̂ ∧ ωn−q−p ∧ T, (2)

where

f̂ = f0 ∧ ωp +
p∑

k=1

f̂k ∧ ωp−k
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and fk ∈ �k,q−p+k
T are primitive forms,

f̂k = −τk −
k−1∑

r=1

(−1)k+rσk
r + (−1)kσk

0 .

Recall that the norm of f in Cn+1, measured in the ω-metric, is defined as

|f |2ωωn+1 = cq+pf ∧ f̂ ∧ ωn−q−p+1.

Therefore, (n + 1)|f |2ω,ω = (n − q − p + 1)|f |2ω if T = ω. In the general case, since
T ≤ tr(T )ω, we obtain |f |2ω,T ≤ (n − q − p + 1)|f |2ω. Finally, polarizing we get the
inner product such that

(f, f)ω,T = |f |2ω,T ,

and, in what follows, we will omit the dependence on ω and T .
The norms and inner products on �q,p

T are of course defined similarly, and so
(f, g) = (f̄ , ḡ). In particular, if f, g ∈ �q,p

T then

(f, g)σT = c̄q+pf ∧ ĝ ∧ ωn−q−p ∧ T.

Let us define norms on �n−p,q
T . To this end, observe that every f ∈ �n−p,q

T

defines the linear form Lf (g)σT = g ∧ f ∧ T on �p,n−q
T .

Definition 3. If f ∈ �n−p,q
T then

|f |ω,T = ‖Lf‖ = sup
|g|ω,T≤1

|Lf (g)|.

Equivalently, Lf can be represented as the inner product with an element f ′ ∈
�p,n−q
T , and so

g ∧ f ∧ T = Lf(g)σT = (g, f ′)σT = cn−q+pg ∧ f̂ ′ ∧ ωq−p ∧ T. (3)

Then |f |ω,T = |f ′|ω,T .
Recall that the Hodge ∗-operator on a Kähler (or Riemann) manifold is defined

as follows: h ∧ ∗g = (h, g)dV if h and g are k-forms and dV is the volume element.
Similarly, define the ∗-operator ∗ : �n−q,p

T → �n−p,q
T by setting

h ∧ ∗g ∧ T = (h, g)σT . (4)

Since
(h, g)σT = cn−q+ph ∧ ĝ ∧ ωq−p ∧ T,

this means that ∗g = cn−q+pĝ ∧ ωq−p on �n−q,p
T .

In the same manner, (4) defines ∗ : �n−p,q
T → �n−q,p

T . Since then the inner
product is defined as (h, g) = (h̃, g̃), we find

h ∧ ∗g ∧ T = cn−q+ph̃ ∧ ̂̃g ∧ ωq−p ∧ T = cn−q+ph ∧ ̂̃g ∧ T ;

therefore, ∗g = cn−q+p
̂̃g on �n−p,q

T .
The following proposition is connected with the Lefschetz isomorphism in Cn+1

and will play a key role when we approximate general currents by smooth forms in
the sequel.
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Proposition 2. Let T ∈ �1,1(Cn+1) be strictly positive. Assume further that
F ∈ �n−p+1,q+1(Cn+1), 0 ≤ p ≤ q ≤ n. Then there exists a unique form F̃ ∈
�n−q,p(Cn+1) such that

F = F̃ ∧ ωq−p ∧ T.

In particular, F can be represented as F = f ∧ T with f ∈ �n−p,q(Cn+1).
Proposition 5.4 in [9] is the particular case of Proposition 2 for p = 0.

Proposition 3. Let f ∈ �q,p
T . Then there are uniquely defined primitive forms

f0 ∈ �q−p,0
T , f1 ∈ �q−p+1,1

T , . . . , fp ∈ �q,p
T such that

f =
p∑

k=0

fk ∧ ωp−k. (5)

Proof. Induct on p. �
Proposition 5.6 in [9] the particular case of Proposition 3 for p = 1.
Similarly, we of course have a primitive decomposition of (p, q)-forms. The

following proposition says that we have in fact obtained a norm for forms on T .

Proposition 4. Suppose that γ ∈ �p,q(Cn+1) and |γ|2ω,T = 0. Then γ∧T = 0.
Proposition 5.2 in [9] is the particular case of Proposition 4 for p = 0.
Now, let T ≥ 0 be a (1, 1)-current in Cn+1. Such a current can be written as

T = i
∑

Tjk̄dzj∧dz̄k, where the coefficients are absolutely continuous measures with
respect to the trace measure σT = T ∧ ωn. Let tr(T ) be the (0, 0)-current defined
as tr(T )ωn+1 = σT . Then T can be written as T = T̃ tr(T ), where T̃ is a form with
coefficients defined almost everywhere with respect to σT . Since the coefficients of T̃
constitute a semidefinite matrix with unit trace, Cauchy’s inequality implies that

T = i
∑

T̃jk̄dzj ∧ dz̄k tr(T ),

where |T̃jk̄| ≤ 1.
If f is a smooth or just continuous (p, q)-form in Cn+1 then define the L2-norm

of f on T :

‖f‖2ω,T =
∫

|f |2
ω,˜T

σT . (6)

Equality (6) means that

‖f‖2ω,T = cp+q

∫

f ∧ ¯̂
f ∧ ωn−p−q ∧ T

because

cp+qf ∧ f̂ ∧ ωn−p−q ∧ T = cp+qf ∧ f̂ ∧ ωn−p−q ∧ T̃ tr(T ) = |f |2
ω,˜T

σT ,

and tr(T̃ ) = 1.
Define the L2-spaces of (p, q)-forms on T , denoted by L2

p,q(T ), as the completion
of smooth (p, q)-forms with respect to L2-norms. Thus, the smooth forms are dense
in the L2-spaces by definition.

If, finally, ϕ is a Borel weight function then define L2
p,q(T, e−ϕ) as the space of

those f ∈ L2
p,q,loc that satisfy

‖f‖2ω,T,ϕ =
∫

|f |2
ω,˜T

e−ϕσT <∞.
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3. Differential Operators on T

Suppose that T is closed.
Definition 4. Given u ∈ L2

p,q,loc(T ), we say that ∂̄∂wu = f on T if f ∈
L2
p+1,q+1,loc(T ) and ∂̄∂(u ∧ T ) = f ∧ T in the sense of currents.

The strong extension of ∂̄∂ is defined as follows:
Definition 5. If u ∈ L2

p,q,loc(T ) and f ∈ L2
p+1,q+1,loc(T ) then ∂̄∂su = f if

there exists a sequence of (C2-)smooth (p, q)-forms un such that un → u in L2
loc(T )

and ∂̄∂un → f in L2
loc(T ).

Now, let ϕ be a Borel measurable weight function. Then we obtain closed
densely defined operators ∂̄∂w and ∂̄∂s on L2

p,q(T, e−ϕ) with the domains consisting
of all u such that ‖∂̄∂u‖T,ϕ <∞ with ∂̄∂ = ∂̄∂w or ∂̄∂s.

Let us now define the formal adjoints. If f is a (p, q)-form such that ∗f is
smooth then we put ϑf = εp,q ∗ ∂ ∗ f, where εp,q is chosen so that

(g, ϑf)ω,T = (∂̄wg, f)ω,T (7)

if f has compact support. If ϕ is a weight function then we put ϑϕ = eϕϑe−ϕ, and
so (g, ϑϕf)ω,T,ϕ = (∂̄wg, f)ω,T,ϕ.

4. A Priori Estimates for ∂̄∂

The main technical result of this section is the following generalization of the
Kodaira–Nakano–Hörmander identity. In the statement of the result, we use the
notation ∂−ϕ = e−ϕ∂eϕ for the twisted ∂̄-operator.

Theorem 1. Let T ≥ 0 be a (1, 1)-current in a domain D in Cn+1 such that
i∂∂̄T has measurable coefficients. Let ω be a Kähler form in D. Let, finally, g be
a test (p, q)-form with support in D and suppose that ϕ ∈ C2(D). Then
∫

cp+q+1∂g ∧ ∂̂g ∧ i∂∂̄ϕ ∧ ωn−p−q−2 ∧ Teϕ −
∫

cp+q+1∂g ∧ ∂̂g ∧ ωn−p−q−2 ∧ i∂∂̄T eϕ

+cp+q+2

∫

∂̄∂g ∧ ∂̄∂̂g ∧ ωn−p−q−2 ∧ Teϕ

−cp+q+2

∫

(∂−ϕ∂g)p+2 ∧ (∂−ϕ∂̂g)p+2 ∧ ωn−p−q−2 ∧ Teϕ

−cp+q

∫
̂
ϑ−ϕ∂̂g ∧ ϑ̂−ϕ∂g ∧ ωn−p−q ∧ Teϕ

= (ϑ−ϕ
̂̄∂∂g, ∂̂g)ω,T,−ϕ + (ϑ−ϕ

̂̄
∂∂̂g, ∂g)ω,T,−ϕ. (8)

In particular, if i∂∂̄T is strictly positive and i∂∂̄ϕ ≥ ω then

(n− p− q − 1)‖∂g‖2 + cp+q+2

∫

∂̄∂g ∧ ∂̄∂̂g ∧ ωn−p−q−2 ∧ Teϕ

−cp+q+2

∫

(∂−ϕ∂g)p+2 ∧ (∂−ϕ∂̂g)p+2 ∧ ωn−p−q−2 ∧ Teϕ

−cp+q

∫
̂
ϑ−ϕ∂̂g ∧ ϑ̂−ϕ∂g ∧ ωn−p−q ∧ Teϕ ≤ (ϑ−ϕ

̂̄∂∂g, ∂̂g) + (ϑ−ϕ
̂̄
∂∂̂g, ∂g). (9)
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If, moreover, dT = 0, then

(n− p− q − 1)‖∂g‖2 − cp+q+2

∫

(∂−ϕ∂g)p+2 ∧ (∂−ϕ∂̂g)p+2 ∧ ωn−p−q−2 ∧ Teϕ

−cp+q

∫
̂
ϑ−ϕ∂̂g ∧ ϑ̂−ϕ∂g ∧ ωn−p−q ∧ Teϕ ≤ (̂̄∂∂g, ∂̄∂̂g). (10)

Proof. Clearly, (9) and (10) follow from (8) since

(∂̄∂g, ̂̄∂∂̂g) = (̂̄∂∂̂g, ∂̄∂g).

For proving (8), we follow the Bochner–Kodaira method (see [11]). �
Theorem 1 has a duplicate for (n− p, q)-forms.

Theorem 2. Under the notation and assumptions of Theorem 1, let f be
a test (n− p, q)-form with support in D such that ∗f is (C2−)smooth. If i∂∂̄T ≤ 0,
i∂∂̄ϕ ≥ ω, and dT = 0, then

(q − p− 1)‖∂ϕ∗f‖2 − cn−q+p+2

∫

(∂∂ϕ∗f)p+2 ∧ (∂̂∂ϕ∗f)p+2 ∧ ωq−p−2 ∧ Te−ϕ

−cn−q+p

∫
̂
ϑ̂∂ϕ∗f ∧̂ϑ∂ϕ∗f ∧ ωq−p ∧ Te−ϕ ≤ ( ¯̂∂ϕ∂ϕ∗f, ∂̄ϕ̂∂ϕ∗f).

Proof. Apply Theorem 1 to g = ∗fe−ϕ. �

5. Existence Theorems for ∂̄∂ on Closed (1, 1)-Currents

Theorem 3. Let T ≥ 0 be a closed (1, 1)-current in Cn+1 and let ω = i∂∂̄|z|2
be a Kähler form in the Euclidean metric in Cn+1. Let ϕ be a plurisubharmonic
function in Cn+1 satisfying i∂∂̄ϕ ≥ ω. Then, for every ∂̄w-closed (n − p, q)-form f
on T with q − p − 1 ≥ 1, there exists a (n − p − 1, q − 1)-form u on T such that
∂̄∂wu = f on T and

∫

|∂u|2ω,TσT e
−ϕ ≤ 1

q − p− 1

∫

|f |2ω,TσT e
−ϕ.

Let us first prove the theorem on assuming that T is smooth and strictly pos-
itive and then obtain the general theorem from the approximation of T by such
currents T(ε). After that we must approximate the form f defined only on T by
global forms closed on T(ε). This turns out surprisingly easy: Instead of regular-
izing T and f , we separately regularize f ∧ T and then use Proposition 2 to write
(f ∧ T )ε = f(ε) ∧ T(ε).

To this end, choose a nonnegative test function χ supported by the unit ball
such that

∫
χ = 1, and let χε(z) = ε−2nχ(z/ε). For any form or a current α, denote

the convolution α ∗ χε by αε.
Proof of Theorem 3. Suppose first that T is strictly positive, while T and ϕ

are smooth. For proving the theorem, we must show that

|(f, ϑ̄ϕα)|2 ≤ 1
q − p− 1

‖∂ϕ∂̄ϕ ∗ α‖2 =
1

q − p− 1
‖ϑϕϑϕα‖2 (11)

if α is a test (n−p+1, q)-form and normalize it so that ‖f‖2 = 1. (If (11) is fulfilled
then the Riesz representation theorem implies that we can find a form u on T such
that

(f, ϑ̄ϕα) = (∂wu, ϑϕϑϕα) and ‖∂wu‖ ≤ 1
q − p− 1

.
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Then ∂̄∂wu = f , and we are done.)
The proof of (11) is carried out in a standard manner.
We also have versions of Theorem 3 for a pseudoconvex domain in Cn+1 and

general Kähler metrics. We further have versions of these theorems for some compact
Kähler manifolds.

6. Currents of Higher Bidegree

The key ingredient of the proof was Proposition 1 by which the quadratic form

[γ, γ̂]σT = cq+pγ ∧ γ̂ ∧ T ∧ ωn−q−p,

is definite on the space of (q, p)-forms on T satisfying γ ∧ωn−p−q+1 ∧T = 0 (i.e., for
“primitive” forms). This fails for (2, 2)-currents even if they are strictly positive [9].

Let T be the (s, s)-form

T =
1∑

l=0

dVsl+1,sl+2,...,s(l+1)

in C2s (where dVjk = dVj ∧ dVk, dVj = idzj ∧ dz̄j).
It is easy to observe that there is no local solvability for ∂̄∂u on (s, s− 1)-forms

for such choice of T . Take

f =
∑

j

∑

k1<k2<···<ks−1

f
k1k2...ks−1
j dzj ∧ dVk1k2...ks−1 ,

and so

f ∧ T =
∑

j

∑

k1<k2<···<ks−1

1∑

l=0

f
k1k2...ks−1
j dzj ∧ dVk1k2...ks−1,sl+1,sl+2,...,s(l+1).

Then ∂̄f ∧ T = 0 means that
∑ ∂fj

∂z̄j
= 0, (12)

where fj =
∑

k1<k2<···<ks−1

fk1k2...ks−1
j .

If f ∧ T = ∂̄∂u ∧ T then, for a (s− 1, s− 2)-form u, we may write

u =
2s∑

j=1

∑

k1<···<ks−2

u
k1...ks−2
j dzj ∧ dVk1...ks−2 .

Now

u ∧ T =
2s∑

j=1

∑

k1<···<ks−2

1∑

l=0

u
k1...ks−2
j dzj ∧ dVk1...ks−2,sl+1,sl+2,...,s(l+1),

and we can show that

∂̄∂u ∧ T =
2s∑

j=1

∑

k1<···<ks−2

∑

ks−1

1∑

l=0

i

(
∂2u

k1...ks−2
j

∂z̄ks−1∂zks−1

− ∂2u
k1...ks−2
ks−1

∂z̄ks−1∂zj

)

×dzj ∧ dVk1...ks−1,sl+1,...,s(l+1).
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Therefore, the equation ∂̄∂u ∧ T = f ∧ T splits into

∑

1≤k1<···<ks−1≤s

s∑

ks−1=1

i

(
∂2u

k1...ks−2
j

∂z̄ks−1∂zks−1

− ∂2u
k1...ks−2
ks−1

∂z̄ks−1∂zj

)

= fj , 1 ≤ j ≤ s,

and a similar for u
k1...ks−2
s+1 , u

k1...ks−2
s+2 , . . . u

k1...,ks−2
2s , s + 1 ≤ k1 < · · · < ks−2 ≤ 2s,

s + 1 ≤ ks−1 ≤ 2s. It is solvable only if

∂f1

∂z̄1
+

∂f2

∂z̄2
+ · · ·+ ∂fs

∂z̄s
= 0, (13)

which is not assumed by (12).
Let T be the (s, s)-form

T =
∑

ks<ks+1<···<k2s−1

dVksks+1...k2s−1

in C2s. It is easy to observe that the local solvability for ∂̄∂u on (s, s − 1)-forms
holds for this choice of T . We have

f ∧ T =
∑

fjdzj ∧ dV̂j ,

where fj =
∑

k1<···<ks−1
f
k1...ks−1
j . Then ∂̄f ∧ T = 0 means that

∑ ∂fj
∂z̄j

= 0. (14)

If f ∧ T = ∂̄∂u ∧ T then

u ∧ T =
2s∑

j=1

∑

k1<···<ks−2

∑

ks<···<k2s−1

uk1...ks−2
j dzj ∧ dVk1...ks−2ks...k2s−1 ,

and we can show that

∂̄∂u ∧ T =
2s∑

j=1

∑

k1<···<ks−2

∑

ks−1

∑

ks<···<k2s−1

i

(
∂2u

k1...ks−2
j

∂z̄ks−1∂zks−1

−∂2u
k1...ks−2
ks−1

∂z̄ks−1∂zj

)

dzj ∧ dVk1...k2s−1 .

Therefore, the equation ∂̄∂u ∧ T = f ∧ T splits into the system

∑

k1<···<ks−2

∑

ks−1

∑

ks<···<k2s−1

i

(
∂2u

k1...ks−2
j

∂z̄ks−1∂zks−1

− ∂2u
k1...ks−2
ks−1

∂z̄ks−1∂zj

)

= fj, 1 ≤ j ≤ 2s.

It is solvable only if

∑ ∂fj
∂z̄j

=
∑

j

∑

k1<···<ks−2

∑

ks−1

∑

ks<···<k2s−1

i

(
∂3u

k1...ks−2
j

∂z̄ks−1∂zks−1∂z̄j
− ∂3u

k1...ks−2
ks−1

∂z̄ks−1∂zj∂z̄j

)

= 0,

(15)
which is assumed by (14).
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Let T be the (s, s)-form
∑1

j=0 dVsj+1,sj+2,...,s(j+1) in C2s. Since T has bidimen-
sion (s, s), a primitive 2-form must satisfy

γ ∧ ωs−1 ∧ T = 0. (16)

In particular, take γ =
2s∑

j=1
γjdVj . Then

γ ∧ ω =
∑

j<k

γjkdVjk , where γjk = γj + γk,

...

γ ∧ ωs−1 = (s− 1)!
∑

j<k1<···<ks−1

γjk1...ks−1dVjk1...ks−1 ,

where γjk1...ks−1 = γj + γk1 + · · · + γks−1 , (this is proved by induction); therefore,
equality (16) exactly means that (s− 1)!

∑2s
1 γj = 0.

On the other hand,
γ ∧ γ̄ = 2 Re

∑

j<k

γj γ̄kdVjk;

therefore,

γ ∧ γ̄ ∧ ω = 2 Re
∑

j<k1<k2

(γj(γ̄k1 + γ̄k2) + γk1 γ̄k2)dVjk1k2 ,

...

γ ∧ γ̄ ∧ ωs−2 = (s− 2)!2 Re
∑

j<k1<k2<···<ks−1

(γj(γ̄k1 + · · ·+ γ̄ks−1)

+γk1(γ̄k2 + · · ·+ γ̄ks−1) + · · ·+ γks−3(γ̄ks−2 + γ̄ks−1) + γks−2 γ̄ks−1)dVjk1k2...ks−1

(this is proved by induction),

γ ∧ γ̄ ∧ ωs−2 ∧ T = (s− 2)!2 Re[γ1(γ̄2 + · · ·+ γ̄s) + γ2(γ̄3 + · · ·+ γ̄s)+
· · ·+ γs−1γ̄s + γs+1(γ̄s+2 + · · ·+ γ̄2s) + · · ·+ γ2s−2(γ̄2s−1 + γ̄2s) + γ2s−1γ̄2s]dV1...2s.

This form is obviously indefinite since we obtain different signs for γ = (1, . . . , 1,−1,
. . . ,−1) and γ = (1,−1, . . . , 1,−1).

Let T be the (s, s)-form
∑

j1<···<js
dVj1,...,js in C2s. Then (16) means that

(s− 1)!
(

2s− 1
s− 1

) 2s∑

1

γj = 0.

On the other hand,

γ ∧ γ̄ ∧ ωs−2 ∧ T = (s− 2)!
(

2s− 2
s− 2

)

2 Re
[2s−1∑

j=1

γj(γ̄j+1 + · · ·+ γ̄2s)
]

dV1...2s

= (s− 2)!
(

2s− 2
s− 2

)

2 Re
[2s−1∑

j=1

−|γj |2 − γj(γ̄1 + . . . γ̄j−1)
]

dV1...2s ≤ 0.

The proof is carried out by induction.
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PARALLEL ALGORITHMS FOR DIRECT

ELECTRICAL LOGGING PROBLEMS
I. V. Surodina

Abstract. We consider direct electrical logging problems and describe fully parallel
algorithms for GPU architecture.

Keywords: Poisson equation, logging, simulation, Krylov subspace methods, precon-
ditioner

Introduction

The fast solution of direct problems can serve as a foundation for inverting cer-
tain problems in geophysics. One of the prospective current directions for speeding
up solutions to these problems is the use of parallel calculations on graphical pro-
cessors (GPU). To maximize gain while using GPU, it is necessary to implement
fully parallel calculation taking advantage of the GPU architecture. Solving direct
electrical logging problems by the finite-difference method or finite-element method
leads to the large sparse linear systems that are rather often solved using conjugate
direction methods. Without suitable preconditioners, solutions to these systems
converge slowly. The efficiency of implementation depends mainly on the degree of
parallelization of the preconditioner. This article realizes the algorithm we proposed
in [1] to construct a parallel preconditioner that approximates the inverse matrix.
This algorithm requires small expenses, or none at all, on the construction of the
preconditioning matrix and is fully parallel. The implementation uses the linear
algebra function library CUBLAS NVIDIA. Depending on the mesh dimension and
geophysical properties of real models, we improve the calculation time by the factor
of 10 to 50 in comparison with sequential software versions.

1. The 2-Dimensional Direct Electrical Logging Problem

Consider the electrical logging problem on the example of lateral electrical
logging probing problem (LELP). Consider an axially symmetric distribution σ =
σ(r, z) of the specific electric conductivity in cylindrical coordinates. The problem
of modeling the sonde readings of the LELP problem reduces to Poisson’s equation

1
r

∂

∂r

(
σr

∂Ua

∂r

)
+

∂

∂z

(
σ
∂Ua

∂z

)
=

1
r

∂

∂r

(
(σ0 − σ)r

∂U0

∂r

)
+

∂

∂z

(
(σ0 − σ)

∂U0

∂z

)
(1)

for the anomalous electric potential Ua = U − U0, where U is the total required
electric potential, U0 is the electric potential of the pointlike source at the origin in
a homogeneous medium with specific electric conductivity, U0 = I

4πσ0L
, while I is

the current and L =
√
r2 + z2. The potential decays as 1/L away from the source.

c© 2015 Surodina I. V.
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Thus, we may impose the zero boundary conditions Ua|r=R = 0 and Ua|z=±Z = 0
on the function Ua away from the source (r = R, z = ±Z). Conditions on the well
axis are determined from the axial symmetry of the source and medium: ∂U

∂r = 0.
By axial symmetry, consider the half-plane [0, R] × [−Z,Z] and introduce the

rectangular nonuniform coordinate mesh [2]

∧
ω
h

= {(ri, zj), i = 0, . . . , Nr, j = −Nz, . . . , Nz}. (2)

On (2) consider the finite-dimensional linear space H0 of mesh functions vanishing
on the boundary equipped with the inner product

(u, v) =
Nr∑
i=0

Nz∑
j=−Nz

uijvij�
(r)
i �

(z)
j ri, (3)

where
�

(r)
i =

(
h(r)
i + h(r)

i+1
)
/2, h(r)

i = ri − ri−1, i = 1, . . . , Nr,

�
(z)
j =

(
h(z)
j + h(z)

j+1
)
/2, h(z)

j = zj − zj−1, j = −Nz + 1, . . . , Nz.

Define the difference operator A on H0 as

AV = −1
r
(r̄aVr̄)r̂ − (bVz̄)ẑ, (4)

where V, a, b ∈ H0,

a(i, j) = σ
(
ri − h(r)

i /2, zj + h(z)
j /2

)
, b(i, j) = σ

(
ri + h(r)

i /2, zj − h(z)
j /2

)
,

(V )r̄(i, j) = (Vi,j − Vi−1,j)/h
(r)
i , (V )r̂(i, j) = (Vi+1,j − Vi,j)/�

(r)
i ,

(V )z̄(i, j) = (Vi,j − Vi,j−1)/h
(z)
i , (V )ẑ(i, j) = (Vi,j+1 − Vi,j)/�

(z)
i .

Using this discretization, replace (1) with the difference equation

AV = F, (5)

where
F =

1
r

(
r̄(a− σ0)U0

r̄

)
r̂
+
(
(b − σ0)U0

z̄

)
ẑ
.

2. Rearrangement of the Linear System Convenient
for Applying the Conjugate Gradient Method

When we write the two-dimensional vectors V and F , for instance, in columns,
as one-dimensional arrays, we express (5) as a system of linear algebraic equations
with five-diagonal matrix A and vectors V and F of size n. In H0 the operator A is
selfadjoint, but it is wasteful to solve the system of equations in this space due to the
inner product (4). Pass to the space Rn with the inner product (u, v) =

∑n
i=1 uivi.

In Rn×n the matrix A is not symmetric.
The Krylov subspace methods are often used to solve systems with sparse matri-

ces, for instance, the stabilization method Bicg-Stab of biconjugate gradients [3, 4].
In this case it is possible to symmetrize the matrix by a diagonal transformation and
use more efficient algorithms. To symmetrize the matrix, apply the algorithm of [5].
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Put l = 2Nz − 1 and m = Nr − 1. A necessary and sufficient condition for
symmetrizability is the cyclicity of the matrix entries of A,

a(j+1)m+i+1,jm+i+1ajm+i+1,jm+iajm+i,(j+1)m+ia(j+1)m+i,(j+1)m+i+1

= ajm+i+1,(j+1)m+i+1a(j+1)m+i+1,(j+1)m+ia(j+1)m+i,jm+iajm+i,jm+i+1, (6)

which approximation (4) meets. The transformation B−1/2AB1/2 with B = diag(b1,
. . . , bn) leads to a symmetric matrix A with the entries aij . The entries of B satisfy
the recurrence

b0 = 1,

bjm+i+1 = bjm+i
ajm+i+1,jm+i

ajm+i,(j+1)m+i
, i = 1, . . . ,m− 1, j = 1, . . . , l − 1,

b(j+1)m+i = bjm+1
a(j+1)m+1,jm+1

ajm+i,(j+1)m+1
, i = m, j = 1, . . . , l− 1.

(7)

This yields the algebraic system
AX = F , (8)

where X = B−1/2V and F = B−1/2F .

3. The 3-Dimensional Direct Electrical Logging Problem

In cylindrical coordinates consider an arbitrary distribution of specific electric
conductivity σ = σ(r, ϕ, z). The problem of modeling the LELP sonde readings
reduces to the Dirichlet problem for Poisson’s equation
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(9)

for the anomalous potential Ua with boundary conditions Ua|r=R = 0 and Ua|z=±Z

= 0 and periodicity condition Ua|ϕ=0 = Ua|ϕ=2π. To avoid the singularity arising
as r → 0, we use the mesh that is shifted along r away from r = 0, as suggested
in [6]. In the cylinder

G = {0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π, −Z ≤ z ≤ Z}
introduce an arbitrary mesh [6] which is nonuniformly rectangular with respect to r
and z and uniform with respect to ϕ:

∧
ω
h

= {(ri, φk, zj), i = 0, . . . , Nr, k = 0, . . . , Nk, j = −Nz, . . . , Nz}. (10)

Considering (10), take the linear finite-dimensional space H0 of mesh functions
equipped with the inner product
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Define the difference operator A on H0 as

AV = −1
r
(r̄aVr̄)r̂ − 1

r2 (cVϕ)ϕ̂ − (bVz̄)ẑ , (11)

where V, a, b, c ∈ H0,

a(i, k, j) = σ
(
ri − h(r)

i /2, ϕk + h(ϕ)
k /2, zj + h(z)

j /2
)
,
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i /2, ϕk + h(ϕ)
k /2, zj − h(z)

j /2
)
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(
ri + h

(r)
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)
.

The operators (V )r̄, (V )r̂, (V )z̄, (V )ẑ , (V )ϕ, and (V )ϕ̂ are defined by analogy with
the two-dimensional case. Finally, we obtain the equation

AV = F, (12)

where
F =

1
r

(
r̄(a− σ0)U0

r̄

)
r̂

+
1
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(c− σ0)U0

ϕ

)
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+
(
(b− σ0)U0
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)
ẑ
.

The algorithm of symmetrization generalizes naturally to the three-dimensional case,
so that we can also symmetrize (11) using the transformation A = B−1/2AB1/2.
Finally, by analogy with (8), we obtain

AX = F , (13)

where X = B1/2V and F = B1/2F .

4. A Solution Method

In order to solve the linear systems (8) and (13), choose the conjugate gradient
method because the matrices of these systems are symmetric and positive definite.
Denote by xn the approximate solution to the system Ax = b at step n. Calculate
the corresponding residual rn = b−Axn and an auxiliary vector pn as

r0 = b−Ax0, p0 = r0, (14)

rn = rn−1 − αn−1APn−1, (15)

pn = rn + βn−1APn−1, n = 1, 2, . . . , (16)

αn =
rTn rn
pTnApn

, βn =
rTn+1rn+1

rTn rn
. (17)

All operations in these formulas (14)–(17) are matrix-by-vector and parallelize
well on GPU. We can do vector additions, multiplications by constants, and inner
multiplications of vectors using the standard function library CUBLAS NVIDIA. To
efficiently multiply matrices by vectors, we wrote a special procedure. We could,
of course, apply a similar procedure of the CUSPARSE NVIDIA library, but in our
case storing the matrix in the CSR format is inefficient. It is convenient to store only
the values of matrix entries in separate arrays because we know the matrix structure
and can use it to multiply the matrix by vectors. However, the rate of convergence
in the conjugate gradient method is low. The maximal speedup attainable on GPU
is only five-to-sixfold. Thus, we should use this method with a preconditioner.
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The idea of preconditioning is to replace the system Ax = b by the system
M−1Ax = M−1b or AM−1y = b, with x = M−1y, where either M−1A or AM−1

has a significantly smaller condition number than A itself, and the system

Mz = r (18)

for an auxiliary vector z must be easily solvable.

Algorithm of the Preconditioned Conjugate Gradient Method

Initialization: x0, r0 = b−Ax0, Mz0 = r0, p0 = z0;

(1) qi = Api, αi =
zTi ri
pTi qi

;

(2) xi+1 = xi + αipi, ri+1 = ri − αiqi;
(3) Mzi+1 = ri+1;

(4) βi =
zTi+1ri+1

zTi ri
, pi+1 = ri+1 + βipi.

(19)

In the case of GPU realization we impose on the matrix M the requirement
of high parallelization not only of the solution of (18), but also of the construction
of M itself. In this article we use the original approach [1] to constructing the
preconditioning matrix relying on an approximation of the inverse matrix. Based on
the Hotelling–Schulz algorithm [7, 8], this approach is fully parallel. Let us sketch
it. Take an initial approximation D0 to the inverse matrix. If

‖R0‖ ≤ k < 1, R0 = E −AD0; (20)

then we can construct an iteration approximating the inverse matrix as

D1 = D0 + D0(E −AD0), (21)

D2 = D1 + D1(E −AD1) = 2D1 −D1AD1Dm+1 = Dm + Dm(E −ADm). (22)

This process converges provided that (20) holds, and the rate of convergence is
described in [9] as

‖Dn −A−1‖ ≤ ‖D0‖ k2n

1− k
. (23)

An important property in [9] of this process is that it preserves the symmetry of all
matrices Dm: if A = AT and D0 = DT

0 , then Dm = DT
m.

As the initial approximation to the inverse matrix we take the Jacobi precondi-
tioner D0 = diag

(
a−1
11 , a

−1
22 , . . . , a

−1
nn

)
. In our case this is possible since the approx-

imation to (1) and (9) yields matrices with weak diagonal domination. The matrix
D1 is easy to calculate:

dii =
1
aii

, di,i+1 =
ai,i+1

ai+1,i+1aii
, di,i+m =

ai,i+m

ai+m,i+maii
. (24)

The structure of D1 is the same as in the original matrix. This is rather useful
since we can apply the already available procedure for multiplying a matrix by a
vector. To decrease the number of arithmetic operations in the PCG algorithm, we
can scale (8) and (13) beforehand to make the diagonal entries of A equal to 1:

aij =
1
aii
· aij · 1

ajj
, i, j,= 1, . . . , n.
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This procedure is preferable to the use of the Jacobi preconditioner in the conjugate
gradient method because for the same number of iterations it needs fewer arithmetic
operations to achieve prescribed accuracy.

The symmetry of the matrix is preserved. The formulas for calculating the
preconditioner D1 simplify. It is clear from (8) that the diagonal entries of D1 become
equal to 1, while the off-diagonal entries become opposite to the corresponding entries
of the scaled matrix A. To decrease the number of iterations in the PCG method,
we can also apply better preconditioners D2 and D3 (for better approximations to
the inverse matrix). Note that the matrix D2 in the two-dimensional case has 25
diagonals, while D3 has 113 diagonals. It is inadvisable to calculate these matrices
and, even worse, to store them on GPU. In the conjugate gradient method we are
interested not in the preconditioning matrices, but only in the result of multiplication
of a matrix by a vector. Therefore, use (22). Then step 3 of the PCG method
requires three matrix-by-vector multiplications and one addition of vectors with
multiplication by a constant. For D3 we have

D3 = D2 + D2(E −AD2) = (2D1 −D1AD1)(2E −A(2D1 −D1AD1))
= 2(2D1 −D1AD1)− (2D1 −D1AD1)A(2D1 −D1AD1).

(25)

This implies that step 3 in the PCG algorithm requires seven matrix-by-vector
multiplications and scalar operations like vector addition and multiplication by
a constant. All operations are fully parallel, so we use the CUBLAS CUDA NVIDIA
library and our previously written matrix-by-vector multiplication procedure. But
which preconditioner is preferable? To answer this question, we ran simulations. As
a criterion for choosing the optimal preconditioner we took the minimal time for
solving the problem with the prescribed accuracy.

5. Simulations

For the two-dimensional problem we tested the Jacobi preconditioner (taking
a scaled system), D1, D2, and D3 in the conjugate gradient method.

Consider a typical model with axially symmetric distribution of electric con-
ductivity (Fig. 1).

Fig. 1. Model of medium
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The medium is divided into laterally inhomogeneous strata by a system of par-
allel flat boundaries. There is a well of radius 0.108 m with resistance 2 Ohm·m.
Some strata could include the drilling fluid zone and the surrounding zone. The re-
sistance of beds varies from 3 to 100 Ohm·m. For one probe position in the well we
calculated the condition numbers (Table 1) of the original (symmetrized) matrices
A, AD0, AD1, AD2, and AD3, for n = 17136. It is clear from Table 1 that the
condition numbers decrease. We should also expect the number of iterations in the
PCG method to decreases.

Table 1. The condition number of AM−1

Matrix Condition number

A 4.5377 ∗ 107

AD0 3.0542 ∗ 105

AD1 7.6542 ∗ 104

AD2 3.8271 ∗ 104

AD3 1.9135 ∗ 104

Table 2. The two-dimensional problem.
Results of calculations by the CG method with various preconditioners

Метод n = 17139 n = 37846 n = 76136

итерации время, с итерации время, с итерации время, с

CG (scal) 2063 0.22 3412 0.41 4427 0.65

D1 1030 0.094 1706 0.20 2274 0.35

D2 (D1) 729 0.085 1205 0.18 1577 0.31

D3 (D1) 505 0.075 846 0.17 1112 0.33

IC (Cusp.) 96 0.7 160 1.92 212 4.46

We simultaneously calculate LELP sonde readings for several (5 to 7) probes on
one mesh. Sometimes not all probes are needed for interpretation; therefore, we use
several meshes. The calculations summarized in Table 2 ran for three meshes. Since
we have to solve the problem with specified accuracy, the error of at most 3% with
respect to exact solutions, available for the radially layered media in a sufficiently
wide electric conductivity range, near receiving points we constructed quite dense
meshes. The first mesh (n = 17139) disregards the shortest (0.3 m) and the longest
probes (8 m) of LELP. The second mesh (n = 37846) disregards the longest probe,
while in the third mesh (n = 76136) all probes are described well. All calculations ran
on the cluster NKS-30T+GPU with one Xeon X5670 processor (2.93 Ггц) and one
NVIDIA Tesla M 2090 videocard on the Fermi architecture (compute capability 2.0).

Consider the results of simulations for one probe position in model 1. Table 2
summarizes the calculations for the conjugate gradient method with various precon-
ditioners. Iterations ran until the relative norm of the residual reaches 1.d− 7. It is
clear from Table 2 that for all N the number of iterations decreases as the quality of
preconditioning improves. The time spent on solving the system decreases too, but
for n = 76136 for the conjugate gradient method with D3 it increases. The reason
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is that on step 3 seven matrix-by-vector multiplications are necessary. These oper-
ations become more time-consuming than the use of the preconditioner D2 giving
more iterations but requiring three matrix-by-vector multiplications on this step.
The last row of the table reports calculations with the IC preconditioner (incom-
plete Cholesky factorization) from the NVIDIA CUSPARSE library. In this variant
we used the CSR format for storing the matrix and the matrix-by-vector multipli-
cation procedure from the CUSPARSE library. It is clear from the table that the
high-quality IC preconditioner beats all previous ones: the number of iterations is
5 times less than with D3. However, the calculation time is greater by an order of
magnitude than with D3.

Of practical interest is the calculation at many points of the probe position in
the well relative to the model (the calculation mesh is translated together with the
probe). During the calculation, at each subsequent point with respect to depth it is
reasonable to use as the initial solution the solution already found, which enables us
to decrease the number of iterations on the next step. As simulations show, in the
majority of cases this is efficient, especially so when the model includes sufficiently
heavy strata. Table 3 summarizes the comparative calculations of 155 profile points
for model 1 by the conjugate gradient method (with the preconditioner D3) imple-
mented on GPU and by a direct solution method, by the PARDISO program from
the Intel MKL library. Presently PARDISO is one of the best programs as regards
speed and accuracy of solution, but for relatively low-dimensional problems.

Table 3. The two-dimensional problem. Calculation for 155 profile points.
Comparison with PARDISO

Method n = 17139 n = 37846 n = 76136

CG (D3) 13 22 39

Pardiso 13 29 66

Table 3 shows the total solution time for the entire problem (in seconds). Here
it is necessary to consider that videocard initialization on the cluster NKS-30T takes
7–8 seconds. Thus, the actual time spent on the solution is less than the tabulated
time. If we do not account for the time of videocard initialization then the GPU
version for all meshes is twice as fast as the PARDISO program on CPU. Note that
calculations ran on GPU with simple precision, but on CPU with double precision.

Table 4 summarizes the results of simulations for the system of equations for the
three-dimensional problem with one probe position for model 1, but with inclined
well. The calculations ran for two meshes. It is clear from Table 4 that as the
preconditioner quality improves, the number of iterations decreases, but already for
the preconditioner D2 the solution time begins to grow.

Table 4. Three-dimensional problem.
The results of calculations by the CG method with various preconditioners

Method n = 857480 n = 1458600
iterations time, s iterations time, s

CG (scal) 1816 1.45 2463 3.09
D1 877 0.96 1203 2.09

D2 (D1) 606 1.07 846 2.39
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Using the results of simulations, for two-dimensional problems we choose the
preconditioner D3, and for three-dimensional problems D1. When the system of
linear equations is prescaled, the construction of D1 requires neither memory nor
time resources. As a result of full parallelization, even for sufficiently large number
of iterations we managed to obtain efficient algorithms. Note also their simplicity
and reliability.

Conclusion

Algorithms and programs for fast GPU calculation of the lateral electrical log-
ging sonde readings are created. This yields a speedup of 10-to-50 times in com-
parison with the running time of sequential software versions (for CPU) [10, 11] in
dependence on mesh dimensions and geophysical properties of real models. Basing
on the two-dimensional program, we created an inversion program [12].

REFERENCES

1. Labutin I. B. and Surodina I. V. Algorithm for sparse approximate inverse preconditioners in
conjugate gradient method // Reliable Computing. 2013. V. 19, N 1. P. 120–126.
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ANALYSIS AND NUMERICAL SOLUTION OF AN

INVERSE PROBLEM OF MODELING CIRCULATION

IN AQUATORIA WITH LIQUID BOUNDARY

V. I. Agoshkov, D. S. Grebennikov,
and T. O. Sheloput

Abstract. In geophysical hydrodynamics the problem exists of modeling physical pro-
cesses in water areas with the so-called liquid boundaries. One of the approaches to
solving the problem is to apply the optimal control theory and data assimilation meth-
ods. In this paper under study the problem of finding the unknown function in the
boundary condition of the system of shallow-water equations. We propose an iteration
algorithm based on the theory of inverse problems and optimal control theory. We also
obtain conditions for the unique and dense solvability of the problem and some conditions
for the convergence iteration algorithm as well. We present the results of simulations of
the Baltic Sea with this algorithm.

Keywords: inverse problem, liquid (open) boundary, ill-posed problem, iteration, shal-
low water equations

1. Introduction

Among geophysical hydrodynamics often addresses the problem of modeling the
processes in water areas (seas, oceans, rivers, and so on) with liquid boundary. For
instance, the southern boundaries of the Indian ocean, the northern boundaries of
the Barents and Kara Seas, the boundaries going along straits, river mouths, and so
on. This article deals with the problem of finding the boundary functions on liquid
boundaries more precisely.

We can apply various existing approximations to specify boundary conditions
on a liquid boundary. The material boundary approximation is sometimes used: the
liquid boundary is regarded as dynamic, with the nonpermeability condition imposed
on it [1, pp. 82–141]. The approximation is convenient when the deformation of
the model region is not too large. But in this case the boundary is an additional
unknown of the problem [2], which complicates the use of many modern numerical
methods, algorithms, and tools, as well as theoretical studies. Another common
approach is to use the averaged data on the flow through the open boundary [3].
Sometimes it is possible to make a preliminary calculation over the World Ocean
on a coarse mesh and use the resulting data as a boundary condition on the liquid
boundary. Probably, it is most promising to combine one of these methods with
data assimilation methods.

The idea of using optimal control theory and data assimilation methods to
solve the liquid boundary problem was studied in [4–6] for instance. In particular,
in [5] there is proposed and studied an iterative algorithm for reconstructing from
observations the unknown boundary function accounting for the influence of the

c© 2015 Agoshkov V. I., Grebennikov D. S., and Sheloput T. O.
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ocean on the open boundary of the simulated region, where the system of tidal
dynamics equations is chosen as the model describing physical processes in the model
area. Note that the iterative algorithms of [4, 5] must be implemented at each time.

In this article we study the questions of existence and uniqueness for a solution
to the inverse problem of calculating the unknown function in the boundary condition
for the equations of shallow water type used to model certain kinds of fluid circulation
in basins. The just of our approach to studying these questions is in reducing them
to similar questions concerning the boundary function for the wave equation which
the original system reduces to under some restrictions. We construct the boundary
condition for the wave equation itself basing on the shallow water equations under
consideration. In addition, we propose an iterative algorithm and apply it to the
Baltic Sea. We make a test in which the liquid boundary passes around the Swedish
town of Trelleborg and separates the North sea from the Baltic Sea. By this example
the article demonstrates that the proposed algorithm is sufficiently precise.

2. Statement of the Problem

1. Introduce the following notation. In the rectangular system of coordinates
(x, y, z), take (x, y) ∈ �, where � is a bounded region in R2. Take the time vari-
able t ∈ [0, T ] with T <∞, and consider the cylinder QT ≡ �× (0, T ) over �. The
boundary � ≡ ∂� of � is piecewise C2 smooth and satisfies the Lipschitz condition,
�T ≡ � × (0, T ) is the lateral surface of QT , and �cT = �c × (0, T ), where �c is the
liquid boundary. Denote by u and v the components of the fluid velocity along the
axes Ox and Oy. Assume that −ξ(x, y, t) < z < H(x, y), where z = ξ(x, y, t) is
the equation of the free ocean surface, z = H(x, y) is the floor equation (assume for
simplicity that H(x, y) is a smooth function), g = const is the free fall acceleration,
ρ is the density of the fluid, pa is the atmospheric pressure, τ1 and τ2 are the wind
friction stresses, and l is the Coriolis parameter.

Consider the system of hydrodynamics equations averaged over depth (the z
coordinate) [7, p. 47]:

∂U

∂t
− lV + g

∂ξ

∂x
= −1

ρ 0
pax +

1
Hρ0

τ1 in QT , (1)

∂V

∂t
+ lU + g

∂ξ

∂y
= −1

ρ 0
pay +

1
Hρ0

τ2 in QT , (2)

ξt + (UH)x + (V H)y = 0 in QT , (3)
where U and V are the averaged fluid velocity functions along Ox and Oy (henceforth
they will be velocities):

U =
1
H

H∫

0

u dz, V =
1
H

H∫

0

v dz;

pax =
∂pa

∂x
, pay =

∂pa

∂y
, (UH)x ≡ ∂(UH)

∂x
, (V H)y ≡ ∂(V H)

∂y
, ξt ≡ ∂ξ

∂t
.

Below we neglect the Coriolis force, putting l ≡ 0.
Equip the system with the initial and boundary conditions

U(x, y, 0) = U0(x, y), V (x, y, 0) = V0(x, y), ξ(x, y, 0) = ξ(x, y) in �, (4)

(U,n) = mcuc on �cT , (5)
where U = (U, V )T is the velocity vector, n is the outer normal, mc is the charac-
teristic function of �cT .
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Put

f1 = −H

ρ0
pax +

1
ρ0

τ1, f2 = −H

ρ0
pay +

1
ρ0

τ2, f = (f1, f2)T .

Multiply (1) and (2) by H , differentiate the first equation with respect to x, the
second one with respect to y, and (3) with respect to t. Combining then yields

−∂2ξ

∂t2
+ div(gH∇ξ) = div f in QT .

We can put the first two equations in vector form:

gH

(
∂ξ/∂x
∂ξ/∂y

)
=
(
f1
f2

)
− ∂

∂t

(
UH
VH

)
in QT .

Considering these two equations on � and taking the inner product with the outer
normal n to �, we obtain the boundary condition

gH
∂ξ

∂n
= (f · n)− ∂

∂t
H(U · n) on �T .

Thus, we can reformulate (1)–(5) for the shallow water equations as the following
problem for the wave equation:

∂2ξ

∂t2
− div(gH∇ξ) = − div f in QT ,

ξ|t=0 = ξ0 in �,

∂ξ

∂t

∣∣∣
t=0

= −∂U0

∂x
− ∂V0

∂y
≡ ξ1 in �,

gH
∂ξ

∂n
= (f · n) on (�\�c)× (0, T ),

gH
∂ξ

∂n
= (f · n)−mcH

∂uc

∂t
≡ (f · n) + mcUc on �c × (0, T ),

(6)

where Uc = −mcH∂uc/∂t. We impose necessary smoothness and agreement condi-
tions while considering the classical statement of the problem of type (6).

Suppose further that Uc is an additional unknown on �c × (0, T ) and introduce
the closuring equation

m0ξ = m0ϕobs on �T ,

where m0 is the characteristic function of �oT ⊂ �T with �oT ≡ �o × (0, T ), while
ϕobs is the observed level of ξ on �oT .

2. Consider only real variables, functions, and function spaces. Introduce the
Hilbert spaces (see [8] for instance)

L2(QT ) : (u, v)L2(QT ) ≡ (u, v)2,QT =
T∫

0

∫

�

uv d�dt,

W 1
2 (QT ) : (u, v)W 1

2 (QT ) =
∫

QT

(
uv +

2∑
i=1

∂u

∂xi

∂v

∂xi
+

∂u

∂t

∂v

∂t

)
d�dt,

W 1
2,T ≡ {u : u ∈ W 1

2 (QT ), u = 0 for t = T }.
Equip each of the spaces with the norm induced by the inner product.
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Introduce the space Ho as the subspace of L2(�T ) consisting of the elements
vanishing on �T \ �oT . Also introduce the space Hc as the subspace of the space
of traces of functions in W 1

2 (QT ) on �T consisting only of the elements vanishing
on �T \ �cT . Taking f ∈ (W 1

2 (QT ))2, ξ0 ∈ W 1
2 (QT ), ξ1 ∈ L2(QT ), 0 < ν ≤ gH(x),

and φobs ∈ Ho, consider the inverse problem: Find ξ ∈ W 1
2 (QT ) on QT and

Uc ∈ Hc such that

∂2ξ

∂t2
− div(gH∇ξ) = − div f a.e. in QT , (7)

ξ|t=0 = ξ(0),
∂ξ

∂t

∣∣∣
t=0

= ξ(1) a.e. in �, (8)

gH
∂ξ

∂n
= (f · n) a.e. on (�\�c)× (0, T ), (9)

gH
∂ξ

∂n
= (f · n) + Uc a.e. on �c × (0, T ), (10)

m0ξ = m0ϕobs a.e. on �T . (11)

To generalize problem (7)–(10), take the inner product of (7) with ξ̃ ∈ W 1
2,T (QT )

and integrate by parts while accounting for the boundary conditions. This yields

a(ξ, ξ̃) = F (ξ̃) + b(Uc, ξ̃) ∀ξ̃ ∈ W 1
2,T (QT ), (12)

where

a(ξ, ξ̃) ≡
∫

QT

(−ξtξ̃t + gH∇ξ∇ξ̃) d�dt,

F (ξ̃) ≡
∫

QT

f · ∇ξ̃ d�dt +
∫

�

ξ1ξ̃(x, y, 0) d�, b(Uc, ξ̃) ≡
∫

�cT

Ucξ̃ d�dt.

The generalized statement of (7)–(10) is as follows: Find ξ ∈W 1
2 (QT ) satisfying (12)

such that ξ|t=0 = ξ0 a.e. in �. The generalized statement of the inverse problem is in
order: Find ξ ∈ W 1

2 (QT ) and Uc ∈ Hc satisfying (12) and (11) such that ξ|t=0 = ξ0
a.e. in �.

Below we understand problems of type (7)–(10) in generalized form, although
for clarity we often write down their in classical form (7)–(10).

3. The Optimal Control Problem

We now proceed to the generalized statement of (7)–(11) in which we understand
(11) in the sense of least squares: Find ξ ∈W 1

2 (QT ) and Uc ∈ Hc satisfying (7)–(10)
and minimizing Jα:

inf
Uc∈Hc

Jα(Uc, ξ(Uc)),

where α ≥ 0 and

Jα(Uc, ξ(Uc)) ≡ α

2

∫∫

�T

mcU
2
c d�dt +

1
2

∫∫

�T

m0(ξ − ϕobs)2 d�dt. (13)
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It is not difficult to show that for α > 0 this functional is strictly convex and the
minimization problem has the unique solution. The optimality condition δJα = 0
leads to the equation

α

∫∫

�T

mcUcδUc d�dt +
∫∫

�T

m0(ξ − ϕobs)δξ d�dt = 0, (14)

where δUc and δξ satisfy

∂2δξ

∂t2
− div(gH∇δξ) = 0 in QT ,

δξ|t=0 = 0,
∂δξ

∂t

∣∣∣∣
t=0

= 0 in �,

gH
∂δξ

∂n
= mcδUc on �T .

(15)

To rearrange (14), introduce the adjoint problem

∂2q

∂t2
− div(gH∇q) = 0 in QT ,

q|t=T = 0,
∂q

∂t

∣∣∣∣
t=T

= 0 in �,

gH
∂q

∂n
= m0(ξ − ϕobs) on �T .

(16)

Then

0 =
∫∫

QT

(
∂2q

∂t2
− div(gH∇q)

)
δξ d�dt

=
∫

�

∂q

∂t
δξ

∣∣∣∣
T

0
d�−

∫

�

q
∂δξ

∂t

∣∣∣∣
T

0
d� +

∫∫

QT

q

(
∂2δξ

∂t2
− div(qH∇δξ)

)

︸ ︷︷ ︸
=0

d�dt

−
∫∫

�T

(
gH

∂q

∂n

)

︸ ︷︷ ︸
=m0(ξ−ϕobs)

δξd�dt +
∫∫

�T

q

(
gH

∂δξ

∂n

)

︸ ︷︷ ︸
=mcδUc

d�dt.

Consequently, ∫∫

�T

m0(ξ − ϕobs)δξ d�dt =
∫∫

�T

qmcδUc d�dt, (17)

and (14) becomes

α

∫∫

�T

mcUcδUc d�dt +
∫∫

�T

qmcδUc d�dt = 0. (18)

Since δUc is an independent variation, we can express the optimality condition as

αmcUc + mcq = 0 on �T . (19)
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Now we can write down the complete system of variational equations and state
an iterative process of approximate solution of the generalized problem. The system
of variational equations is

∂2ξ

∂t2
− div(gH∇ξ) = − div f in QT ,

ξ|t=0 = ξ0,
∂ξ

∂t

∣∣∣∣
t=0

= ξ1 in �,

gH
∂ξ

∂n
= (f · n) on (�\�c)× (0, T ),

gH
∂ξ

∂n
= (f · n) + Uc on �c × (0, T ),

∂2q

∂t2
− div(gH∇q) = 0 in QT ,

q|t=T = 0,
∂q

∂t

∣∣∣∣
t=T

= 0 in �,

gH
∂q

∂n
= m0(ξ − ϕobs) on �T ,

αmcUc + mcq = 0 on �T .

(20)

Before preluding the iterative process, let us study the solvability of the inverse
problem.

4. Solvability of the Problem

4.1. Unique solvability. Study the unique solvability of problem (7)–(11).
Suppose that the problem has two solutions ξ′ �= ξ′′ and U ′c �= U ′′c . Then

ξ ≡ ξ′ − ξ′′ and Uc ≡ U ′c − U ′′c satisfy

∂2ξ

∂t2
− div(gH∇ξ) = 0 in QT ,

ξ|t=T = 0,
∂ξ

∂t

∣∣∣∣
t=T

= 0 in �,

gH
∂ξ

∂n
= mcUc on � × (0, T ),

ξ = 0 on �o × (0, T ).

(21)

In case �c = �o we can treat (21) as the mixed initial-boundary problem. The-
orem (5.1) of [8] implies that (21) has the unique solution ξ = 0 in W 1

2 (QT ); conse-
quently, Uc vanishes on �cT .

In case �c �= �o we come to the problem with homogeneous Cauchy-type bound-
ary conditions with respect to space and time:

∂2ξ

∂t2
− div(gH∇ξ) = 0 in QT ,

ξ|t=T = 0,
∂ξ

∂t

∣∣∣∣
t=T

= 0 in �,

gH
∂ξ

∂n
= ξ = 0 on �o × (0, T ).

(22)
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The unique solvability of this problem is studied in [9] (see Theorem 1.2.1 and
Corollary 1.2.5 on pp. 4–10 for instance). Without stating these results here, we
observe that the sufficient conditions for the uniqueness of solution to (22) (call
them conditions I) include the requirements on the boundary �o that are too strong
and often incompatible with practical problems.

4.2. Dense solvability. Proceed to the dense solvability of (7)–(11) (see [10]).
It is clear from (18) that for α = 0 the optimality condition is mcq = 0 a.e.

on �cT , where q is a solution to (16). In case �c = �o the optimality conditions
become

∂2q

∂t2
− div(gH∇q) = 0 in QT , (23)

q|t=T = 0,
∂q

∂t

∣∣∣∣
t=T

= 0 in �, (24)

gH
∂q

∂n
= mo(ξ − φobs) on �o × (0, T ), (25)

gH
∂q

∂n
= 0 on � \ �o × (0, T ), (26)

q = 0 on �o × (0, T ). (27)

The unique generalized solution to this system vanishes identically; consequently, (25)
yields mo(ξ − φobs) = 0 and the minimum of Jα for α = 0 is also zero, which means
the dense solvability of (7)–(11) (see [10]).

In case �c �= �o we have a problem with Cauchy-type boundary conditions
on �c; therefore, dense solvability requires additional conditions (conditions I, see
the previous subsection).

Basing on the above argument, we can state the following:
1. In case �c = �o, problem (7)–(11) is uniquely and densely solvable.
2. In case �c �= �o we have unique or dense solvability under conditions I.

5. Iterative Algorithm

Since the dense solvability of (7)–(11) yields inf Jα = J∗ → 0 as α→ 0, for α > 0
sufficiently small we can assume that ξ ∼= ξ(α) and Uc

∼= Uc(α), where ξ(α) and Uc(α)
are exact solutions to the minimization problem for Jα; hence, it suffices to construct
an approximation to ξ(α) and Uc(α) by a suitable iterative algorithm (see [10]).

Let us state a simple iterative method for the system of variational equations
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(20) similar to the gradient descent method for Jα:

∂2ξk

∂t2
− div(gH∇ξk) = − div f in QT ,

ξk|t=0 = ξ0,
∂ξk

∂t

∣∣∣∣
t=0

= ξ1 in �,

gH
∂ξk

∂n
= (f · n) on (�\�c)× (0, T ),

gH
∂ξk

∂n
= (f · n) + Uk

c on �c × (0, T ),

∂2qk

∂t2
− div(gH∇qk) = 0 in QT ,

qk|t=T = 0,
∂qk

∂t

∣∣∣∣
t=T

= 0 in �,

gH
∂qk

∂n
= m0(ξk − ϕobs) on �T ,

Uk+1
c = Uk

c − τk(αUk
c + qk), on �c × (0, T ).

(28)

Here τk is a parameter of the iterative process. The choice of τk and the regular-
ization parameter α ≥ 0 affect the convergence of approximate solutions ξk(α) and
Uk
c (α) to the solutions ξ and Uc to problem (7)–(11). For instance, [10] implies

that for arbitrary α > 0 and sufficiently small τ = τk the iterative algorithm (28)
converges.

Using the theory of extremal problems, we can choose the parameter of the
iterative process as [11]

τk ∼= Jα(vk)− J∗
‖J ′α(vk)‖2 ,

where inf Jα = J∗. The dense solvability implies J∗ ≈ 0, and we can take (see [10])

τk ∼= Jα(vk)
‖J ′α(vk)‖2 =

‖mo(ξk − φobs)‖2L2(�T )

4‖mcqk‖2L2(�T )
(29)

as the optimal collection of parameters of the iterative process in this problem.
As we showed above, at each iteration it is necessary to solve the direct and

adjoint problem. For a numerical implementation of these problems we can use, for
instance, projection-grid methods or finite difference methods.

5. Simulations

Let us present the results of implementation of (28) to the Baltic Sea. For this
article, we ran the two series of simulations: the first for test functions (calculation in
the real sea area), and the second for certain data on the Baltic Sea which are close
to reality. The goal of simulations for test functions was to test and estimate the
performance of the developed programs, analyze the convergence of iterations, and
estimate the relative error of the solution obtained. Running simulations with data
which is close to real made it possible to estimate the performance of the developed
method and the feasibility of its practical application. As the liquid boundary in
all simulations we chose the boundary near the Swedish town of Trelleborg and
separating the North and Baltic Seas. To solve the direct and adjoint problems,
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Fig. 1. Relative error of the solution for t = T depending on the number of iterations
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Fig. 2. Relative residue of the solution for t = T depending on the number of iterations

we used the finite difference method (see [8]). The data on the boundary of the
Baltic Sea was encoded as a masque of 0’s and 1’s, while the boundary itself was
approximated by segments parallel to the coordinate axes.

To try the programs, we chose the test function sin(x/L) sin(y/L) sin(t/2T ),
used it to calculate the right-hand side as well as the initial and boundary condi-
tions. Then this function and the boundary function on the liquid boundary were
assumed unknown. They were then reconstructed by using the above iterative al-
gorithm. Fig. 1 depicts the dependence of the relative error of the solution on the
number of iterations for various values of the regularization parameter α, while Fig. 2
shows the norm of the residual (in other words, the square root of the value of Jα).
It is clear from these figures that the algorithm converges sufficiently fast (in 20 iter-
ations) and monotonely for large α; however, the error of solution is then large. For
smaller values of the parameter it is expedient either to halt the process after 40–60
iterations, or to increase the accuracy of solution to direct and adjoint problems
(in particular, decrease space and time meshsizes). We showed experimentally that
the relative error of the resulting solution is uniformly distributed over the whole
region; consequently, the resulting solution acceptably reproduces the characteristic
test solution. The results also show that for small values of the regularization pa-
rameter both the residual and the error of solution can be decreased by a factor of
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Fig. 3. The level (in cm) for t = T after 3 iterations

Fig. 4. The level (in cm) obtained as the result of calculating the model [12]

approximately 104.
We can draw the following conclusions from the above results. Firstly, the

choice of optimal parameter τk using (29) guarantees fast convergence of the process
(20 iterations). Secondly, the choice of regularization parameter depends on the
accuracy of solution to the direct and adjoint problems (in particular, on the time
and space meshsize).

Let us present the results of modeling the hydrodynamics of the Baltic Sea
taking into account the liquid boundary for the initial data which are close to reality.
We took the required data on atmospheric forcing on the ERA-Interim resource,
while the initial data and observations were obtained from the results of calculating
the three-dimensional model of hydrothermodynamics of the Baltic Sea developed at
the Institute of Computational Mathematics [12]. As the initial data we used that
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for January 1, 2012. We also chose the following parameters of the iterative process:
τk using (29), and α = 10−3. For this choice of parameters the process converges
in 3 iterations (i.e., sufficiently fast), which agrees with the theory of [10]. Fig. 3
shows the level (in cm) at the final moment of time obtained on the last iteration. It
is clear from the figure that our results acceptably reproduce the data of the model
(Fig. 4). The oscillations of the level depicted in Fig. 3 in the central part of the
basin are due to large depth variations in this region of the Baltic Sea. The resulting
norm of the residual (the difference between the obtained and model level on the
liquid boundary) on the last iteration was 6 · 10−4, which enables us to appreciate
the accuracy of the above algorithms for solving the problem of refining the form of
boundary conditions on the liquid boundary.

Clearly, the algorithms and approaches of this article can be applied to solve
the problem of boundary conditions on the liquid boundary for other water areas.
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SIMULATION OF A STRESS–STRAIN STATE

IN LAYERED ORTHOTROPIC PLATES
Yu. M. Volchkov and E. N. Poltavskaya

Abstract. Using the modified equations of the elastic layer, we derive some equations
of layered orthotropic plates. Numerical simulation is fulfilled of a stress-strain state in
single-layer, two-layer, and three-layer plates. Comparison is given of the numerical and
analytical solutions.

Keywords: layered orthotropic plates, stress-strain, numerical solution

Introduction. Reducing the three-dimensional elasticity problem to a two-dimen-
sional problem (theory of shells), we either use hypotheses of kinematic and dynamic
character [1] or expand solutions to elasticity equations in some complete system
of functions [2–6]. The hypotheses of kinematic and dynamic character impose
quite strong restrictions on the stress-strain state and thus, as rule, are invoked
to construct theory-of-shells equations in the case that stress is given on the front
faces of the shell. Solving the contact problems that are based on these equations
often leads to nonphysical effects. Applying expansions of solutions to elasticity
equations in some system of functions, we can construct the equations of shells
in various approximations. Furthermore, one of the main questions is as follows:
Which additional assumptions does this or that approximation rely on, namely, how
many terms in the expansion should we keep to construct approximation? Since
Legendre polynomials constitute a complete system of functions in the L2[−1, 1]
space, precisely this system of functions is often used to construct equations of the
theory of shells.

Basing on [4–13], we construct the differential equations of layered orthotropic
shells.

1. Equations of the planar elasticity problem. Express the equations
of the problem in the rectangular Cartesian coordinates x1, x2, x3. Below the in-
dices 1, 2, and 3 correspond to the coordinates x1, x2, x3.

In the planar problem the required functions are as follows: the stress tensor
components σ11, σ12, and σ22, the strain tensor components ε11, ε12, and ε22, and
the displacement vector components u1 and u2. Put the stress tensor components
σ13 and σ23 and the strain tensor components ε13 and ε23 equal to zero. All required
quantities are functions of the independent variables x1 and x2. In the problem of
planar stress state put the stress tensor component σ33 equal to zero, and find the
strain tensor component ε33 after solving the problem. Write down the equations of
the planar elasticity problem.

c© 2015 Volchkov Yu. M. and Poltavskaya E. N.
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Express the equilibrium equations for an infinitely small element as

∂σ11(x1, x2)
∂x1

+
∂σ12(x1, x2)

∂x2
+ f1(x1, x2) = 0, (1a)

∂σ21(x1, x2)
∂x1

+
∂σ22(x1, x2)

∂x2
+ f2(x1, x2) = 0. (1b)

Express the strain tensor components in terms of the displacement vector compo-
nents using Cauchy’s relation

ε11 =
∂u1

∂x1
, ε12 =

∂u1

∂x2
+

∂u2

∂x1
, ε22 =

∂u2

∂x2
. (2)

In this article we study the stress-strain state of plates made of an orthotropic
material. A material with three mutually orthogonal elastic symmetry planes is
called orthogonally anisotropic or orthotropic. Orthotropic materials are used in
industry; for instance, natural wood, rolled plate concrete, metal, and so on [14].
Some types of composite materials are orthotropic. In particular, carbon plastics are
orthotropic materials; these are polymer composite materials with carbon fibers lying
symmetrically in a polymer matrix, for instance, in epoxy resin. These materials
are firm and rigid, although light. They are tougher than steel, but much lighter.
Carbon plastics are widely used in industry because of these properties.

In the case of planar stress state we can write Hooke’s law for an orthotropic
material as [14]:

σ11(x1, x2)− α1

(
∂u1(x1, x2)

∂x1
+ γ2

∂u2(x1, x2)
∂x2

)
= 0, (3a)

σ22(x1, x2)− α2

(
∂u2(x1, x2)

∂x2
+ γ1

∂u1(x1, x2)
∂x1

)
= 0, (3b)

σ12(x1, x2)− g12

(
∂u1(x1, x2)

∂x2
+

∂u2(x1, x2)
∂x1

)
, (3c)

where
α1 =

E1

1− ν12ν21
, α2 =

E2

1− ν12ν21
, γ1 = ν12, γ2 = ν21.

These relations involve the following independent constants of the material: E1
and E2 are the elastic moduli in directions 1 and 2, and ν12 is the Poisson coefficient
characterizing the transverse compression due to expansion in direction 1. Two more
constants appear in the expression for the strain ε33 in the case we determine it by
solving the planar stress state problem. Consider the boundary value problem in
the rectangular region (layer) � : [0 ≤ x1 ≤ l,−h ≤ x2 ≤ +h].

On the boundary of the region we impose the following boundary conditions.
On the lateral surface layer:

a1u1(0, x2) + b1σ11(0, x2) = ϕ0(x2), a2u2(l, x2) + b2σ21(l, x2) = ϕl(x2). (4)

On the front surface layer:

c1u1(x1,±h) + d1σ12(x1,±h) = ϕ±h(x1),
c2u2(x1,±h) + d2σ22(x1,±h) = ϕ±h(x1)

(5)

Therefore, we pose the following problem: Find the functions σ11, σ12, σ22,
ε11, ε12, ε22, u1, and u2 satisfying equations (1a), (1b), (2), (3a)–(3c) and boundary
conditions (4), (5).
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2. Passage to dimensionless variables. Introduce the dimensionless vari-
ables

ξ =
x1

l
, ζ =

x2
h
, (σ̂11, σ̂12, σ̂22) =

(
σ11

σ0
,
σ12

σ0
,
σ22

σ0

)
,

û1 =
u1

h
, û2 =

u2

h
, f̂1 =

f1h

σ0
, f̂2 =

f2h

σ0
, η =

h

l
,

(6)

where σ0 is some characteristic stress.
Write down the equations of the problem in dimensionless variables omitting ˆ

for simplicity.
The equilibrium equations in dimensionless variables are

η
∂σ11(ξ, ζ)

∂ξ
+

∂σ12(ξ, ζ)
∂ζ

+ f1(ξ, ζ) = 0, (7a)

η
∂σ21(ξ, ζ)

∂ξ
+

∂σ22(ξ, ζ)
∂ζ

+ f2(ξ, ζ) = 0. (7b)

Hooke’s law in dimensionless variables is

σ11(ξ, ζ) − α1

(
η
∂u1(ξ, ζ)

∂ξ
+ γ2

∂u2(ξ, ζ)
∂ζ

)
= 0, (8a)

σ22(ξ, ζ) − α2

(
∂u2(ξ, ζ)

∂ζ
+ γ1η

∂u1(ξ, ζ)
∂ξ

)
= 0, (8b)

σ12(ξ, ζ) − g12

(
∂u1(ξ, ζ)

∂ζ
+ η

∂u2(ξ, ζ)
∂ξ

)
= 0 (8c)

σ21(ξ, ζ) − g12

(
∂u1(ξ, ζ)

∂ζ
+ η

∂u2(ξ, ζ)
∂ξ

)
= 0. (8d)

Since the stress tensor is symmetric, (8c) and (8d) amount to the same relation.
However, this expression is useful below.

Cauchy’s relation is

ε11 = η
∂u1

∂ξ
, ε12 =

∂u1

∂ζ
+ η

∂u2

∂ξ
, ε22 =

∂u2

∂ς
. (9)

3. Approximating stress and displacement by segments of Legendre
polynomials. While constructing the planar layer equations, replace the equilib-
rium equations (7a)–(7b) for infinitely small element in the directions of x1 and x2
and unit width in the direction of x3 with the equilibrium equations for an infinitely
small element in the direction of x1, finite width 2h in the direction of x2 and unit
width in the direction of x3:

1∫
−1

(
η
∂σ11(ξ, ζ)

∂ξ
+

∂σ12(ξ, ζ)
∂ζ

+ f1(ξ, ζ)
)
dζ = 0, (10)

1∫
−1

(
η
∂σ11(ξ, ζ)

∂ξ
+

∂σ12(ξ, ζ)
∂ζ

+ f1(ξ, ζ)
)
ζ dζ = 0, (11)

1∫
−1

(η
∂σ21(ξ, ζ)

∂ξ
+

∂σ22(ξ, ζ)
∂ζ

+ f2(ξ, ζ)) dζ = 0. (12)
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Approximate stress and displacement by segments of Legendre polynomials. Accord-
ing to (10)–(12), stress and mass forces are approximated by the following segments
of Legendre polynomials:

σ11(ξ, ζ) = t1(ξ) + m1(ξ)P1(ζ), (13)
σ22(ξ, ζ) = t2(ξ) + m2(ξ)P1(ζ), (14)

σ12(ξ, ζ) = t12(ξ) + m12(ξ)P1(ζ) + r12(ξ)P2(ζ), (15)
σ21(ξ, ζ) = t12(ξ), (16)

f1(ξ, ζ) = q10(ξ) + q11(ξ)P1, f2(ξ, ζ) = q20(ξ). (18)

In (13)–(18) P1(ζ) and P2(ζ) are Legendre polynomials comprising an orthonor-
mal system of functions on the closed interval [−1, 1].

The stresses σ12 and σ21 are approximated by different segments of polynomi-
als because the equilibrium equations involve the derivatives of these functions with
respect to different coordinates. This approximation accounts for different variabil-
ity of the stress-strain states with respect to the spatial coordinates in thin-walled
constructions.

Choose approximations for displacement so that the expressions in the paren-
theses in (8a)–(8d) have the same approximation order with respect to ζ as stress.
Therefore, approximate (9) as

ε11 = η
∂u′1(ξ, ζ)

∂ξ
, 2ε12 =

∂u′′1(ξ, ζ)
∂ζ

+ η
∂u′2(ξ, ζ)

∂ξ
, ε22 =

∂u′′2(ξ, ζ)
∂ζ

, (19)

where
u′1(ξ, ζ) = u0

1(ξ) + u1
1(ξ)P1(ζ), (20)

u′′1(ξ, ζ) = u0
1(ξ) + u1

1(ξ)P1(ζ) + u2
1(ξ)P2(ζ) + u3

1(ξ)P3(ζ), (21)

u′2(ξ, ζ) = u0
2(ξ), (22)

u′′2(ξ, ζ) = u0
2(ξ) + u1

2(ξ)P1(ζ) + u2
2(ξ)P2(ζ). (23)

Use two approximations for each of the displacements u1 and u2 because Cauchy’s
relation involves the derivatives of these functions with respect to both ξ and ζ.

Taking the above approximations for stress and displacement into account, re-
place (8a)–(8d) with

1∫
−1

(
σ11(ξ, ζ)− α1

(
η
∂u1(ξ, ζ)

∂ξ
+ γ2

∂u2(ξ, ζ)
∂ζ

))
P0(ζ) dζ = 0, (24a)

1∫
−1

(
σ11(ξ, ζ)− α1

(
η
∂u1(ξ, ζ)

∂ξ
+ γ2

∂u2(ξ, ζ)
∂ζ

))
P1(ζ) dζ = 0, (24b)

1∫
−1

(
σ22(ξ, ζ)− α2

(
∂u2(ξ, ζ)

∂ζ
+ γ1η

∂u1(ξ, ζ)
∂ξ

))
P0(ζ) dζ = 0, (24c)

1∫
−1

(
σ22(ξ, ζ)− α2

(
∂u2(ξ, ζ)

∂ζ
+ γ1η

∂u1(ξ, ζ)
∂ξ

))
P1(ζ) dζ = 0, (24d)
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1∫
−1

(
σ12(ξ, ζ)− g12

(
∂u1(ξ, ζ)

∂ζ
+ η

∂u2(ξ, ζ)
∂ξ

))
P0(ζ) dζ = 0, (24e)

1∫
−1

(
σ12(ξ, ζ)− g12

(
∂u1(ξ, ζ)

∂ζ
+ η

∂u2(ξ, ζ)
∂ξ

))
P1(ζ) dζ = 0, (24f)

1∫
−1

(
σ21(ξ, ζ)− g12

(
∂u1(ξ, ζ)

∂ζ
+ η

∂u2(ξ, ζ)
∂ξ

))
P2(ζ) dζ = 0. (24g)

The boundary conditions on the front faces (5) for the coefficients of Legendre
polynomial segments become

c1
(
u0

1(ξ)± u1
1(ξ) + u2

1(ξ) ± u3
1(ξ)
)

+ d1(t12(ξ)±m12(ξ) + r12(ξ)) = ϕ±h(ξ), (25)

c2
(
u0

2(ξ)± u1
2(ξ) + u2

2(ξ)
)

+ d2(t2(ξ)±m2(ξ)) = ϕ±h(ξ). (26)

Equations (10)–(12), (24a)–(24g), (25), and (26) amount to a system of differ-
ential and algebraic equations on the coefficients of Legendre polynomial segments
for stress and displacement:

ηt′1 + m12 + q10 = 0, (27a)

ηm′1 + 3r12 + q11 = 0, (27b)

ηt′12 + m2 + q20 = 0, (27c)

α1(γ2v1 + ηu′0)− t1 = 0, (27d)

α1(3γ2v2 + ηu′1)−m1 = 0, (27e)

α2(v1 + γ1ηu
′
0)− t2 = 0, (27f)

α2(3v2 + γ1ηu
′
1)−m2 = 0, (27g)

g12(u1 + u3 + ηv′0)− t12 = 0, (27h)

m12 − 3g12u2 = 0, (27i)

r12 − 5g12u3 = 0, (27j)

σ±22 = t2 ±m2, u±2 = u0
2 ± u1

2 + u2
2, (27k)

σ±12 = t12 ±m12 + r12, u±1 = u0
1 ± u1

1 + u2
1 ± u3

1, (27l)

where σ±22, u
±
2 , σ±12, and u±1 are prescribed functions; the prime indicates derivatives

with respect to ξ.
Equations (27a)–(27l) reduce to a system of ordinary differential equations for

the functions u0(ξ), u1(ξ), v0(ξ), t11(ξ), m11(ξ), and t12(ξ).
Introducing the vector

Z = [u0, u1, v0, t11, m11, t12]T,

we can express the system of differential equations of the orthotropic layer in matrix
form

Z′ = HZ + F, (28)

where H is a 6× 6 matrix and F is a vector with six components.



58 Yu. M. Volchkov and E. N. Poltavskaya

Fig. 1. (a) Dependence of deflection in the middle of the beam on l/h;
(b) distribution of tangent stress at the ends of the cross-section of a beam;
(c) distribution of normal stress in the middle of the cross-section of a beam;

(d) the one-layer beam; solid lines and points show the solution from layer equations,
dashed lines show the analytical solution.

The boundary conditions on the faces of the layer surfaces (4) imply the bound-
ary conditions for ξ = ξ0 and ξ = ξ1 for the (28), which we can express as

AX + BY = C, (29)

where

X =

∥∥∥∥∥∥
u0
u1
v0

∥∥∥∥∥∥ , Y =

∥∥∥∥∥∥
t11
m11
t12

∥∥∥∥∥∥ ,

while A and B are prescribed 3×3 matrices and C is a prescribed three-dimensional
vector. The matrix H and the vector F depend on the form of boundary conditions
on the faces of the layer. The components of Z have the following physical meaning:
u0 is the longitudinal displacement averaged over the thickness of the layer; u1 is the
rotation of the transverse section; v0 is the transverse displacement averaged over
the thickness of the layer; t1 is the longitudinal force, t12 is the shear force, m1 is
the bending moment.

4. Algorithm for calculating the stress-strain states in layered plates.
The main advantage of the above equations of an elastic orthotropic layer is that they
admit conditions on the faces on both displacement and stress, and the order of the
system of differential equations stays the same. This enables us to construct layered
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Fig. 2. (a) Dependence of deflection in the middle of the beam on l/h;
(b) distribution of tangent stress at the ends of the cross-section of a beam;
(c) distribution of normal stress in the middle of the cross-section of a beam;

(d) the two-layer beam; solid lines and points show the solution of the layer equations,
dashed lines show the analytical solution.

plate equations. In each layer we use (28). We impose the matching conditions on
the boundary between layers: the continuity of normal stress and displacement.

For instance, for a 3-layer plate a system of differential equations of order 18
results. The matrices H in each layer are different because the conditions on the
faces of the layers are of different types. To solve the boundary value problem for
the system of differential equations of order 18 we use the orthogonal sweep method.

5. Comparison between numerical and analytical solutions to the
problem of stress-strain state of layered orthotropic plate. Analytical so-
lutions to problems of cylindrical deflection of multilayered beams consisting of or-
thotropic layers are constructed in [15–17]. Consider the problem of cylindrical
deflection of a beam with hinged faces under the exterior load q(x) = q0 sin(πx/l),
where q0 is the load intensity, and L is the length of the beam.

The beam consists of carbon plastic monolayers with the following characteris-
tics (the x-axis coincides with the reinforcement direction): E11 = 1.724 · 105 MPa;
E22 = 6895 MPa; G12 = 3448 MPa; G23 = 1379 MPa; ν12 = 0.25 MPa.

Fig. 1 depicts the results of calculations for a one-layer beam (the reinforcement
direction of the layer coincides with the beam axis x).
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Fig. 3. (a) Dependence of deflection in the middle of the beam on l/h;
(b) distribution of tangent stress at the ends of the cross-section of a beam;
(c) distribution of normal stress in the middle of the cross-section of a beam;

(d) the three-layer beam; solid lines and points show the solution of the layer equations,
dashed lines show the analytical solution.

Fig. 2 depicts the results of calculations for a two-layer beam (the reinforcement
direction of the first layer coincides with the beam axis x, while the reinforcement
direction of the second layer is orthogonal to the beam axis: E1

x = E11, G1
xz = G12,

E2
x = E22, and G2

xz = G23).
Fig. 3 depicts the results of calculations for a three-layer beam (the reinforce-

ment directions of the first and third layers coincide with the beam axis x, while the
reinforcement direction of the second layer is orthogonal to the beam axis: Ek

x = E11
and Gk

xz = G12 for k = 1, 3, while E2
x = E22 and G2

xz = G23).
The load strength is q0 = 0, 6895 MPa. The figures present the results in the

dimensionless variables

ŵ(l/2, 0) =
100E22h3w(l/2, 0)

q0l4
, û =

E22ū(0, z)
q0l4

, σ̂13 =
τ̂xz(0, z)

q0
, σ̂3 =

σ̂z(l/2, z)
q0

.

For various values of the parameter h/l (where h and l are the thickness and length of
the beam) the figures present the distribution of displacements and stress at certain
characteristic points and sections of the beam. The maximal error in the calculation
of stress on using the above equations is at most 3%.
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Conclusion. Using the modified elastic layer equations, we constructed the
differential equations of a layered orthotropic plate. We compared the numerical
solutions of the stress-strain state of 1-layer, 2-layer, and 3-layer orthotropic beams
with the analytical solutions to the corresponding problems. The results of com-
parison imply that, using the modified elastic layer equations, we can construct the
layered plate equations enabling us to determine the stress-strain state in a layered
plate with the accuracy sufficient for technical applications.
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COMPARISON OF THE GRADIENT AND SIMPLEX

METHODS FOR NUMERICAL SOLUTION OF

AN INVERSE PROBLEM FOR THE SIMPLEST

MODEL OF AN INFECTIOUS DECEASE

S. I. Kabanikhin, O. I. Krivorot′ko,
D. V. Ermolenko, and D. A. Voronov

Abstract. The infected human organism releases antibodies that help to cope with de-
ceases. Individual peculiarities of the immunity and the decease which are responsible
for the formation of antibodies (for example, viruses or bacteria), resistance of an or-
ganism, etc. differ and so does the reaction of each organism with the same decease.
Despite this fact, doctors as a rule offer a standard treatment plan which is not always
optimal. Hence, it is important to define the individual peculiarities of immunity (the
velocity of the immune response or the production of specific antibodies) and those of
a decease (the velocity of propagation of viruses and bacteria and so on) for every patient
separately by the blood and urina tests, etc.

In the article we study the problem of determining the parameters of an infectious
decease in the simplest mathematical model “antigen-antibody” on the measurements of
concentrations of antigens and antibodies at fixed times. Some objective functional de-
scribing the discrepancy between experimental and model data is examined. We obtain
an explicit representation of the gradient of the objective functional with the use a solu-
tion to the corresponding adjoint problem. Comparative analysis of a numerical solution
to an inverse problem obtained by the gradient method (the Landweber iteration) and
the simplex method (the Nelder–Mead method) is exposed. It is demonstrated that the
Nelder–Mead method in the model under study defines a collection of local approximate
values of the velocities of propagation of the immune response and the production of
specific antibodies with a prescribed accuracy. The Landweber iteration calculates the
minimizer of the objective functional which is closest to the initial approximation using
sufficiently large number of iterations.

Keywords: inverse problem, optimization approach, Landweber iteration, Nelder–Mead
method, modeling in immunology

Introduction

The infected human organism releases antibodies that help to cope with de-
ceases. In every particular case the individual peculiarities of the immunity and
the decease responsible for the growth of antibodies, resistance of an organism, etc.
differ and so does the reaction of every organism to the same decease. Despite this
fact, doctors as a rule offer a standard treatment plan which is not always optimal.
Hence, it is important to define the individual peculiarities of immunity and those
of decease for every patient separately by the blood and urina tests, etc. One of the

The authors were supported by the Russian Foundation for Basic Research (Grant 16–31–
00382).
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methods for solving this problem is mathematical modeling and numerical solution
of an inverse problem.

Mathematical modeling of immunology systems, based on numerical solution
of systems of ordinary (generally nonlinear) differential equations, has been actively
developed since recently. The immunology models are characterized by their param-
eters which are coefficients of the differential equations describing the peculiarities
of the immunity of a patient, those of a decease, and so on.

Mathematical models of immunology, including numerical solution of direct
and inverse problems, were studied by G. I. Marchuk [1], A. A. Romanyukha [2],
S. M. Andrew [3], H. W. Engl [4], C. Molina-Paris, G. Lythe [5], and so on.
H. T. Banks, S. Hu [6] use direct methods of numerically solving the problem of
the least squares with a random distribution of data. G. P. Kuznetsova in [7] em-
ploys the method of numerical integration of an inverse problem for the simplest
model of the infectious decease which is due to G. I. Marchuk. In [8] the authors
exhibit a numerical study of an inverse problem for the simplest mathematical model
of iteration of antigens and antibodies by the gradient method. The estimates of
convergence of the algorithm are justified and the uniqueness theorem together with
local stability are proven. The main aim of this article is to analyze two algorithms
of recovering the parameters of the simplest mathematical model which character-
izes the character of a decease and the immune response with the use of the blood
tests. This problem of recovering parameters is called below an inverse problem for
the simplest immunology model.

We study a numerical solution to an inverse problem for the simplest model
of an infectious decease (the so-called “antigen-antibody” model), consisting of two
nonlinear differential equations. This model allows us to describe in details the iter-
ation of antigens and antibodies in an organism. A numerical solution is calculated
by the Landweber iteration and the Nelder–Mead method. The articles is organized
as follows: In Section 1 we state an inverse problem for the simplest model of an
infectious decease. In Sections 2 and 3 the two methods of solving an inverse prob-
lem are studied. In particular, in Section 2 the gradient method (the Landweber
iteration) is described; and the numerical results, obtained by this method, are ex-
posed. In Section 3 the Nelder–Mead method is studied and the numerical solution
of an inverse problem is presented. Section 4 is devoted to a comparative analysis
of the Landweber iteration and the Nelder–Mead method.

1. Statement of the Inverse Problem

We study the following Cauchy problem for the simplest model “antigen-antibody”
of an infectious decease [8, 9]:

⎧
⎪⎨

⎪⎩

dN1(t)
dt = N1(t)(β11 − β12N2(t)), t ∈ (0, T ),

dN2(t)
dt = β21N1(t)N2(t), t ∈ (0, T ),

N1(0) = N10, N2(0) = N20,

(1)

which can be written in vector form
{

dN(t)
dt = P (N(t), β), t ∈ (0, T ),

N(0) = N0.
(2)

Here N(t) = (N1(t), N2(t))
T are the variables of the system (the concentration

of antigens and antibodies in an organism), β = (β11, β12, β21)
T is the vector of
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parameter characterizing the peculiarities of the immunity, where β11 describes the
growth of the number of antigens, β12 is the velocity of the immune response, β21 is
the velocity of production of the specific antibodies, and P is a given vector-function.

The problem (2) for given β and N0 is called the direct problem.
Let the concentrations of antigens N1(t) and antibodies N2(t) (put Ni(t) =

Ni(t;β), i = 1, 2) be measured at fixed times tk, k = 1, . . . ,K, i.e.,

Ni(tk;β) = �i(tk), i = 1, 2; k = 1, . . . ,K. (3)

Inverse problem (2), (3) includes the determination of the vector of parameters β
with a given function P , the initial data N0, and the additional information (3).
Introduce the operator of the inverse problem (2), (3) as follows: A : P → RK ,
where P := {β ∈ R3 : βij ≥ 0, i, j = 1, 2} is the space of the parameters under
consideration.

Rewrite (2), (3) in operator form

A(β) = �, � = (�1(t1), . . . , �1(tK), �2(t1), . . . , �2(tK))T . (4)

The vector � is defined, for example, by the blood and the urine tests at tk, k =
1, . . . ,K. A solution to (4) is sought by minimizing the objective functional J(β) =
‖A(β)− �‖2 that is defined as

J(β) =
K∑

k=0

|N(tk;β)− �(tk)|2. (5)

This means that a solution to (2) for an optimal β at times tk, k = 1, . . . ,K, is closest
to the measurements of the states of the system (the concentrations of antigens N1(t)
and antibodies N2(t)) at tk.

2. Numerical Solution of the Inverse
Problem by the Landweber Iteration

We employ the Landweber iteration for solving the problem minβ∈P J(β) in
which the approximate solution is defined as follows [10, 11]:

βn+1 = βn − αJ ′(βn), α > 0, β0 ∈P, (6)

where α is the descent parameter, J ′(β) ∈ R3 is the gradient of the objective func-
tional (5) which is written explicitly [12] as

J ′(β) = −
T∫

0

�(t)TPβ(N(t), β) dt. (7)

Here �(t) is a solution to the adjoint problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d�(t)
dt = −PT

N (N(t), β)�(t), t ∈
K⋃

k=0
(tk, tk+1), t0 = 0, tK+1 = T,

�(T ) = 0,
[�]t=tk = 2(N(tk;β)− �(tk)), k = 1, . . . ,K,

(8)

where PN (N(t), β) ∈ R2 × R2 and Pβ(N(t), β) ∈ R2 × R3 are the corresponding
Jacobi matrices

PN =
(
β11 − β12N2(t) −β12N1(t)

β21N2(t) β21N1(t)

)

, Pβ =
(
N1(t) −N1(t)N2(t) 0

0 0 N1(t)N2(t)

)

,
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[�]t=tk := �(tk + ε) − �(tk − ε) is the jump of � at tk, where γ > 0 is arbitrarily
small.

To solve the direct and adjoint problems numerically, (2) and (8), respectively,
we employ the Runge-Kutta method of the forth order of approximation. Construct
the uniform grid ω := {tj = jht, ht = T/Nt, j ∈ 0, Nt}. Let the time of modeling
T is equal to 4 weeks, Nt = 100 is the number of nodes of ω, α = 0.001, εs = 10−6 is
the stopping time parameter for the iteration procedure, N0 = (1.8, 1.8)T are the
initial data. Choose the vector of parameters β = (0.5, 0.5, 0.6)T , describing the
immunity of an average man, which is called below an exact solution to (2), (3). We
use the synthetic data N1(tk, β) and N2(tk, β) at times tk, k = 1, . . . ,K uniformly
distributed over the grid ω as the vector of the data �.

The algorithm for numerical solution of the inverse problem (2), (3) by the
Landweber iteration consists of the following steps:

1. Specify the initial approximation β0 = (0.1, 0.1, 0.2)T that describes a light
form of an infection and solve (2) for a given β0. Construct the vector N(tk;β0),
k = 1, . . . ,K.

2. By induction, show how to compute βn+1 on using βn.

3. Solve (2) for the collection of parameters βn, i.e., we find N(tk;β), k =
1, . . . ,K.

4. If J(βn) < εs then βn is an approximate solution.

5. If J(βn) > εs then we solve (8) with β = βn.

6. Determine J ′(βn) from (7).

7. Calculate βn+1 in accord with (6).

Let us study the discrepancy |Ni(t;βn)−Ni(t;β)| of a calculated curve Ni(t;βn)
and “experimental” Ni(t;β) in dependence on the number of measurements K, i =
1, 2. It is displayed in Fig. 1 that the discrepancy of a calculated curve Ni(t;βn) and
an experimental Ni(t;β) decreases with the growth of the number of measurements.
However it is a problem to make 35 measurements for 4 weeks (i.e., to make 35
tests). In accord with [2] we can choose a‘ maximal measure of this discrepancy
equal 7 · 10−4, i.e. |Ni(t;βn)−Ni(t;β)| < 7 · 10−4. Thus, we make 20 measurements
for 4 weeks in calculations below.
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Fig. 1. The graphs |Ni(t; βn −Ni(t; β)| in dependence on the number of measurements K:
i = 1 on the left and i = 2 on the right
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We now inspect the relative error |βn − β|/|β| of computations of a solution
to the inverse problem which is a dimensionless quantity equal to the ratio of the
absolute error and an exact solution to the inverse problem. Fig. 2 shows that the
relative error decreases with the growth of the number of measurements, i.e., an
approximate solution to the inverse problem approaches an exact solution. Observe
the connections between the quality measures of a solution to the inverse problem,
namely, the discrepancy between “experimental” and calculated curves |Ni(t;βn) −
Ni(t;β)| (see Fig. 1), and the relative accuracy |βn − β|/|β| (see Fig. 2). In what
follows, we use the dependence of the relative error on the number of measurements
K as the criterion of an optimal number of measurements for a numerical solution
of (2), (3).
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Fig. 2. The graph of the dependence of of the relative
error |βn − β|/|β| on the number of measurements K

The graphs of the dependence of the objective functional J(βn) on the number
of iterations n and the absolute error |βn− β| are displayed in Fig. 3. We can see in
Fig. 3 on the left that for the first two iterations the functional growth rapidly (due
to the weak stability of (2), (3)) and beginning with the third iteration decreases
monotonically with the velocity 1/n, the latter shows the convergence of the method.
Note that the absolute errors |βn − β| decrease monotonically. It is shown in Fig. 3
on the right that the larger absolute error |βn − β| (on the first iterations) ensures
the larger discrepancy of the model and “experimental” data J(βn).
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Fig. 3. The graph of J(βn) for the general number of iterations n = 26836, K = 20 (on the left).
The graph of the dependence J(βn) on the absolute error |βn − β|

for the number of iterations n = 26836, K = 20 (on the right)
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The results of numerical solution of the inverse problem (2), (3) for K = 20
are displayed in Fig. 4. Note that we obtain the numerical solution βn

11 = 0.49675,
βn

12 = 0.49903, and βn
21 = 0.60017 for 26836 iterations.
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Fig. 4. The graphs of the parameters βn
11 (on the left), βn

12 (in the center), and βn
21 (on the right)

in dependence on the number of iterations, n = 26836

Note also that for each initial approximation the Landweber iteration method
converges to a normal solution to the inverse problem (2), (3) [13]. In the cases
α = 10−4 and α = 10−5 a numerical solution to the inverse problem (2), (3) is very
close to the above results and the execution time is essentially larger than in the
case of α = 10−3.

3. Numerical Solution of the Inverse
Problem by the Nelder–Mead Method

The Nelder–Mead method (simplex method ) [14] is a method of unconditional
optimization of a functional which does not use the gradient. In view of this fact the
Nelder–Mead method is easily applicable to noisy and nonsmooth functions. The
method consists of a consecutive transmission and deforming an initial approxima-
tion (a simplex) around the extremum point. The Nelder–Mead method is widely
used for refining parameters in the problems of pharmacokinetics and immunology.
The main problem of the method is that it defines a local extremum, while being
sensible to the choice of an initial approximation.

A solution to the inverse problem as well as in the case of the gradient method
is sought by minimizing the objective functional (5). Thereby, we need to determine
an unconditional minimum of the function J(β11, β12, β21) of three variables.

In this section we expose the results of numerical calculations obtained by the
Nelder–Mead method with the same model parameters as those in the case of the
Landweber iteration (the choice of the grid ω, the initial conditions of the direct
problem (2), the exact vector of parameters β, and the stopping time εs).

For the initial simplex

β1 = (0.1, 0.1, 0.2)T , β2 = (0.4, 0.7, 0.8)T , β3 = (0.2, 0.3, 0.4)T , β4 = (0.9, 0.7, 0.1)T ,

a numerical solution to (2), (3) by the Nelder–Mead method for 10 measurements
(the case of the least relative error) is as follows: βn

11 converges to 0.17, βn
12 to 0.4,

and βn
21 to 0.62. We can note that the difference between approximate and exact

solutions is sufficiently large. Hence, the Nelder–Mead method for this initial simplex
defines a local minimum.
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Now we expose a similar calculations for the initial simplex β1 = (0.15, 0.2,
0.35)T , β2 = (0.05, 0.1, 0.3)T , β3 = (0.05, 0.1, 0.3)T , and β4 = (0.3, 0.3, 0.2)T .

The graph of the dependence of the relative error |βn−β|/|β| on the number of
measurements K is displayed in Fig. 5 on the left. We can see that for 25 measure-
ments the relative error is the least but it is a problem to make 25 measurements for 4
weeks. Hence, we take K = 20 below, as in Section 2. The Nelder–Mead method
converges for a given choice of parameters, i.e., the functional J(βn) vanishes (see
Fig. 5 on the right).
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Fig. 5. The graph of the dependence of the relative error |βn − β|/|β|
on the number of measurements K (on the left).

The graph of J(βn) with the number of iterations n = 72 (on the right)

A solution to the inverse problem in dependence on the number n of iterations
is displayed in Fig. 6. Note that the results obtained are close to an exact solution
β = (0.5, 0.5, 0.6)T . Hence, for a given initial simplex β1 = (0.15, 0.2, 0.35)T , β2 =
(0.05, 0.1, 0.3)T , β3 = (0.05, 0.1, 0.3)T , and β4 = (0.3, 0.3, 0.2)T , we find a minimum
of the functional J .
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in dependence on the number of iterations n = 72

These examples shows that the results, obtained by the Nelder–Mead method,
depend on an initial approximation. In dependence of an initial simplex we can
obtain a local or global minimum. It is the main problem of this method. The
Nelder–Mead method with real data does not ensure determining a global minimum
of the objective functional. This problem can be solved by stochastic methods such
as the Monte-Carlo method [15], the genetic algorithm [16], etc.
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4. Comparative Analysis of the Nelder–Mead
Method and the Landweber Interation

Table 1 contains an analysis of a numerical solution to the inverse problem (2),
(3) which is obtained by the Nelder–Mead method and the Landweber iteration
for 20 measurements. As is easily seen, the Nelder–Mead method allows us to find
an answer quicker that the gradient method. The relative error for the Nelder–
Mead method is significantly less that in the Landweber iteration. The Landweber
iteration converges to a normal solution to (2), (3) with respect to an initial ap-
proximation in any case [13]. However, the computation time exceeds that for the
Nelder-Mead method by several times in view of the complexity of the algorithm
(the computation of the gradient of the objective functional).

Table 1. Analysis of the Nelder–Mead method and the Landweber iteration
in solving the inverse problem (2), (3)

the Nelder–Mead method The Landweber iteration

K, the number of measurements 20 20

an initial approximation β(1) = (0.15, 0.2, 0.35)T , β0 = (0.1, 0.1, 0.2)T

β(2) = (0.05, 0.1, 0.3)T ,

β(3) = (0.2, 0.07, 0.25)T ,

β(4) = (0.3, 0.3, 0.2)T

εs, the stopping parameter 10−6 10−6

βn
11 0.50059584 0.49675121

βn
12 0.50013173 0.49902571

βn
21 0.59992131 0.60017153

|βn − β|/|β|, 0.00066348 0.00366208

the relative error

n, the number of iterations 72 26836

time of fulfillment of the algorithm (sec.) 0.013 4.882

5. Conclusion

In the article we study a numerical solution to an inverse problem for the sim-
plest mathematical model “antigen-antibody” obtained by the Landweber iteration
and the Nelder-Mead method. In the numerical experiments we demonstrate that
the Nelder–Mead method determines the set of local velocity approximations of the
antigen propagation, the immune response, and the production of specific antibod-
ies with a prescribed accuracy. The Landweber iteration finds the minimizer of the
objective functional closest to an initial approximation. Thus, we have constructed
a numerical algorithm that allows us to refine parameters of the simplest mathemat-
ical model (the velocities of the antigen propagations, the immune response, and the
production of the specific antibodies) with 20 measurements of the concentrations of
antigens and antibodies for 4 weeks (one for 5 с) on a computer with the processor
Intel (R) Core (TM) i3 2.13GHz and RAM 4 gb.
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THE 3D FLOW PROBLEM FOR AN AIRCRAFT

MODEL WITH ACTIVE INFLUENCE ON THE FLOW
A. E. Lutskĭı and Ya. V. Khankhasaeva

Abstract. In the frame of the 3D URANS equations with the Spalart–Allmaras (SA)
turbulence model, numerical simulation was conducted of the energy input into the
stream in front of an aircraft model with an angle of attack. For the regimes considered
it was shown that the energy input before the bow results in a significant reduction of
wave resistance and increase in lift. This ensures high efficiency of energy input as a
mean of increasing the aerodynamic quality of an aircraft. The effect of the energy input
in front of the wings has been studied.

Keywords: computational fluid dynamics, energy input, drag reduction

Introduction

One of the methods for improving the aerodynamic characteristics of prospec-
tive aircraft is a controlled action on the oncoming flow. It can be performed in
various ways, in particular by using energy input localized in a small closed region.
The possibility of remote energy input into a supersonic flow is confirmed in many
experiments [1–6]. The high-temperature trace with reduced values of Mach num-
ber, total pressure, and impact pressure is formed behind the energy source, which
enables us to vary the flow regime. If the energy source and body are of comparable
sizes then the flow around the body is quasi-uniform and drag can be reduced by
changing straightforwardly the parameters of the oncoming flow. This oncoming
flow requires large energy expense and is impractical. However, energy input even
in a relatively small space region can lead to realignment of the bow shock-wave
structures ahead of the body. The possibility of controlling the airflow around bod-
ies by using a relatively small action on the oncoming flow rests in particular on the
well-known nonuniqueness of solution to the problem of flow around a body in clas-
sical fluid dynamics [7]. For every blunt body, along with a solution with a detached
shock wave, infinitely many solutions are formally possible with a front cone filled
with a gas at rest and constant pressure. As a rule, the solution with a detached
shock wave is realized in experiments and simulations. However, it is known [8] that
the presence of a thin needle protruding ahead of the nose of a blunt body leads
to the formation of a cone-shaped region of backward flow. Energy input into the
oncoming flow ahead of the nose can create a similar effect.

Much theoretical and experimental work has been done (see [9–13] for instance)
to decrease the wave drag of bodies, mostly in the axially symmetric situation. It is
shown that energy input into the flow ahead of the nose enables us to decrease drag
by a factor of 10 or more due to the formation of a cone-shaped detached region
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ahead of the nose. This method of drag reduction is rather efficient. Power expenses
on this energetic influence are substantially smaller than the gain in propulsion power
from lower drag. Three-dimensional effects of energy input, in particular the impact
of the angle of attack, are studied much less [14, 15].

This article pays most attention to studying the influence of energy input, while
solving the problem of flow around a model aircraft in the three-dimensional setting.

Statement of the Problem and Results

We consider the questions of flow realignment as a result of energetic influence
on the flow by the example of flow around an ideal model aircraft (Fig. 1).

Fig. 1. Model aircraft. Pressure distribution for unperturbed flow

Below we present the results that are obtained in the framework of the math-
ematical model of the averaged Navier–Stokes equations for a viscous compressible
gas with the Spalart–Allmaras turbulence model complemented with a source term
in the conservation-of-energy equation:

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= S, S = (0, 0, 0, 0, q)T , q = q(x, y, z, t),

U = (ρ, ρu, ρv, ρw, e)T , F = F i + F v, G = Gi + Gv, H = Hi + Hv,

F i = (ρu, ρu2 + p, ρuv, ρuw, (e + p)u)T ,

F v = (0,−τxx,−τxy,−τxz,−uτxx − vτxy − wτxz − qx)T ,

Gi = (ρv, ρuv, ρv2 + p, ρvw, (e + p)v)T ,

Gv = (0,−τxy,−τyy,−τzy,−uτxy − vτyy − wτzy − qy)T ,

Hi = (ρw, ρuw, ρvw, ρw2 + p, (e + p)w)T ,

Hv = (0,−τxz,−τyz,−τzz,−uτxz − vτyz − wτzz − qz)T ,

e = ρε +
ρ(u2 + v2 + w2)

2
=

p

γ − 1
+

ρ(u2 + v2 + w2)
2

.

The components of viscous stress tensor are defined as

τxx =
2
3
(μ + μt)(2ux − vy − wz), τyy =

2
3
(μ + μt)(2vy − ux − wz),

τzz =
2
3
(μ + μt)(2wz − ux − vy), τxy = τyx = (μ + μt)(uy + vx),

τxz = τzx = (μ + μt)(uz + wx), τyz = τzy = (μ + μt)(vz + wy).
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Firstly, we consider a version with energy input ahead of the nose of the model.
Let us present some results of calculations for the Mach number of the oncoming flow
М = 2.5 at the angle α = 3◦. Pressure and density are relative to these quantities
in the oncoming flow, and the diameter of the model is taken as the unit of length.
The total power of energy input Q is relative to the power N = FxU necessary to
overcome drag for the unperturbed flow. We assume that energy input is stationary
and spatially homogeneous in some region on the symmetry axis of the model.

Table 1. The variants considered

Variants 1 2 3 4 5 6

Q 0 6.3%N 6.3%N 6.3%N 12.6%N 12.6%N

Transverse size 0.2 0.1 0.1 0.2 0.1

Longitudinal size 0.2 0.2 0.2 0.2 0.2

Distance from the model 1.2 1.2 0.5 1.2 0.5

We considered the following variants of size, location of the energy input region,
and the quantity of energy put in (Table 1): in variant 1 energy input is absent; in
variants 3, 4, and 6 the transverse size is four times smaller than in variants 2 and 5;
variant 4 lies two times closer to the body than all others; in variants 5 and 6 energy
input is twice as large as in all others.

Consider some simulations results for the Mach number М = 2.5 of the oncoming
flow at the angle α = 3◦. Energy input ahead of the body substantially changes the
flow structure. Shock waves issue from the energy input region. The front of the
bow shock wave is destroyed by the trace formed behind the energy input region.
In the space between the energy input region and the nose there is formed a region
with lower pressure in comparison with the oncoming flow. This is illustrated in
Figs. 3 and 4.

We observe an interesting effect. The drag in variant 4 is smaller than that in
variant 3. They differ only in the distance between the energy input region and the
model. The origin of this effect might be that for the closer location of the region
the shock waves issuing from the region of energy input interact with the leftover
bow shock wave, creating a region where trace concentrates (Fig. 4). The differences
also consist in the formation of a backward flow region.

The formation of a backward flow region ahead of the body is an important
feature of the flow. We observe this region only for those variants (Fig. 4, var. 4) in
which a zone of a positive pressure gradient is formed near the body under the action
of thermal trace. In the presence of an angle of attack the thermal trace lies along
the velocity vector of the oncoming flow. For certain distance of the energy input
region from the model the trace does not enter the deceleration region and pressure
decreases monotonely along the current lines issuing from the point of deceleration.
Fig. 5 shows that we observe the positive pressure gradient precisely for the variants
with a backward flow region.

It is clear also that on the downwind side (y > 0) pressure is lower in the case
of the energy input than for the unperturbed flow. This fact explains the increase
of lift.

Table 2 presents our results on decreasing drag and increasing lift. Here Eff
stands for the energy input efficiency: Eff = (N(0)−N(Q))/Q, where N = FxU .
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Fig. 2. Location of the energy input region

Fig. 3. Total pressure isosurfaces behind the shock wave
without energy input (on the left) and for variant 4 (on the right)

For energy input ahead of the body we observe decrease in drag (row 3 of
Table 2) and increase in lift (row 4). Even though drag in variants 5 and 6 is
decreased more for the double power of energy input, variant 4 with the energy
input region lying closer than in other variants is better from the viewpoints of both
energy efficiency and lift.

Table 3 presents the results for various angles of attack. As the angle of attack
increases (for fixed Mach number) we observe some decrease in energy input effi-
ciency. In addition, increasing the angle of attack also increases lift. Furthermore,
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Fig. 4. Total pressure distribution behind the shock wave
for variants 3 (on the left) and 4 (on the right)

for the angle of attack α = 3◦ on the cross-section z = 0

Fig. 5. Total pressure behind the shock wave
for variants 1 (red), 3 (green) and 4 (blue)

Table 2. Drag, lift and energy efficiency
coefficient for different variants

Variants 1 2 3 4 5 6

Eff 1.82592 2.16932 2.75823 1.50756 1.81972

�Cx/Cx0 −10.70% −12.72% −16.17% −17.67% −21.33%

�Cy/Cy0 +1.66% +2.41% +3.93% +2.49% +3.44%
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Table 3. Drag, lift and energy efficiency coefficient
for different angles of attack

Варианты 1 3 4

Cx 1.750284 −14.23% −17.81%

α = 1.5◦ Cy 0.636395 +3.46% +4.90%

Eff 2.43158 3.04412

Cx 1.749550 −12.72% −16.17%

α = 3◦ Cy 1.333832 +2.41% +3.93%

Eff 2.16932 2.75823

Cx 1.747118 −10.86% −13.59%

α = 5◦ Cy 2.272646 +1.62% +2.85%

Eff 1.85207 2.31777

the greater the angle of attack, the smaller the influence of energy input (the decrease
in drag and the increase in lift become smaller as the angle of attack decreases).

Fig. 6. Location of energy sources ahead of the wings.

We also made calculations with energy input into the flow ahead of the wings,
which in our model have blunt front edge. The sizes of the region are Lx = 0.1,
Ly = 0.02, and Lz = 0.5; the variants of location are:

(1) distance to the wing 0.28, in the wing plane;
(2) distance to the wing 0.28, by 0.005 above the wing plane;
(3) distance to the wing 0.18, in the wing plane.
We obtain some increase in lift with small decrease in total drag. Variant 3 with

the closest location of energy sources to the wings is the most efficient among those
considered, which is not surprising because the mechanism of influence is similar to
the case of the energy input ahead of the bow, as the wings have blunt front edge.
Decrease in drag and increase in lift are not so great here since the wings are small
as compared to the fuselage and the hull itself generates lift.

Conclusion

We studied the influence of energy input on the aerodynamic characteristics of
a model aircraft for various angles of attack.

1. We showed that energy input ahead of the bow leads to a substantial decrease
in drag and increase in lift.
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Fig. 7. Pressure ahead of the front edge of the wing. Cross-section at z = 1.25.
Variants 1–3 from left to right

Table 4. Drag, lift, aerodynamic quality and energy efficiency coefficient
for various variants of location

Variant �Cx, % �Cy, % �K, % Eff

1 −1.81 +1.22 +2.81 0.38

2 −1.17 +1.03 +2.03 0.24

3 −2.32 +0.80 +2.89 0.48

2. Among the variants under consideration we determined the size and location
of the region ensuring the most efficient energy input in terms of decreasing drag
and increasing lift. We showed in particular that energy input efficiency increases
with the region approaches the model and its transverse size.

3. As the angle of attack increases (for a fixed Mach number), we observe some
decrease in the efficiency of energy input.

4. Energy input ahead of the wings in the case of the model considered leads
to insignificant decrease in drag and increase in lift.

This work shows that the energy input flow has many effects on the spatial
flow around an aircraft. Thorough examination of these effects, aiming at further
improvements of aerodynamic characteristics of aircraft, will be a subject of further
research.

REFERENCES

1. Mishin G. I., Klimov A. I., and Gridin A. Yu. Longitudinal electric discharge in supersonic
gas flow // Pisma Zh. Tekhn. Fiz.. 1992. V. 18, N 15. P. 86–92.

2. Fomin V. M., Lebedev A. V., and Ivanchenko A. I. Space-energy characteristics of electric
discharge in supersonic gas flow // Doklady Physics. 1998. V. 43, N 7. P. 440–443.

3. Grachev L. P., Esakov I. I., and Khodataev K. V. Streamer SVCh discharge in supersonic air
flow // Zh. Tekhn. Fiz.. 1999. V. 69, N 11. P. 14–18.

4. Kolesnichenko Yu. F., Brovkin V. G., Azarova O. A., Grudnitsky V. G., Lashkov V. A., and
Mashek I. Ch. MW energy deposition for aerodynamic application // 41st Aerospace Sci.
Meeting and Exhibit (Reno, NV, Jan. 6–9, 2003). : AIAA, 2003. P. 1–11.

5. Tret′yakov P. K., Garanin A. F., Grachev G. N., Krainev V. L., Ponomarenko A. G., Ivanchenko
A. I., and Yakovlev V. I. Control of supersonic flow around bodies by means of high-power
recurrent optical background // Doklady Physics. 1996. V. 41, N 3. P. 566–567.

6. Leonov S. B, Bityurin V. A., Yuriev A., Pirogov S., and Zhukov B. Problems in energetic
method of drag reduction and flow/flight control // 41st Aerospace Sci. Meeting and Exhibit
(Reno, NV, Jan. 6–9, 2003). : AIAA, 2003. P. 1–8.
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MATHEMATICAL MODELING OF THE

PROPAGATION OF ACOUSTICS–GRAVITY AND

SEISMIC WAVES IN A HETEROGENEOUS

EARTH–ATMOSPHERE MODEL WITH

A WIND–STRATIFIED ATMOSPHERE
A. A. Mikhăılov and V. N. Martynov

Abstract. A numerical-analytical algorithm for seismic and acoustic-gravity waves prop-
agation is applied to a heterogeneous Earth–Atmosphere model. Seismic wave propa-
gation in an elastic half-space is described by a system of first-order dynamic equations
of elasticity theory. The propagation of acoustic-gravity waves in the atmosphere is
described by the linearized Navier–Stokes equations with a wind. The algorithm is
based on the integral Laguerre transform with respect to time, the finite integral Fourier
transform with respect to a spatial coordinate combined with a finite difference method
for the reduced problem. The algorithm is numerically tested for the heterogeneous
Earth–Atmosphere model for different source locations.

Keywords: Navier–Stokes equations, finite difference methods, Laguerre transform,
acoustic-gravity waves, seismic waves

Introduction

In the mathematical modeling of seismic wave fields in an elastic medium, the
surface of the medium is usually assumed to be adjacent to vacuum and boundary
conditions on the free surface are prescribed. Therefore, it is assumed that seismic
waves are absolutely reflected on the boundary and the generation of acoustic-gravity
waves in the atmosphere by the elastic waves and their interaction along the bound-
ary are neglected.

Theoretical and experimental studies of the last decade have showed a high de-
gree of interrelation between waves in the lithosphere and atmosphere. The acoustic-
seismic induction effect is described in [1], in which an acoustic wave from a vibrator,
owing to refraction in the atmosphere, excites surface seismic waves tens of kilome-
ters away. In turn, the lithosphere seismic waves from earthquakes and explosions
generate atmospheric acoustic-gravity waves which are especially strong in the upper
layers of atmosphere with small density and the ionosphere. Many articles present
theoretical studies of wave processes on the boundary between the elastic half-space
and isothermal homogeneous atmosphere; let us mention only the articles [2, 3] that
established and studied the properties of Stoneley–Scholte surface waves and modi-
fied Lamb waves.

The authors were supported by the Russian Foundation for Basic Research (Grant 14–05–
00867).

c© 2015 Mikhăılov A. A. and Martynov V. N.
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In this article, using numerical modeling, we continue studying the propaga-
tion of seismic and acoustic-gravity waves in the spatially heterogeneous Earth–
Atmosphere model basing on the ideas of Mikhăılenko, who pioneered and then sup-
ported these studies. We consider a numerical algorithm for solving the combined
problem of the propagation of acoustic-gravity waves in a wind-stratified atmosphere
and seismic waves in a heterogeneous elastic medium in a Cartesian coordinate sys-
tem. The similar problem for a vertically heterogeneous model in a cylindrical
coordinate system was considered in [4] without accounting for the wind. The al-
gorithm for solving the stated problem rests on the Laguerre transform originally
proposed in [5]. The propagation of acoustic-gravity waves in isothermal atmosphere
is described by the linearized Navier–Stokes system. We assume that the density
of the atmosphere and the velocity of the wind depend on height. The propagation
of seismic waves in an elastic medium is described by a hyperbolic first-order sys-
tem in terms of the velocity vector of the displacement and the components of the
stress tensor.

The algorithm, presented here, is constructed on using the complexification of
integral transforms and the finite difference method. We assume that the parameters
of the medium (its density and the speed of longitudinal and transverse waves)
depend only on two coordinates, while the medium is homogeneous with respect to
the third coordinate. This statement of the problem is known as a 2.5-D problem.
We may regard the application of the Laguerre transform with respect to the time
coordinate for a numerical solution of the problem as an analog of the well-known
spectral method based on the Fourier transform, where instead of the frequency ω
we have a parameter p, the degree of the Laguerre polynomial. However, in contrast
to the Fourier transform, applying the Laguerre integral transform with respect to
time enables us to reduce the original problem to a system of equations in which
the separation parameter appears only on the right-hand side and has a recursive
nature. This method originated in [5, 6] for solving dynamical problems of elasticity
theory and was later developed for viscoelasticity problems [7, 8] and the theory
of porous media [9]. These articles show how this method differs from the usual
approaches and discuss the advantages of applying the Laguerre integral transform
in contrast to the difference method and the Fourier transform with respect to time.

1. Statement of the Problem

The system of equations describing the propagation of acoustic-gravity waves
in a heterogeneous not ionized isothermal atmosphere in the Cartesian coordinate
system (x, y, z) in the presence of a wind directed along the horizontal x-axis, and
vertically stratified along the z-axis, is of the form

∂ ux

∂ t
+ vx

∂ ux

∂ x
= − 1

ρ0

∂P

∂x
− uz

∂ vx
∂ z

, (1)

∂ uy

∂ t
+ vx

∂ uy

∂ x
= − 1

ρ0

∂P

∂y
, (2)

∂ uz

∂ t
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∂ uz

∂ x
= − 1

ρ0

∂P
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− ρg

ρ0
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∂ x
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∂uz
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]
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∂ρ0
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+ F (x, y, z, t). (5)
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Here g is the free fall acceleration, ρ0(z) is the density of unperturbed atmosphere,
c0(z) is the speed of sound, vx(z) is the wind speed along the x-axis, �u = (ux, uy, uz)
is the velocity vector of the displacement of air particles, P and ρ are respectively
the perturbations of pressure and density under the action of the propagating wave
from a source of mass F (x, y, z, t) = δ(r − r0)f(t), where f(t) is a specified time
signal at the source. Assume that the z-axis is directed upward. The zero subscripts
of the physical parameters of the medium indicate that their values are defined for
the unperturbed state of the atmosphere. We can determine the dependence of
the atmospheric pressure P0 and the density ρ0 for the unperturbed state of the
atmosphere in the homogeneous gravity field as

∂P0

∂ z
= −ρ0g, ρ0(z) = ρ1 exp(−z/H),

where H is the height of the homogeneous isothermal atmosphere, while ρ1 is the
density of the atmosphere near the surface of the Earth; i.e., at z = 0.

We can express the propagation of seismic waves in an elastic medium as the
well-known system of first-order elasticity theory equations via the relation among
the components of the velocity vector of displacements and the components of the
stress tensor:

∂ ui

∂ t
=

1
ρ0

∂σik

∂xk
+ Fif(t), (6)

∂σik

∂t
= μ

(
∂uk

∂xi
+

∂ui

∂xk

)
+ λδik div �u. (7)

Here λ(x1, x2, x3) and μ(x1, x2, x3) are elastic parameters of the medium, ρ0(x1, x2, x3)
is the density of the medium, δij is the Kronecker symbol, �u = (u1, u2, u3) is the
velocity vector of displacements, σi j are the components of the stress tensor. The
function �F (x, y, z) = F1�ex + F2�ey + F3�ez describes the source distribution localized
in space, while f(t) is the prescribed time signal at the source.

Then we can express the combined system of equations for describing the prop-
agation of seismic and acoustic-gravity waves in the Cartesian system of coordinates
(x, y, z) = (x1, x2, x3) as
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∂ t
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∂ x
= −ρ0 div �u− uz

∂ρ0

∂ z

]
. (10)

Here δij is the Kronecker symbol, ρ0(x, z) is the density of the medium, λ(x, z)
and μ(x, z) are elastic parameters of the medium, �u = (u1, u2, u3) is the velocity
vector of displacements, σij are the components of the stress tensor. The function
�F (x, y, z) = F1�ex + F2�ey + F3�ez describes the source distribution as localized in
space, while f(t) is the prescribed time signal at the source. We assume that the
medium is homogeneous with respect to the Y -axis.

We obtain system (1)–(5) for the atmosphere from system (8)–(10) if we take
σ11 = σ22 = σ33 = −P , μ = 0, λ = c20ρ0, σ12 = σ13 = σ23 = 0, and Ka = 1. Putting
Ka = 0 in (8)–(10), we obtain system (6), (7) for seismic waves propagating in an
elastic medium.
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In our problem, assume that the interface of the media, the atmosphere and
the elastic half-space, lies on the plane z = x3 = 0. In this case we can express the
contact condition for the two media at z = 0 as

uz|z=−0 = uz|z=+0;
∂σzz

∂t

∣∣∣∣
z=−0

=
(
∂σzz

∂t
+ ρ0guz

)∣∣∣∣
z=+0

;

σxz|z=−0 = σyz|z=−0 = 0.
(11)

This problem is solved for the zero initial data

ui|t=0 = σij |t=0 = P |t=0 = ρ|t=0 = 0, i = 1, 2, 3, j = 1, 2, 3. (12)

To apply transforms below, we assume that all functions of the components of the
wave field are sufficiently smooth.

2. A Method of Numerical Solution

At the first stage of solution, use the finite cosine-sine Fourier transform with
respect to the spatial coordinate y, in the direction of which the medium is regarded
as homogeneous. For each component of the system, introduce the corresponding
cosine or sine transform

−→
W (x, z, n, t) =

a∫
0

−→
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{
cos(kny)
sin(kny)

}
d(y), n = 0, 1, 2, . . . , N, (13)

with the corresponding inversion formula
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2
π
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where kn = nπ
a .

Choose a sufficiently large distance a and consider the wave field up to the
time t < T , where T is the minimal propagation time of the longitudinal wave to
the boundary r = a. This transformation yields N + 1 independent nonstationary
problems which are two-dimensional with respect to space.

At the second stage, apply to the resulting N + 1 independent problems the
Laguerre integral transform with respect to time of the form

−→
W p(x, n, z) =

∞∫
0

−→
W (x, n, z, t)(ht)−

α
2 lαp (ht) d(ht), p = 0, 1, 2, . . . , (16)

with the inversion formula
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α
2

∞∑
p=0

p!
(p + α)!

−→
W p(x, n, z)lαp (ht), (17)

where lαp (ht) are the Laguerre orthogonal functions.
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The Laguerre functions lαp (ht) can be expressed in terms of the classical or-
thonormal Laguerre polynomials Lα

p (ht) [10]. Here we choose α (the order of La-
guerre functions) to be integral and positive. Thus, we have

lαp (ht) = (ht)
α
2 e−

ht
2 Lα

p (ht).

To meet the initial condition (12), it is necessary and sufficient to put α ≥ 1.
In addition, we introduce the parameter h > 0 of translation, whose meaning is
discussed in [6–8] as well as the effectiveness of its applications.

As a result of these transformations, solving the original problem (8)–(12) re-
duces to solving N + 1 independent two-dimensional differential problems in the
spectral region of the form
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where fp are the Laguerre coefficients of the source function f(t). The coefficients
up
x, up

y, up
z, σp

xx, σp
yy, σp

zz , σp
xy, σp

xz, σp
yz, and ρp in (18)–(27) are functions of the

variables (n, x, z).
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It is easy to observe that the parameter p of the Laguerre transform appears
only on the right-hand side of the equations and the spectral harmonics for all
components of the field are in recursive dependence.

We can express the condition of contact between the two media at z = 0 as

h

2
σp
zz + h

p−1∑
j=0

σj
zz

∣∣∣∣
z=−0

=

(
h

2
σp
zz + h

p−1∑
j=0

σj
zz + ρ0gu

p
z

)∣∣∣∣∣
z=+0

;

up
z|z=−0 = up

z|z=+0; σp
xz|z=−0 = σp

yz|z=−0 = 0.

(28)

To solve (18)–(28), use the finite cosine-sine Fourier transform with respect to the
space coordinate x and a finite difference approximation of the second order of
accuracy [11] to the derivatives with respect to the z coordinate.

To this end, introduce in the direction of the z-coordinate the region of simu-
lation of the two meshes ωzi and ωzi+1/2 with meshsize �z shifted with respect to
each other by �z/2:

ωzi = {zi = i�z ; i = 0, . . . ,K}, ωzi+1/2 = {zi+1/2 = (i+ 1
2 )�z; i = 0, . . . ,K−1}.

On these meshes introduce the operator Dz of differentiation, approximating to the
second order of accuracy the derivative ∂

∂z with respect to the z-coordinate as

Dzu(x, z) =
1
�z

[
u

(
x, z +

�z

2

)
− u

(
x, z − �z

2

)]
.

Define the required components of the solution vector at the following nodes:

ρp, up
x(x, z), up

y(x, z), σ
p
xx(x, z), σp

yy(x, z), σ
p
zz(x, z), σ

p
xy(x, z) ∈ ωzi,

up
z(x, z), σ

p
xz(x, z), σ

p
yz(x, z) ∈ ωzi+1/2.

Choose the locations of components at integer and half-integer nodes of the mesh
basing on the difference approximation to (18)–(27) and the required boundary con-
dition (28). For the upper and lower boundaries impose boundary conditions of the
first and second kind for the corresponding components.

With respect to the x-coordinate, use the finite cosine-sine Fourier transform
similar to the previously used transform with respect to the y-coordinate with the
corresponding inversion formulas:

−→
W p(x, n, zi, p) =

1
π

−→
W 0(n, zi, p) +

2
π

M∑
m=1

−→
W (m,n, zi, p) cos(kmx) (29)

or

−→
W (x, n, zi, p) =

2
π

M∑
m=1

−→
W (m,n, zi, p) sin(kmx), (30)

where km = mπ
b . We should account for the heterogeneity of the medium in this

direction.
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This yields a system of linear algebraic equations, expressible for nodes i and i+
1
2 of the mesh as

h

2
ūp
x −

M∑
s=0

q1
(
Dzσ̄

p
xz − ksσ̄

p
xx + knσ̄

p
xy

)
+ Ka

M∑
s=0

r1 (vxksūp
x − ūp

zDzvx)

= Fxf
p − h

p−1∑
j=0

ūj
x, (31)

h

2
ūp
y −

M∑
s=0

q2

(
Dzσ̄

p
yz + ksσ̄

p
xy − knσ̄

p
yy

)
−Ka

M∑
s=0

r2vxksū
p
y = Fyf

p

−h
p−1∑
j=0

ūj
y, (32)

h

2
ūp
z −

M∑
s=0

q3

(
Dzσ̄

p
zz + ksσ̄

p
xz + knσ̄

p
yz

)
+ Ka

[
g

ρ0
ρ̄p −

M∑
s=0

r2vxksū
p
z

]

= Fzf
p − h

p−1∑
j=0

ūj
z, (33)

h

2
σ̄p
xx −

M∑
s=0

q4

(
Dzū

p
z + knū

p
y

)
−

M∑
s=0

q5ksū
p
x + Ka

[
ρ0gū

p
z −

M∑
s=0

r2vxksσ̄
p
xx

]

= −h
p−1∑
j=0

σ̄j
xx, (34)

h

2
σ̄p
yy −

M∑
s=0

q4

(
Dzū

p
z + ksū

p
x

)
−

M∑
s=0

q5knū
p
y + Ka

[
ρ0gū

p
z −

M∑
s=0

r2vxksσ̄
p
yy

]

= −h
p−1∑
j=0

σ̄j
yy, (35)

h

2
σ̄p
zz −

M∑
s=0

q4

(
ksū

p
x + knū

p
y

)
−

M∑
s=0

q5Dzū
p
z + Ka

[
ρ0gū

p
z −

M∑
s=0

r2vxksσ̄
p
zz

]

= −h
p−1∑
j=0

σ̄j
zz, (36)

h

2
σ̄p
xy −

M∑
s=0

q6

(
ksū

p
y + knū

p
x

)
= −h

p−1∑
j=0

σ̄j
xy, (37)

h

2
σ̄p
xz −

M∑
s=0

q7

(
Dzū

p
x + ksū

p
z

)
= −h

p−1∑
j=0

σ̄j
xz, (38)
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h

2
σ̄p
yz −

M∑
s=0

q8

(
Dzū

p
y + knū

p
z

)
= −h

p−1∑
j=0

σ̄j
yz, (39)

Ka

[
h

2
ρ̄p −

M∑
s=0

r2vxksρ̄
p +

M∑
s=0

q9
(
ksū

p
x + knū

p
y + Dzū

p
z

)
+ ūp

zDzρ0 = −h
p−1∑
j=0

ρ̄j
]
,

(40)
where

r1 =
b∫

0

cos (ksx) sin (kmx) dx, r2 =
b∫

0

sin (ksx) cos (kmx) dx,

q1 =
b∫

0

1
ρ0(x, zi)

sin (ksx) sin (kmx) dx, q2 =
b∫

0

1
ρ0(x, zi)

cos (ksx) cos (kmx) dx,

q3 =
b∫

0

1
ρ0(x, zi+1/2)

cos (ksx) cos (kmx) dx,

q4 =
b∫

0

λ(x, zi) cos (ksx) cos (kmx) dx,

q5 =
b∫

0

[λ(x, zi) + 2μ(x, zi)] cos (ksx) cos (kmx) dx,

q6 =
b∫

0

μ(x, zi) sin (ksx) sin (kmx) dx,

q7 =
b∫

0

μ(x, zi+1/2) sin (ksx) sin (kmx) dx,

q8 =
b∫

0

μ(x, zi+1/2) cos (ksx) cos (kmx) dx,

q9 =
b∫

0

ρ0(x, zi) cos (ksx) cos (kmx) dx, km =
mπ

b
, kS =

sπ

b
.

In (31)–(40) we use the notation ūp
x = ūp

x(m,n, zj). It works similarly for the other
components. The bar over the symbol of a field component means that we consider
the coefficients of its Fourier transform with respect to the x-coordinate.

These manipulations lead to N+1 systems of linear algebraic equations, where N
is the number of harmonics of the Fourier transform with respect to the y-coordinate.
Express the required solution vector �W as

�W (p) = (�V0(p), �V1(p), . . . , �VK(p))T ,

�Vi = (ρ̄p(m = 0, . . . ,M ; zi), σ̄p
xx(m = 0, . . . ,M ; zi), ūp

x(m = 0, . . . ,M ; zi), . . . )T .
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Then for each harmonic n, with n = 0, . . . , N , we can express the system of linear
algebraic equations in vector form as

(
A +

h

2
E

)
�W (p) = �F (p− 1). (41)

Choose the sequence of components of the wave field in the vector solution �V tak-
ing into account the minimization of the number of diagonals in the matrix A.
Furthermore, on the main diagonal of the matrix of the system under solution we
intentionally put the components that appear in the equations as the terms with the
parameter h as a factor (the Laguerre transform parameter). By the choice of the
value of h, it is possible to improve the condition number of the matrix substantially.
Solving (41), we can determine the spectral values of all components of the wave
field �W (m,n, p). Then, by the inversion formulas (14), (15), (29), and (30) for the
Fourier transform and (17) for the Laguerre transform, we obtain a solution to the
original problem (8)–(12).

3. Aspects of Numerical Implementation

In the analytical Fourier and Laguerre transforms, when evaluating functions
from their spectrum, we use inversion formulas in the form of infinite series. For
a numerical implementation, we should find the required number of terms of the
series in order to construct the solution with specified accuracy. Thus, for instance,
the number of harmonics in the inversion formulas (14), (15), (29), (30) for the
Fourier transform depends on the minimal spatial length of waves in the modeled
medium and the size of the simulated region of the reconstructed field, which is given
by the finite bounds of the integral transform. In addition, the convergence rate of
the series being summed depends on the smoothness of functions of the modeled
wave field.

The number of series terms in the expansion into Laguerre functions necessary
for determining the field components using (17) depends on the prescribed signal
f(t) at the source, the choice of parameter h, and the value of time interval of the
modeled wave field. How to find the required number of harmonics and choose the
optimal value of h is discussed in detail in [6–8].

Inspection of simulations shows that the main calculation error in the presented
algorithm for solving the problem under consideration has to do with numerical
approximations of spatial derivatives. Therefore, to approximate the derivatives
near the interface of strongly contrasting layers of the medium more precisely, as
well as to account better for conditions (11) on the Earth–Atmosphere interface, it
is better to use a mesh with variable discretization meshsize. Thus, we can decrease
the meshsize to approximate the derivatives in certain parts of the medium, which
enables us to obtain a solution with required accuracy for a lower number of nodes
of the mesh.

To solve system (41), it turned out most efficient to use the iterative conjugate
gradient method [12, 13]. In this case the matrices for systems of large dimension
need not be fully stored in memory at once. Another advantage of this method is
its fast convergence to the solution provided that the matrix of the system is well-
conditioned. Our matrix enjoys this property due to the parameter h. Specifying
a suitable value of h, we can substantially speed up the convergence of iterations.
The optimal value of h in this case is chosen to minimize the number of Laguerre
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harmonics in the inversion formula (17) and to decrease the number of iterations
required for finding the solution for each harmonic.

The use of the Fourier transform with respect to the space coordinate in the
direction of which the medium is regarded as homogeneous enables us to implement
efficient parallelization of the solution. In this case each processor solves an indepen-
dent problem for each Fourier harmonic. In addition, when running calculations on
computing clusters with a low amount of memory accessible to one process, to solve
large spatial problems (more than 100 wavelengths) we parallelized the solution of
the two-dimensional spatial problem. At this stage of calculations we implemented
a parallel version of the conjugate gradient method for solving the system of alge-
braic equations for each Fourier harmonic. At the level of input data, as we prescribe
a model of the medium, this is equivalent to decomposing the original region into
several subregions of the two-dimensional problem with respect to the z-coordinate.
This approach makes it possible to distribute memory during both the prescription
of input parameters of the model and the subsequent numerical implementation of
the algorithm in the subregions.

4. Numerical Results

In this article we consider the results of simulations for two variants of wave
propagation in the Earth–Atmosphere medium in the presence of a wind. In the
first variant the velocity of a wind in the atmosphere is constant and independent of
height. In the second variant the velocity of a wind in the atmosphere is a function
of height. Figs. 1 and 2 show the results of simulating the wave field as snapshots
at the fixed time.

Fig. 1 depicts the result of calculating the wave field for the constant velocity of
a wind in the atmosphere equal to 50 m/s. We chose this value to obtain the main
physical effects of wave propagation without calculations at very large distances.
The specified model of a medium consists of a homogeneous elastic layer and an
atmospheric layer separated by a flat boundary. The physical characteristics of the
layers are as follows:

(1) the atmosphere: the speed of sound is c0 = 340 m/s; the density depending
on the z-coordinate is calculated by the formula ρ0(z) = ρ1 exp(−z/H), where ρ1 =
1.225 ∗ 10−3 g/cm3 and H = 6700 m;

(2) the elastic layer: the speed of the longitudinal wave is cp = 800 m/s; the
speed of the transverse wave is cs = 500 m/s; the density is ρ0 = 1.5 g/cm3.

We took a bounded region of a medium of size (x, y, z) = (80 km, 80 km, 60 km).
We modeled the wave field of a point source of pressure center type lying in an elastic
medium at depth 1/4 of the longitudinal wave length with coordinates (x0, y0, z0) =
(40 km, 40 km, −0.2 km). The time signal at the source was specified as the Puzyrëv
pulse:

f(t) = exp
(
− (2πfo(t− t0))2

γ2

)
sin(2πf0(t− t0)), (42)

where γ = 4, f0 = 1 Hz, and t0 = 1.5 s.
Fig. 1 shows the snapshots of the wave field at time t = 5 s. for the component

ux(x, y, z) in the plane XZ for y = y0 = 40 km. The left image is without a wind,
the right image is with a wind at 50 m/s. The interface of an elastic medium and
atmosphere is shown as the solid line. It is clear from the pictures that in the
elastic medium, aside from the spherical longitudinal wave P and conical transverse
wave S, the “nonray” spherical wave S∗ propagates, followed by the Stoneley surface
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Fig. 1

wave R. In the atmosphere, aside from the conical acoustic-gravity waves PP and
SP refracted at the boundary, the spherical wave P propagates, followed by the
Stoneley surface wave. In the images of the wave field in Fig. 1 we can notice the
influence of a wind on the propagation of acoustic-gravity waves in the atmosphere
and Stoneley surface waves, as well as on the overall wave portrait. Inspection of the
results of simulating the wave field and the influence of a wind on it in the case that
the velocity of a wind is constant appeared in [14], which also included a description
of the influence of a wind on the propagation of the Stoneley surface wave, an effect
discovered as a result of these studies. Previously only the influence of a wind on the
propagation of acoustic-gravity waves in the atmosphere was known. It is established
that in the presence of a wind, the velocity and amplitude of the spherical wave in the
atmosphere and the Stoneley surface wave depend on the direction of propagation
of these waves with respect to the velocity vector of the wind.

Fig. 2 shows the result of simulating the wave field for the velocity of a wind
depending on height. In this model the physical characteristics of the elastic medium
and atmosphere were specified as follows:

(1) the atmosphere: the speed of sound is c0 = 340 m/s; the density depending
on the z-coordinate is calculated by the formula ρ0(z) = ρ1 exp(−z/H), where ρ1 =
1.225 ∗ 10−3 g/cm3 and H = 6700 m;

(2) the elastic layer: the speed of the longitudinal wave is cp = 450 m/s; the
speed of the transverse wave is cs = 300 m/s; density is ρ0 = 1.5 g/cm3.

We took a bounded region of medium of size (x, y, z) = (40 km, 40 km, 33 km).
We modeled the wave field of a point source of pressure center type lying in the elastic
medium at depth 1/4 of the longitudinal wavelength with coordinates (x0, y0, z0) =
(20 km, 20 km, −0.12 km). The time signal at the source was specified by (42). The
velocity of a wind in the atmosphere was specified as the function

V (z) = 50 · exp(−10 · (z − 3800)2)− 50 · exp(−10 · (z − 7500)2)m/s.

Fig. 2 shows the snapshots of the wave field at time t = 40 s for the horizontal
component ux of the velocity of displacements in the plane XZ at y = y0 = 20 km.
The left image is without a wind, the right image is with a wind. The interface of
an elastic medium and atmosphere is shown as the solid line.
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Fig. 2

From the image of a wave field without a wind in Fig. 2 (the left picture) it is
clear that the acoustic-gravity conical wave PP and the spherical wave P propa-
gate in the atmosphere, followed by the Stoneley surface wave R. In the image of
the wave field with a wind (the right picture) it is clear that the refracted acoustic-
gravity waves Pr occur in the atmosphere. Their appearance is explained by the
changing velocity of a wind with height. Falling on the atmosphere/lithosphere inter-
face, these waves generate appropriate longitudinal wave PrP and transverse wave
PrS in the lithosphere and the reflected acoustic-gravity wave in the atmosphere.
This phenomenon, known as the acoustic-seismic induction effect, is described in [1]
for instance.

Inspection of the results of simulations yields new features of the propagation
of acoustic-gravity waves in the presence of a wind in the atmosphere. These studies
establish that the distribution of energy in the transmitted and refracted acoustic-
gravity waves in the case of wave bending effect depends on the gradient of the
velocity of a wind. In the case of a small gradient wave, bending does not occur.
The direction of a wind relative to the propagating wave vector also plays a role.

Conclusion

The proposed approach to stating and solving the problem under consideration
enables us to model the effects of wave field propagation for a combined Earth–
Atmosphere mathematical model and study the processes of appearance of exchange
waves on their boundary. Simulating these processes also enables us to study the
specific features of the influence of a wind on the propagating acoustic-gravity waves
in the atmosphere and Stoneley surface waves. Inspection of the test calculations
shows that the algorithm is stable even for the models of media with sharply con-
trasting interface of the layers or with thin layers of width comparable to the spatial
wavelength.
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