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APPLICATION OF THE MODIFIED GALERKIN

METHOD TO THE FIRST BOUNDARY VALUE

PROBLEMS FOR A MIXED TYPE EQUATION

I. E. Egorov

Abstract. We consider the first boundary problem for a second order mixed type
equation of elliptic or hyperbolic type near the bases of a cylindrical domain of the
space Rn+1. To study the first boundary value problem, we employ the modified
Galerkin method and the regularization method. An approximate solution to the first
boundary value problem is constructed with the use of a solution to an appropriate
boundary value problem for third order system of ordinary differential equations. The
error estimate of the modified Galerkin method is established through the regularization
parameter and the eigenvalues of the Laplace operator in the space variables with the
Dirichlet boundary conditions.

Keywords: Galerkin method, mixed type equation, first boundary value problem, a pri-
ori estimate, error estimate, regularization

Many articles are devoted to the study of boundary value problems for mixed type
equations (see [1–12]). We can refer to [13] for a brief survey of these and more mod-
ern articles in this area. Note that the Galerkin method is universal and widely used
for solving boundary value problems for linear and nonlinear equations of mathe-
matical physics [14–16]. The error estimates of the Galerkin method for elliptic and
parabolic equations are collected in [15, 16]. On the other hand, the Galerkin method
combined with regularization has long been applied to the study of boundary value
problems for mixed type equations (see [8, 9, 11]). The stationary Galerkin method
is employed in the study of the first boundary value problem for a mixed type equa-
tion when the equation is elliptic near the bases of a cylindrical domain in [17].
Error estimates for the stationary Galerkin method through the eigenvalues of the
Laplace operator in space and time variables are obtained in [18]. Some particular
cases of the Vragov problem [10] are examined in [13, 19]. In this case the modified
(nonstationary) Galerkin method [20] is involved together with the regularization
method. For these cases the error estimates of the modified Galerkin method are
established through the regularization parameter and the eigenvalues of the Laplace
operator in space variables with the Dirichlet boundary conditions.

In this article we consider the first boundary value problem for a mixed type
equation of the second order (see [12]) when the equation has elliptic or hyperbolic
type near the bases of a cylindric domain. To study the first boundary value problem,
we employ the modified Galerkin method [13, 19, 20] together with regularization.
An approximate solution to the first boundary value problem is constructed by
using a solution to a system of ordinary differential equations of the third order.

The author was supported by the Ministry for Higher Education and Science (Grant 3047).
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2 I. E. Egorov

Next, we establish an error estimate of the modified Galerkin method through the
regularization parameter and eigenvalues of the Laplace operator in spatial variables.

Assume that � ⊂ Rn is a bounded domain with smooth boundary, S ∈ C2,
Q = �× (0, T ), ST = S × (0, T ), and �t = �× {t}, 0 ≤ t ≤ T .

Consider the mixed type equation

Lu ≡ k(x, t)utt −�u+ a(x, t)ut + c(x)u = f(x, t), (1)

with sufficiently smooth coefficients. Introduce the sets

P±0 = {(x, 0) : k(x, 0) ≷ 0, x ∈ �}, P±T = {(x, T ) : k(x, T ) ≷ 0, x ∈ �}.
Boundary Value Problem I. Find a solution to (1) in Q satisfying

u|ST = 0, u|t=0 = 0, ut|P+
0

= 0, u|
P
−
T

= 0. (2)

The boundary value problem (1), (2) was firstly studied by A. N. Terekhov
in [12] by the regularization method.

Let CL be the space of smooth functions satisfying (2).

Lemma 1 (see [9, 12]). Assume that c(x) > 0 is sufficiently large and

k(x, T ) < 0, a− 1
2
kt ≥ δ > 0.

Then there exists a nontrivial infinitely differentiable functions ϕ(t) and ψ(t)
such that

(Lu, ϕut + ψu) ≥ C1‖u‖21, C1 > 0,

for all u ∈ CL.
Proof. There exists a positive T0 < T such that

k(x, t) ≤ −δ1, t ∈ [T0, T ].

Choose ϕ(t), ψ(t) ∈ C∞[0, T ] such that

ϕ(t) = μ, t ∈ [0, T0], ϕ′(t) ≤ 0, ϕ(T ) = 0,

ψ(t) = 1− 1
2
ϕ′(t).

Let u(x, t) belong to CL. Integrating by parts, we obtain

(Lu, ϕut + ψu) =
∫

Q

{[(
a− 1

2
kt

)
ϕ− k

(
ψ +

1
2
ϕt

)]
u2
t +
(
ψ − 1

2
ϕt

) n∑
i=1

u2
xi

+c
(
ψ − 1

2
ϕt

)
u2 + [aψ − (kψ)t]utu

}
dQ+ I, (3)

where
I = −μ

2

∫

P
−
0

ku2
t dx ≥ 0.

Now we can choose μ > 0 so that

δμ−max
Q
|k| ≥ δ2 > 0.
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In this case (
a− 1

2
kt

)
ϕ− k

(
ψ +

1
2
ϕt

)
≥ min{δ1, δ2}.

Relation (3), the Cauchy inequality, and the conditions of Lemma 1, justify the
a priori estimate of Lemma 1.

If ε > 0 then Lεu ≡ −εD3
tu+ Lu. We take solutions to the spectral problem

−�ϕ = λϕ, x ∈ �, ϕ|S = 0

as basis functions. The functions ϕk(x) form an orthonormal basis for L2(�) and
the corresponding eigenvalues λk are such that 0 < λ1 ≤ λ2 ≤ · · · and λk → +∞
as k →∞ [14].

In what follows, we assume that k(x, T ) < 0. An approximate solution uN,ε(x, t)
to the boundary value problem (1), (2) is sought in the form

uN,ε(x, t) =
N∑

k=1

cN,ε
k (t)ϕk(x) ≡ v(x, t),

where cN,ε
k (t) are solutions to the following boundary value problem for a system of

ordinary differential equations (ODEs) of the third order:

(Lεu
N,ε, ϕl)0 = (f, ϕl)0, (4)

cN,ε
l (0) = 0, D2

t c
N,ε
l

∣∣
t=0 = 0, cN,ε

l (T ) = 0, l = 1, N, (5)
for k(x, 0) < 0 or

cN,ε
l (0) = 0, Dtc

N,ε
l

∣∣
t=0 = 0, cN,ε

l (T ) = 0, l = 1, N, (5)

for k(x, 0) > 0.

Lemma 2. Assume that the conditions of Lemma 1 and one of the inequalities
k(x, 0) < 0 or k(x, 0) > 0 hold.

Then there exits a number ε0 > 0 such that approximate solutions to (1), (2)
satisfy the estimate

ε

∫

Q

ϕv2
tt dQ+ ‖v‖21 ≤ C2‖f‖2, C2 > 0, 0 < ε ≤ ε0. (6)

Proof. Without loss of generality, we can assume that ϕ′(T ) = 0. Then
from (4) and (5) it follows that

(f, ϕvt + ψv) = ε

∫

Q

ϕv2
tt dQ−

ε

2

∫

Q

[
(ϕtt + 3ψt)v2

t + ψtttv
2] dQ

+
1
2
ε

∫

�

ψv2
t dx

∣∣∣∣
t=T

t=0
+ (Lv, ϕvt + ψv). (7)

Note that v satisfy (3).
It suffices to consider only the case of k(x, 0) ≤ −δ3 < 0. Choose ε0 > 0 so that

ε0 ≤ δ3μ. In this case

I − 1
2
ε

∫

�0

ψv2
t dx ≥ 0.

Decreasing ε0, if need be, and accounting for (3) and (7); we obtain the a priori
estimate (6). Lemma 2 is proven.
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Lemma 3. Assume that c(x) > 0 is sufficiently large, the conditions

a− 1
2
kt ≥ δ > 0, a+

1
2
kt ≥ δ > 0, f, ft ∈ L2(Q),

are fulfilled, and one of the following cases k(x, 0) < 0 and k(x, T ) < 0, or k(x, 0) > 0
and k(x, T ) < 0, f(x, 0) = 0 holds.

Then there exits a number ε0 > 0 such that approximate solutions to (1), (2)
satisfy the estimate

∫

Q

[
v2
tt +

n∑
i=1

v2
txi

]
dQ ≤ C3[‖f‖2 + ‖ft‖2], C3 > 0, 0 < ε < ε0. (8)

Proof. For nonnegative infinitely differentiable functions ξ(t) and η(t), from
(4), (5) it follows that

−(f, ξvttt + ηvtt) = ε

∫

Q

ξv2
ttt dQ−

ε

2

∫

Q

ηtv
2
tt dQ

+
∫

Q

{[(
a+

1
2
kt

)
ξ − k

(
η − 1

2
ξt

)]
v2
tt +
(
η − 3

2
ξt

) n∑
i=1

v2
txi

+ [(aξ)t − aη + cξ]vttvt

+c(ξt − η)vvtt − (ηt − ξtt)
n∑

i=1

vtxivxi

}
dQ+ J, (9)

where

J ≡
∫

�

[
1
2
(εη − kξ)v2

tt − aξvttvt +
1
2
ξ

n∑
i=1

v2
txi

]
dx

∣∣∣∣
t=T

t=0
.

First, we examine the case of k(x, 0) < 0 and k(x, T ) < 0. There exist positive
numbers t0, T0 such that t0 < T0 < T and k(x, t) ≤ −δ1 < 0, t ∈ [0, t0] ∪ [T0, T ].

Choose functions ξ(t), η(t) such that

ξ(0) = ξ(T ) = 0, ξ′(t) ≥ 0, t ∈ [0, t0], ξ(t) = μ, t ∈ [t0, T0], ξ′(t) ≤ 0, t ∈ [T0, T ],

η(t) = 1 +
1
2
ξt, t ∈ [0, t0], η(t) = 1, t ∈ [t0, T0], η(t) = 1− 1

2
ξt, t ∈ [T0, T ].

Take μ > 0 so that
δμ−max

Q
|k| ≥ δ2 > 0.

In this case (
a+

1
2
kt

)
ξ − k

(
η − 1

2
ξt

)
≥ min{δ1, δ2}. (10)

Since
J =

ε

2

∫

�T

ηv2
tt dx

is nonnegative; the Cauchy inequality, (6), (10), and (9) imply the a priori esti-
mate (8).

Proceed with the case of k(x, 0) > 0 and k(x, T ) < 0. We assume that k(x, t) ≤
−δ1, t ∈ [T0, T ], and k(x, 0) ≥ δ3 > 0. Choosing μ > 0, as above, we justify (10).
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Using the inequality

J ≥ 1
2
(δ3μ− ε)

∫

�0

v2
tt dx,

the Cauchy inequality and (9) and decreasing ε0, if need be, we can justify (8).
Lemma 3 is proven.

Lemma 4. Let the conditions of Lemma 3 hold. Then there exists a number
ε0 > 0 such that approximate solutions to (1), (2) satisfy the estimate

‖�v‖2 ≤ C4(‖f‖2 + ‖ft‖2), C4 > 0, 0 < ε ≤ ε0. (11)

Proof. Choose ϕ(t) in C∞[0, T ] such that ϕ(0) = μ > 0, ϕ′(t) ≤ 0, and
ϕ(T ) = ϕ′(0) = ϕ′(T ) = 0. Relations (4) and (5), the properties of ϕk(x), and
integration by parts yield

−(f, ϕ�vt +�v) = ε

∫

Q

[
ϕ

n∑
i=1

v2
ttxi
− 1

2
ϕtt

n∑
i=1

v2
txi

]
dQ

+
∫

Q

{(
1− 1

2
ϕt

)
(�v)2 +

[
aϕ− 1

2
(kϕ)t

] n∑
i=1

v2
txi

+ ϕ
n∑

i=1

[kxivtt + axivt + (cv)xi ]vtxi

−(kvtt + avt + cv)�v
}
dQ+K, (12)

where

K =
1
2

∫

�

[
(kϕ+ ε)

n∑
i=1

v2
txi

]
dx

∣∣∣∣
t=T

t=0
.

Consider the case of k(x, 0) ≤ −δ1 < 0. Choose μ > 0 so that ε0 ≤ δ1μ. Since
K is nonnegative; the Cauchy inequality, the a priori estimates (6), (8), and (12)
validate (11).

For k(x, 0) > 0, we have vt(x, 0) = 0, and thus K ≥ 0 as before. Hence, the
estimate (11) is true. Lemma 4 is proven.

Theorem 1. Assume that c(x) > 0 is sufficiently large, the conditions

a− 1
2
|kt| ≥ δ > 0, f, ft ∈ L2(Q),

are fulfilled, and one of the following holds: either k(x, 0) < 0 and k(x, T ) < 0, or
k(x, 0) > 0 and k(x, T ) < 0, f(x, 0) = 0.

Then (1), (2) has the unique solution u(x, t) in W 2
2 (Q) satisfying

‖u‖2 ≤ C5(‖f‖+ ‖ft‖), C5 > 0.

Proof. Inequalities (6), (8), (11) and the second basic inequality for the Laplace
operator [14, 21] imply that

‖uN,ε‖2 ≤ C5(‖f‖+ ‖ft‖), C5 > 0 (13)

for approximate solutions to (1), (2).
This estimate imply the existence of a solution to (1), (2). Uniqueness of a so-

lution to (1), (2) is guaranteed by Lemma 1. Theorem 1 is proven.
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Theorem 2. Let the conditions of Theorem 1 hold. Then the error estimate
of the modified Galerkin method is estimated as

‖u− uN,ε‖1 ≤ C6(‖f‖+ ‖ft‖)
(
ε1/2 + λ−1/4

N+1

)
, C6 > 0, (14)

where u(x, t) is an exact solution to (1), (2).
Proof. Consider the functions ϕ(t) and ψ(t) of the proof of Lemma 1. Intro-

duce the manifold of the following subspace of the L2(Q) space

HN =
{
η(x, t) =

N∑
l=1

al(t)ϕl(x) : al ∈ W 2
2 (0, T ), al(0) = al(T ) = 0, l = 1, N

}

for k(x, 0) < 0 or

HN =
{
η(x, t) =

N∑
l=1

al(t)ϕl(x) : al ∈ W 2
2 (0, T ), al(0) = a′l(0) = al(T ) = 0, l = 1, N

}

for k(x, 0) > 0.
Equations (1) and (4) and the definition of HN easily imply that

(Lεu
N,ε, ϕηt + ψη) = (f, ϕηt + ψη), (Lu, ϕηt + ψη) = (f, ϕηt + ψη), η ∈ HN ,

where u(x, t) is an exact solution to (1), (2), ensured by Theorem 1.
Hence,

(L(u− uN,ε), ϕηt + ψη) = −ε(uN,ε
ttt , ϕηt + ψη), η ∈ HN .

The last equality for η = ω−uN,ε and an arbitrary function ω in HN takes the form
(
L(u− uN,ε), ϕ

(
ut − uN,ε

t

)
+ ψ(u− uN,ε)

)
= ε
(
uN,ε
tt ,
(
ϕ
(
ωt − uN,ε

t

))
t
+ (ψ(ω − uN,ε))t

)
+(f − LuN,ε, ϕ(ut − ωt) + ψ(u − ω)). (15)

Consider the Fourier series

u(x, t) =
∞∑
k=1

ck(t)ϕk(x), ck(t) = (u, ϕk)0.

If

ω =
N∑

k=1

ck(t)ϕk(x)

then by analogy with [20] we can establish that

‖u− ω‖2 ≤ C7λ
−2
N+1(‖f‖2 + ‖ft‖2), C7 > 0, (16)

‖ut − ωt‖2 ≤ C8λ
−1
N+1(‖f‖2 + ‖ft‖2), C8 > 0. (17)

Lemma 1, along with (13), (16), (17) and (15), validates (14) for the error of the
Galerkin method. Theorem 2 is proven.

Remark 1. If k(x, 0) > 0 and k(x, T ) ≥ 0 or k(x, 0) < 0 and k(x, T ) ≥ 0,
then (1), (2) coincides with the Vragov problem [10] and the results similar to those
in [13, 19] are valid.

Remark 2. We can consider a more general elliptic operator of second order
instead of the Laplace operator (see [14]).



Application of the Modified Galerkin Method 7

REFERENCES

1. Tricomi F. C. Linear Equations of Mixed Type [Russian translation]. Moscow: Gostekhizdat,
1947.

2. Gellerstedt S. Sur un probleme aux limites pour une equation lineaire aux derivees partielles
du second ordre de tipe mixte. Uppsala: These, 1935.

3. Bitsadze A. V. Equations of Mixed Type [in Russian]. Moscow: Akad. Nauk SSSR, 1959.
4. Guderley K. G. The Theory of Transonic Flows. Pergamon: Pergamon Press, 1962.
5. Smirnov M. M. Equations of Mixed Type [in Russian]. Moscow: Nauka, 1970.
6. Salakhitdinov M. S. Equations of Mixed-Composite Type [in Russian]. Tashkent: Fan, 1974.
7. Moiseev E. I. Equations of Mixed Type with a Spectral Parameter [in Russian]. Moscow:

Moscow Univ., 1988.
8. Kuz ′min A. G. Nonclassical Equations of Composite Type and Their Applications to Gas

Dynamics [in Russian]. Leningrad: Leningrad. Univ., 1990.
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CONSTRUCTION OF ALMOST PERIODIC

SOLUTIONS TO SOME SYSTEMS

OF DIFFERENTIAL EQUATIONS

M. F. Kulagina and E. A. Mikishanina

Abstract. We propose a method for constructing Bohr almost periodic solutions to
boundary value problems for systems of partial differential equations that arise in solving
certain problems for inhomogeneous media.

Keywords: differential equation, boundary value problem, generalized discrete Fourier
transform, Fourier series

We consider boundary value problems for systems of differential equations that ap-
pear in solving planar problems in the theory of inhomogeneous media in elasticity
theory, filtration theory, diffusion theory, heat conduction, electro- and magnetody-
namics in the case when the domain is a two-layer (or an l-layer) strip. The boundary
conditions are defined both on the boundary of the strip and on the gluing line.

In the general case, the problem looks as follows: find functions ukm(x, y) such
that, in each of the m strips −∞ < x < +∞, am < y < bm, they satisfy the system

n∑

k=1

(
a(m)
kj

∂2ukm(x, y)
∂x2 + b(m)

kj

∂2ukm(x, y)
∂y2 + c(m)

kj

∂ukm(x, y)
∂x

+d(m)
kj

∂ukm(x, y)
∂y

+ e(m)
kj ukm(x, y)

)
= Fjm(x, y), j = 1, n, m = 1, l. (1)

The boundary conditions are defined on the boundary of the strip, and gluing
conditions are defined on the separation lines. For example, for the two-layer strip,
−∞ < x < +∞, −1 < y < 0, 0 < y < 1, these conditions can look as follows:
(k = 1, n, m = 1, 2):

ukm(x, 1) = �km(x),

ukm(x,−1) = �km(x),

uk1(x, 0) = uk2(x, 0),
∂uk1(x, 0)

∂y
=
∂uk2(x, 0)

∂y
,

The number of conditions depends on the order of the system (the maximal order
of the system is 2n).

We will search for Bohr almost periodic solutions on every straight line y =
const. These solutions will be constructed with the use of the generalized discrete
Fourier transform, introduced and studied in [1–3].

Recall the main notions related to almost periodic functions. An almost peri-
odic (a.p.) polynomial is a function p(t), −∞ < t <∞, that is a linear combination

c© 2015 Kulagina M. F., Mikishanina E. A.
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of functions of the form eiλt, where λ ∈ R. Denote by �C the closure of the set of
all a.p. polynomials in the norm of L∞(−∞,+∞). The set �C is the subalgebra
in L∞(−∞,+∞) consisting of all Bohr a.p. functions. Denote by �W the set �C

consisting of the functions A(t) of the form

A(t) =
∞∑

n=1

ane
iλnt (1.1)

satisfying the condition
∑∞

n=1 |an| <∞. The set �W is a Banach algebra.
To each A(t) in �W , assign the function

a(λ) = M
{
A(t)e−iλt

}
= lim

T→∞

1
2T

T∫

−T

A(t)e−iλt. (1.2)

Such a function exists and can be nonzero for an at most countable set of con-
straints λ: λ1, λ2, K: a(λn) = an �= 0. Thus, to each function in �W , assign the
function a(λ) or the sequence of pairs a(λ) = {(a1, λ1), (a2, λ2), K}, where an ∈ C
and λn ∈ R.

If A(t) ∈ �W then the sequence {an} corresponding to this function belongs
to l1 (we say that a(λ) belongs to l1). Conversely, for every function a(λ) ∈ l1, there
exists a function A(t) for which (1.2) holds and A(t) has the form (1.1). Series (1.1)
converges absolutely and uniformly for −∞ < t <∞. Consequently, we have estab-
lished a one-to-one correspondence between functions in �W and two-dimensional
sequences a(λ) ∈ l1.

Refer to equality (1.1) by which to a sequence a(λ) ∈ l1 there is assigned a func-
tion A(t) ∈ �W as the generalized discrete Fourier transform (GDF). Equality (1.2)
defines the inverse transform. The sequence is the original a(λ), and the function
A(t) is the image. The GDF will be denoted by A(t) = W0a(λ), a(λ) = W−1

0 A(t).
It is proved that if A(t) is differentiable and A(j)(t) ∈ �W , j = 0,K, p, then

W−1
0

dpA(t)
dtp

= (iλ)pa(λ).

The coefficients of the sequence a(λ) may depend on y:

a(λ, y) = {(a1, λ1), (a2, λ2), K}, y ∈ [a, b].

If there exists a sequence of positive numbers {an} ∈ l1 such that |an(y)| ≤ αn

then the functions A(t, y) = W0a(λ, y) belong to �W on each horizontal straight
strip a ≤ Im z ≤ b (z = t + iy). We will say that A(t, y) belongs to �y

W in the
strip [a, b]. If A(t, y) is differentiable p times with respect to y and ∂jA(t,y)

∂yj ∈ �y
W ,

j = 0, . . . , p, then

W−1
0

∂pA(t, y)
∂yp

=
∂pa(λ, y)
∂yp

.

We will assume that the functions in the boundary conditions belong to �W ;
i.e., are representable as absolutely convergent series

�km(x) =
∑

λ

ϕkm(λ)eiλx, �km(x) =
∑

λ

ψkm(λ)eiλx, k = 1, n, m = 1, l,

all functions Fjm(x, y) belong to �y
W , i.e., are representable as series

Fjm(x, y) =
∑

λ

fjm(λ, y)eiλx, j = 1, n, m = 1, l.



10 M. F. Kulagina and E. A. Mikishanina

Search for a solution ukm(x, y) to the system in the class �y
W , i.e., in the form

ukm(x, y) =
∑

λ

Akm(λ, y)eiλx, k = 1, n, m = 1, l,

where Akm(λ, y) are unknown functions found from the boundary conditions and
the gluing conditions as follows:

Apply the operator W−1
0 on the equations of (1) and obtain the system

n∑

k=1

(
−λ2a(m)

kj Akm(λ, y) + b(m)
kj

d2Akm(λ, y)
dy2 + c(m)

kj · iλ ·Akm(λ, y)

+d(m)
kj

dAkm(λ, y)
dy

+ e(m)
kj Akm(λ, y)

)
= fjm(λ, y), j = 1, n, m = 1, l, (2)

of ordinary differential equations for each fixed m of order at most 2n (λ is a pa-
rameter). Solving this system, we get

Akm(λ, y) =
2n∑

q=1

pqkm(λ)ξqkm(λ, y) + ξ̃km(λ, y), k = 1, n, m = 1, l,

where pqkm(λ) are constant for fixed q, k, m, and λ. It is these constants that are
found from the boundary and gluing conditions. For finding them, we get a system
of linear algebraic equations.

As an example, we consider the following problem from filtration theory:

Statement of the problem. In a homogeneous isotropic porous domain con-
sisting of two strips, −∞ < x < +∞: the first (m = 1), −1 ≤ y ≤ 0; the second
(m = 2), 0 ≤ y ≤ 1, there happens a stationary filtration of some fluid.

On the exterior boundaries of the domain y = 1, y = −1, the values of the
normal and tangential stresses are given, and also the potential of the filtration rate:

σ(1)
y (x,−1) = F1(x), σ(2)

y (x, 1) = G1(x),

τ (1)
xy (x,−1) = F2(x), τ (2)

xy (x, 1) = G2(x),

ϕ(1)(x,−1) = F3(x), ϕ(2)(x, 1) = G3(x),

(3)

where Fj(x) and Gj(x), j = 1, 2, 3, are almost periodic functions with absolutely
convergent Fourier series (belong to the class �W ), i.e., have the structure

Fj(x) =
∑

λ�=0

fj(λ)eiλx, Gj(x) =
∑

λ�=0

gj(λ)eiλx,

{λ} is a countable set of reals separated from zero. On the common boundary of
the separation of the media y = 0, there hold the rigid attachment conditions:

σ(1)
y (x, 0) = σ(2)

y (x, 0), τ (1)
xy (x, 0) = τ (2)

xy (x, 0), (4)

u(1)(x, 0) = u(2)(x, 0), ν(1)(x, 0) = ν(2)(x, 0), (5)

ϕ(1)(x, 0)
k1

=
ϕ(2)(x, 0)

k2
,

∂ϕ(1)

∂y
(x, 0) =

∂ϕ(2)

∂y
(x, 0), (6)

where k1 and k2 are the filtration coefficients of the media. The functions u(m)(x, y)
and ν(m)(x, y), m = 1, 2, are expressed in terms of σ(m)

x (x, y), σ(m)
y (x, y), and

τ (m)
xy (x, y) in a familiar way.
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Find the functions of the potential of the filtration rate ϕ(m)(x, y) of the fluid
acting in each of the stripes of the porous domain 0 ≤ y ≤ 1, −1 ≤ y ≤ 0, −∞ <

x < +∞, and also the stresses σ(m)
x (x, y), σ(m)

y (x, y), τ (m)
xy (x, y), m = 1, 2.

Such problems appear in calculating the stress and deformation of pavements [4].

This problem is reduced to solving a system of equations with respect to σ(m)
x (x, y),

σ(m)
y (x, y), τ (m)

xy (x, y), ϕ(m)(x, y), m = 1, 2 [5]:

∂2σ
(m)
x

∂x2 +
∂2σ

(m)
y

∂x2 +
∂2σ

(m)
y

∂x2 +
∂2σ

(m)
y

∂y2 = 0,

∂σ(m)
x

∂x
+
∂τ (m)

xy

∂y
− ∂ϕ(m)

∂x
= 0,

∂τ (m)
xy

∂x
+
∂σ(m)

y

∂y
− ∂ϕ(m)

∂y
− k(m)

0 = 0,

∂2ϕ(m)

∂x2 +
∂2ϕ(m)

∂y2 = 0.

(7)

Search for a solution in the class �y
W (0 ≤ y ≤ 1), i.e., in the class of functions

representable as series

σ(1)
x (x, y) =

∑

λ

A
(1)
λ (y)eiλx, σ(2)

x (x, y) =
∑

λ

A
(2)
λ (y)eiλx,

σ(1)
y (x, y) =

∑

λ

B(1)
λ (y)eiλx, σ(2)

y (x, y) =
∑

λ

B(2)
λ (y)eiλx,

τ (1)
xy (x, y) =

∑

λ

C(1)
λ (y)eiλx, τ (2)

xy (x, y) =
∑

λ

C(2)
λ (y)eiλx,

ϕ(1)(x, y) =
∑

λ

D(1)
λ (y)eiλx, ϕ(2)(x, y) =

∑

λ

D(2)
λ (y)eiλx.

(8)

Apply the operator W−1
0 at the equations of (7). Involving the properties of W−1

0 ,
we arrive at the equations

−λ2A(m)
λ (y) +

d2A
(m)
λ (y)
dy2 − λ2B(m)

λ (y) +
d2B

(m)
λ (y)
dy2 = 0,

iλA(m)
λ (y) +

dC(m)
λ (y)
dy

− iλD(m)
λ (y) = 0,

iλC(m)
λ (y) +

dB(m)
λ (y)
dy

− D(m)
λ (y)
dy

− k(m)
0 = 0,

−λ2D(m)
λ (y) +

d2D(m)
λ (y)
dy2 = 0, m = 1, 2.

(9)
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Solving the system of differential equations (9), we infer

A(m)
λ (y) =

(
−b(m)

1 (λ) − 2
λ
b(m)
3 (λ) − b(m)

3 (λ)y + 2d(m)
1 (λ)

)
eλy

+
(
−b(m)

2 (λ) +
2
λ
b(m)
4 (λ) − b(m)

4 (λ)y + 2d(m)
2 (λ)

)
e−λy,

B(m)
λ (y) =

(
b(m)
1 (λ) + b(m)

3 (λ)y
)
eλy +

(
b(m)
2 (λ) + b(m)

4 (λ)y
)
e−λy,

C(m)
λ (y) = − ik(m)

0
λ

+ i

(
b(m)
1 (λ) +

1
λ
b(m)
3 (λ) + b(m)

3 (λ)y − d(m)
1 (λ)

)
eλy

+ i

(
−b(m)

2 (λ) +
1
λ
b(m)
4 (λ) − b(m)

4 (λ)y + d(m)
2 (λ)

)
e−λy,

D(m)
λ (y) =d(m)

1 (λ)eλy + d(m)
2 (λ)e−λy, m = 1, 2.

(10)

Use the boundary and attachment conditions for finding b(m)
1 (λ), b(m)

2 (λ),
b(m)
3 (λ), b(m)

4 (λ), d(m)
1 (λ), and d(m)

2 (λ), m = 1, 2. The boundary conditions (3)
imply that

b(1)1 (λ)e−λ + b(1)2 (λ)eλ − b(1)3 (λ)e−λ − b(1)4 (λ)eλ = f1(λ),

− ik
(1)
0
λ

+ i

(
b(1)1 (λ) +

1
λ
b(1)3 (λ) − b(1)3 (λ) − d(1)

1 (λ)
)
e−λ

+i
(
−b(1)2 (λ) +

1
λ
b(1)4 (λ) + b(1)4 (λ) + d(1)

2 (λ)
)
eλ = f2(λ),

d(1)
1 (λ)e−λ + d(1)

2 (λ)eλ = f3(λ),

b(2)1 (λ)eλ + b(2)2 (λ)e−λ + b(2)3 (λ)eλ + b(2)4 (λ)e−λ = g1(λ),

− ik
(2)
0
λ

+ i

(
b(2)1 (λ) +

1
λ
b(2)3 (λ) + b(2)3 (λ) − d(2)

1 (λ)
)
eλ

+i
(
−b(2)2 (λ) +

1
λ
b(2)4 (λ) − b(2)4 (λ) + d(2)

2 (λ)
)
e−λ = g2(λ),

d(2)
1 (λ)eλ + d(2)

2 (λ)e−λ = g3(λ).

Conditions (4) imply that

b
(1)
1 (λ) + b

(1)
2 (λ) = b

(2)
1 (λ) + b

(2)
2 (λ),

−k
(1)
0
λ

+
(
b(1)1 (λ) +

1
λ
b(1)3 (λ) − d(1)

1 (λ)
)

+
(
−b(1)2 (λ) +

1
λ
b(1)4 (λ) + d(1)

2 (λ)
)

= −k
(2)
0
λ

+
(
b
(2)
1 (λ) +

1
λ
b
(2)
3 (λ) − d

(2)
1 (λ)

)
+
(
−b(2)2 (λ) +

1
λ
b
(2)
4 (λ) + d

(2)
2 (λ)

)
.
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The functions u(m)(x, y) and ν(m)(x, y), m = 1, 2, are determined as follows:

u(m)(x, y)

=
∑

λ�=0

i

Emλ2

((
b(m)
1 λ+ 2b(m)

3 + λyb(m)
3 − 2λd(m)

1 + νmλb
(m)
1 + νmλb

(m)
3 y

)
eλy

+
(
λb(m)

2 − 2b(m)
4 + λyb(m)

4 − 2λd(m)
2 + νmλb

(m)
2 − νmλb

(m)
4 y

)
e−λy

)
eiλx,

ν(m)(x, y) =
∑

λ�=0

i

Emλ2

((
b(m)
1 λ− b(m)

3 + λyb(m)
3 − 2νmλd

(m)
1 + νmλb

(m)
1

+νmb
(m)
3 + νmλb

(m)
3 y

)
eλy + (−λb(m)

2 − b(m)
4 − λyb(m)

4 + 2νmλd
(m)
2

−νmλb(m)
2 + νmb

(m)
4 − νmλb

(m)
4 y

)
e−λy

)
eiλx +

∑

λ�=0

−2k(m)
0 (1 + νm)
λ2Em

eiλx,

where Em and νm are given constants. Conditions (5) imply

∑

λ�=0

i

E1λ2

((
b
(1)
1 λ+ 2b(1)3 − 2λd(1)

1 + ν1λb
(1)
1

)

+
(
λb

(1)
2 − 2b(1)4 − 2λd(1)

2 + ν1λb
(1)
2

))
eiλx

=
∑

λ�=0

i

E2λ2

((
b(2)1 λ+ 2b(2)3 − 2λd(2)

1 + ν2λb
(2)
1

)

+
(
λb(2)2 − 2b(2)4 − 2λd(2)

2 + ν2λb
(2)
2

))
eiλx,

∑

λ�=0

i

E1λ2

((
b(1)1 λ− b(1)3 − 2ν1λd

(1)
1 + ν1λb

(1)
1 + ν1b

(1)
3

)

+
(
−λb(1)2 − b(1)4 − 2ν1λd

(1)
2 − ν1λb

(1)
2 + ν1b

(1)
4

)
− 2k(1)

0 (1 + ν1)
)
eiλx

=
∑

λ�=0

i

E2λ2

((
b
(2)
1 λ− 2b(2)3 − 2ν2λd

(2)
1 + ν2λb

(2)
1 + ν2b

(2)
3

)

+
(
−λb(2)2 − b(2)4 + 2ν2λd

(2)
2 − ν2λb

(2)
2 + ν2b

(2)
4

)
− 2k(2)

0 (1 + ν2)
)
eiλx,

It follows from (6) that

d(1)
1 (λ) + d(1)

2 (λ)
k1

=
d(2)
1 (λ) + d(2)

2 (λ)
k2

, d(1)
1 (λ) − d(1)

2 (λ) = d(2)
1 (λ) − d(2)

2 (λ).

By what was stated above, for finding the coefficients b(m)
1 (λ), b(m)

2 (λ), b(m)
3 (λ),

b(m)
4 (λ), d(m)

1 (λ), and d(m)
2 (λ), m = 1, 2, we must solve the system of linear algebraic
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equations

e−λb(1)1 (λ) + eλb(1)2 (λ) − e−λb(1)3 (λ) − eλb(1)4 (λ) = f1(λ),

e−λb(1)1 (λ) − eλb(1)2 (λ) +
(

1
λ
− 1

)
e−λb(1)3 (λ) +

(
1
λ

+ 1
)
eλb(1)4 (λ)

− e−λd(1)
1 (λ) + eλd(1)

2 (λ) = −if2(λ) +
k(1)
0
λ
,

e−λd(1)
1 (λ) + eλd(1)

2 (λ) = f3(λ),

eλb(2)1 (λ) + e−λb(2)2 (λ) + eλb(2)3 (λ) + e−λb(2)4 (λ) = g1(λ),

eλb(2)1 (λ) − e−λb(2)2 (λ) +
(

1
λ

+ 1
)
eλb(2)3 (λ) +

(
1
λ
− 1

)
e−λb(2)4 (λ)

− eλd(2)
1 (λ) + e−λd(2)

2 (λ) = −ig2(λ) +
k(2)
0
λ
,

eλd
(2)
1 (λ) + e−λd

(2)
2 (λ) = g3(λ),

b(1)1 (λ) + b(1)2 (λ) − b(2)1 (λ) − b(2)2 (λ) = 0, (11)

b
(1)
1 (λ) − b

(1)
2 (λ) +

1
λ
b
(1)
3 (λ) +

1
λ
b
(1)
4 (λ) − d

(1)
1 (λ) + d

(1)
2 (λ) − b

(2)
1 (λ)

+ b
(2)
2 (λ) − 1

λ
b
(2)
3 (λ) − 1

λ
b
(2)
4 (λ) + d

(2)
1 (λ) − d

(2)
2 (λ) =

k(1)
0
λ

− k(2)
0
λ
,

k2d
(1)
1 (λ) + k2d

(1)
2 (λ) − k1d

(2)
1 (λ) − k1d

(2)
2 (λ) = 0,

d
(1)
1 (λ) − d

(1)
2 (λ) − d

(2)
1 (λ) + d

(2)
2 (λ) = 0,

λ(1 + ν1)
E1

b(1)1 +
λ(1 + ν1)

E1
b(1)2 +

2
E1

b(1)3 (λ) − 2
E1

b(1)4 (λ) − 2λ
E1
d(1)
1 − 2λ

E1
d(1)
2

− λ(1 + ν2)
E2

b
(2)
1 − λ(1 + ν2)

E2
b
(2)
2 − 2

E2
b
(2)
3 (λ)

+
2
E2

b(2)4 (λ) +
2λ
E2
d(2)
1 +

2λ
E2

d(2)
2 = 0,

λ(1 + ν1)
E1

b(1)1 − λ(1 + ν1)
E1

b(1)2 +
ν1 − 1
E1

b(1)3 (λ) +
ν1 − 1
E1

b(1)4 (λ) − 2λν1
E1

d(1)
1

+
2λν1
E1

d(1)
2 − λ(1 + ν2)

E2
b(2)1 +

λ(1 + ν2)
E2

b(2)2 − (ν2 − 1)
E2

b(2)3 (λ)

− (ν2 − 1)
E2

b(2)4 (λ) +
2λν2
E2

d(2)
1 − 2λν2

E2
d(2)
2

=
2k(1)

0 (1 + ν1)
E1

− 2k(2)
0 (1 + ν2)
E2

.

This system splits into two subsystems

e−λd(1)
1 (λ) + eλd(1)

2 (λ) = f3(λ),

eλd(2)
1 (λ) + e−λd(2)

2 (λ) = g3(λ),

k2d
(1)
1 (λ) + k2d

(1)
2 (λ) − k1d

(2)
1 (λ) − k1d

(2)
2 (λ) = 0,

d(1)
1 (λ) − d(1)

2 (λ) − d(2)
1 (λ) + d(2)

2 (λ) = 0,

(12)
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and
e−λb(1)1 (λ) + eλb(1)2 (λ) − e−λb(1)3 (λ) − eλb(1)4 (λ) = f1(λ),

e−λb(1)1 (λ) − eλb(1)2 (λ) +
(

1
λ
− 1

)
e−λb(1)3 (λ) +

(
1
λ

+ 1
)
eλb(1)4 (λ)

= −if2(λ) +
k

(1)
0
λ

+ e−λd(1)
1 (λ) − eλd(1)

2 (λ),

eλb(2)1 (λ) + e−λb(2)2 (λ) + eλb(2)3 (λ) + e−λb(2)4 (λ) = g1(λ),

eλb(2)1 (λ) − e−λb(2)2 (λ) +
(

1
λ

+ 1
)
eλb(2)3 (λ) +

(
1
λ
− 1

)
e−λb(2)4 (λ)

= −ig2(λ) +
k(2)
0
λ

+ eλd(2)
1 (λ) − e−λd(2)

2 (λ),

b(1)1 (λ) + b(1)2 (λ) − b(2)1 (λ) − b(2)2 (λ) = 0, (13)

b(1)1 (λ) − b(1)2 (λ) +
1
λ
b(1)3 (λ) +

1
λ
b(1)4 (λ) − b(2)1 (λ) + b(2)2 (λ)

− 1
λ
b(2)3 (λ) − 1

λ
b(2)4 (λ) =

k(1)
0
λ

− k(2)
0
λ

+ d(1)
1 (λ) − d(1)

2 (λ) − d(2)
1 (λ) + d(2)

2 (λ),

λ(1 + ν1)
E1

b(1)1 +
λ(1 + ν1)

E1
b(1)2 +

2
E1
b(1)3 (λ) − 2

E1
b(1)4 (λ) − λ(1 + ν2)

E2
b(2)1

−λ(1 + ν2)
E2

b(2)2 − 2
E2

b(2)3 (λ) +
2
E2
b(2)4 (λ) =

2λ
E1
d(1)
1 +

2λ
E1
d(1)
2 − 2λ

E2
d(2)
1 − 2λ

E2
d(2)
2 = 0,

λ(1 + ν1)
E1

b(1)1 − λ(1 + ν1)
E1

b(1)2 +
ν1 − 1
E1

b(1)3 (λ) +
ν1 − 1
E1

b(1)4 (λ)

−λ(1 + ν2)
E2

b(2)1 +
λ(1 + ν2)

E2
b(2)2 − (ν2 − 1)

E2
b(2)3 (λ) − (ν2 − 1)

E2
b(2)4 (λ)

=
2k(1)

0 (1 + ν1)
E1

− 2k(2)
0 (1 + ν2)
E2

+
2λν1
E1

d(1)
1 − 2λν1

E1
d(1)
2 − 2λν2

E2
d(2)
1 +

2λν2
E2

d(2)
2 .

The determinant of each of the two systems is nonzero for all λ �= 0. Thus, we have

Theorem. Suppose that the functions Fj and Gj , j = 1, 2, 3, belong to �W ,
i.e., have the form

Fj =
∑

λ�=0

fj(λ)eiλx, Gj =
∑

λ�=0

gj(λ)eiλx,

where the set {λ} is separated from zero. Then, in the domain consisting of the
two strips 0 ≤ y ≤ 1, −1 ≤ y ≤ 0, −∞ < x < +∞, the boundary value problem
(3)–(7) has a unique solution, which is represented by series (8), where A(m)

λ (y),
B(m)

λ (y), C(m)
λ (y), D(m)

λ (y) are found from (10) and the coefficients b(m)
1 (λ), b(m)

2 (λ),
b(m)
3 (λ), b(m)

4 (λ), d(m)
1 (λ), and d(m)

2 (λ), m = 1, 2, are found from (12), (13). All series
converge absolutely and uniformly over x provided that the series

∑ 1
|λ| converges.
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SOLVABILITY OF AN INVERSE COEFFICIENT

PROBLEM FOR A NONCLASSICAL

EQUATION OF THIRD ORDER

N. N. Nikolaev and S. V. Popov

Abstract. An inverse problem of recovering time-dependent external sources together
with a solution with point overdetermination conditions is considered for a third order
equation and densities of one or two sources are recovered. Existence and uniqueness of
solutions to a coefficient inverse problem are proven.

Keywords: coefficient inverse problem, third order equation, overdetermination con-
dition, existence of a solution, uniqueness, Sobolev space, method of continuation in
a parameter, regularization, a priori estimate

1. Introduction

The problems of recovering coefficients of partial differential equations and sys-
tems with given additional information about a solution are of great practical im-
portance [1–3]. Note that the inverse problems for hyperbolic equations often are
regarded as ill-posed problems of mathematical physics whose theory was founded
in articles by A. N. Tikhonov [4–6], V. K. Ivanov [7], and M. M. Lavrent′ev [8, 9].

The problems of recovering densities of external sources often arise in the theory
of inverse problems of heat and mass transfer. It is often the case when the unknown
right-hand side depends on time [13] and inverse problems are stated as control
problems [14]. The articles [15, 16] are devoted to the study of inverse problems for
higher order parabolic equations. Observe that direct spatially nonlocal problems
for third order equations are well studied (see, for instance, [17–19]) in contrast to
inverse problems for equations of this type. The unknown parameter depending on
time is examined in [20, 21] for parabolic equations and in [22–24] for hyperbolic.

In this article we establish solvability of an inverse problem of recovering exter-
nal sources together with a solution for a third order equation in time with point
overdetermination conditions; the densities of one or two sources are recovered.

2. Statements of Inverse Boundary Value Problems

Assume that � is the interval (0, 1) of the Ox-axis and Q is the rectangle
�× (0, T ) with 0 < T < +∞.

The authors were supported by the Ministry for Education of the Russian Federation (Grant
No. 3047).

c© 2015 Nikolaev N. N. and Popov S. V.
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Boundary Value Problem 1. Find u(x, t) and q(t) satisfying

uttt + uxx + c(x, t)u = f(x, t) + q(t)h(x, t) (1)

in Q, the initial conditions

u(x, 0) = ut(x, 0) = u(x, T ) = 0, x ∈ �, (2)

the boundary conditions

ux(0, t) = 0, ux(1, t) = 0, t ∈ (0, T ), (3)

and the overdetermination conditions

u(0, t) = 0, t ∈ (0, T ). (4)

Boundary Value Problem 2. Find u(x, t), q1(t), and q2(t) satisfying the
equation

uttt + uxx + c(x, t)u = f(x, t) + q1(t)h1(x, t) + q2(t)h2(x, t), (5)

in Q, the initial conditions (2), the boundary conditions (3), and the overdetermi-
nation conditions

u(0, t) = 0, u(1, t) = 0, t ∈ (0, T ). (6)

The Fourier method is applied to study an inverse problem of recovering den-
sities of sources in the one-dimensional wave equation with constant coefficients
in [22].

3. Solvability of Boundary Value Problem 1

To simplify exposition, we put c(x, t) = c(t) and introduce the notations

f1(x, t) = f(x, t)− f(0, t)h(x, t)
h(0, t)

, h1(x, t) =
h(x, t)
h(0, t)

,

α0(t) = f1x(0, t), α1(t) = h1x(0, t), β0(t) = f1x(1, t), β1(t) = h1x(1, t).

Put
h0 = max

Q
|h1xx|. (7)

Assume that V0 = W 2,3
2,x,t(Q) is an anisotropic Sobolev space and W0 and W1

are the vector spaces

W0 = {v(x, t) : v(x, t) ∈ V0, vxxttt ∈ L2(Q)},
W1 = {v(x, t) : v(x, t) ∈W0, vx ∈W0}

endowed with the norms ‖v‖W0 = ‖v‖V0 + ‖vxxttt‖L2(Q) and ‖v‖W1 = ‖v‖W0 +
‖vx‖W0 .

Before proving solvability of Boundary Value Problem 1, we observe that v(x, t)
from V0 satisfying (2) meet the inequalities

v2(0, t) ≤ δ1

1∫

0

v2
x(x, t) dx + C1(δ1)

1∫

0

v2(x, t) dx,

v2(1, t) ≤ δ1

1∫

0

v2
x(x, t) dx + C1(δ1)

1∫

0

v2(x, t) dx;

(8)
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T∫

0

v2
t (x, t) dt ≤ δ2

T∫

0

v2
ttt(x, t) dt + C2(δ2, T )

T∫

0

v2(x, t) dt; (9)

T∫

0

v2
tt(x, t) dt ≤ δ3

T∫

0

v2
ttt(x, t) dt + C3(δ3, T )

T∫

0

v2(x, t) dt, (10)

where δ1, δ2, and δ3 are arbitrary positive numbers and C1, C2, and C3 are calculated
through δ1, δ2, δ3, and T .

Theorem 1. Assume that

c(t) ∈ C1[0, T ], −c(t) ≥ c0 � 0 for t ∈ [0, T ], (11)

h(x, t) ∈ C3(Q), h0 <
1

2T
, h(0, t) 	= 0, α2

1(t) + β2
1(t) ≤ 1

2
for t ∈ [0, T ],

(12)

α1(t)ξ2
1 − β1(t)ξ1ξ2 +

1
8
ξ2
2 ≥ 0 for t ∈ [0, T ], (ξ1, ξ2) ∈ R2, (13)

f(x, t) ∈W 3
2 (Q), fxxttt(x, t) ∈ L2(Q), (14)

fx(0, 0) = hx(0, 0) = fx(1, 0) = hx(1, 0) = 0,
fx(0, T ) = hx(0, T ) = fx(1, T ) = hx(1, T ) = 0,
fxt(0, 0) = hxt(0, 0) = fxt(1, 0) = hxt(1, 0) = 0.

(15)

Then there exists a regular solution to (1)–(4) such that u(x, t) and uxx(x, t) belong
to W 2,3

2,x,t(Q) and q(t) ∈ L2(0, T ).

Proof. Consider the auxiliary boundary value problem: Find a solution u(x, t)
to

uttt + uxx + c(t)u = f1xx(x, t) + λh1xx(x, t)u(0, t) (16)

in Q such that the nonlocal conditions

ux(0, t) = α1(t)u(0, t) + α0(t), 0 < t < T,

ux(1, t) = β1(t)u(0, t) + β0(t), 0 < t < T,
(17)

and the initial conditions

u(x, 0) = ut(x, 0) = u(x, T ) = 0, x ∈ �, (18)

hold, where λ is some real parameter to be defined below.
Note that spatially nonlocal boundary value problems of the form (16)–(18)

for nonloaded equations (16) (without the factors h1xx(x, t)u(0, t)), are considered
in [25, 26].

Given (x, t) ∈ Q, put

γ(x, t) =
x2

2
[β0(t)− α0(t)] + xα0(t), v(x, t) = u(x, t)− γ(x, t).

In this case, instead of (16)–(18) we can consider the boundary value problem: Find
a solution v(x, t) to

vttt + vxx + c(t)v = f2(x, t) + λh1xx(x, t)v(0, t) (19)
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in Q such that
vx(0, t) = α1(t)v(0, t), 0 < t < T,

vx(1, t) = β1(t)v(0, t), 0 < t < T,
(20)

v(x, 0) = vt(x, 0) = v(x, T ) = 0, x ∈ �. (21)

where

f2(x, t) = f1xx(x, t) + B0(x, t), B0(x, t) = −γttt(x, t)− γxx(x, t)− c(t)γ(x, t).

Without loss of generality, we can assume that

β0(0) = β′0(0) = 0, α0(0) = α′0(0) = 0, α0(T ) = β0(T ) = 0.

These equalities are fulfilled, for example, if (15) holds.
Given (x, t) ∈ Q, we assign

δ(x, t, λ) =
λx2

2
[β1(t)− α1(t)] + λxα1(t), w(x, t) = v(x, t) − δ(x, t, λ)v(0, t).

The dependence of w(x, t) on λ is omitted for simplicity.
Taking x = 0 and x = 1 in the equality defining w(x, t), we find that w(0, t)

and w(1, t) can be calculated trough v(0, t) and v(1, t) in accord with the formulas

w(0, t) = v(0, t), w(1, t) = −δ(1, t, λ)v(0, t) + v(1, t).

We have
v(x, t) = w(x, t) + δ(x, t, λ)w(0, t).

Let v(x, t) be a solution to (19). In this case w(x, t) satisfies the equality

wttt + wxx + c(t)w = f2(x, t) + 	(x, t, λ, w(t)),

where
w(t) = (wttt(0, t), wtt(0, t), wt(0, t), w(0, t)),

	(x, t, λ, w(t)) = B1(x, t, λ)wttt(0, t) + B2(x, t, λ)wtt(0, t)
+B3(x, t, λ)wt(0, t) + B4(x, t, λ)w(0, t),

B1(x, t, λ) = −δ(x, t, λ), B2(x, t, λ) = −3δt(x, t, λ), B3(x, t, λ) = −3δtt(x, t, λ),

B4(x, t, λ) = λh1xx(x, t) − δttt(x, t, λ) − δxx(x, t, λ) − c(t)δ(x, t, λ).

Consider the auxiliary boundary value problem : Find a solution w(x, t) to

wttt + wxx + c(t)w = f2(x, t) + 	(x, t, λ, w(t)) (22)

in the rectangle Q such that

wx(0, t) = wx(1, t) = 0, t ∈ (0, T ),
w(x, 0) = wt(x, 0) = w(x, T ) = 0, x ∈ �.

(23)

Prove that this problem is solvable in V0. To this end, we employ the methods
of continuation in a parameter and regularization.

Let ε be a positive number; without loss of generality we can assume that
0 < ε < 1. Examine the new boundary value problem: Find a solution w(x, t) to

Lε(λ)w ≡ wttt + wxx + c(t)w − εwxxttt = f2(x, t) + 	(x, t, λ, w(t)) (24)

in Q such that (23) hold.
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Demonstrate that the boundary value problem (24), (23) for a fixed parameter
ε > 0 is solvable in W1 for every f2(x, t) ∈ L2(Q) such that f2x(x, t) ∈ L2(Q).

In accord with the method of continuation in a parameter [27], for the bound-
ary value problem (24), (23) to be solvable in the space W1 for all λ ∈ [0, 1] and
every f(x, t) from W 1,0

2,x,t(Q), it is sufficient to establish
1) the continuity of the family of operators {Lε(λ)} in λ;
2) solvability of the boundary value problem (24), (23) for λ = 0;
3) an a priori estimate in W0 uniform in λ for solutions v(x, t) to (24), (23).
The continuity in λ is evident of the family {Lε(λ)} of operators. For λ = 0 and

a fixed number ε, the boundary value problem (24), (23) is solvable in W1 (see [28])
under the conditions of Theorem 1. Justify an a priori estimate in the space W1
uniform in λ for all solutions w(x, t) to (24), (23).

Let w(x, t) be a solution to (24), (23) from W1. Put v(x, t) = w(x, t) +
δ(x, t, λ)w(0, t). The inequality

T∫

0

v2(0, t) dt ≤
T∫

0

1∫

0

v2
x(x, t) dxdt + 2

T∫

0

1∫

0

v2(x, t) dxdt, (25)

easily implies that v(x, t) belongs to W1 too and is a solution to the boundary value
problem

Lε(λ)v ≡ vttt + vxx + c(t)v − εvxxttt = f2(x, t) + λh1xx(x, t)v(0, t), (26)

vx(0, t) = λα1(t)v(0, t), vx(1, t) = λβ1(t)v(0, t), (27)

v(x, 0) = vt(x, 0) = v(x, T ) = 0. (28)

Consider the equality

T∫

0

1∫

0

Lε(λ)v · [−v + vttt](λ0 − t) dxdt

=
T∫

0

1∫

0

[f2(x, t) + λh1xxv(0, t)][−v + vttt](λ0 − t) dxdt. (29)

Integrating by parts and accounting for the above initial-boundary conditions
(27), (28) for v(x, t), we arrive at the equality

T∫

0

1∫

0

[
v2
x − c(t)v2](λ0 − t) dxdt +

3
2

T∫

0

1∫

0

v2
t dxdt +

1
2

1∫

0

v2
t (x, T )(λ0 − T ) dx

+
3(1 + ε)

2

T∫

0

1∫

0

v2
xt dxdt +

1 + ε

2

1∫

0

v2
xt(x, T )(λ0 − T ) dx

+
T∫

0

1∫

0

v2
ttt(λ0 − t) dxdt + ε

T∫

0

1∫

0

v2
xttt(λ0 − t) dxdt

+ελ

T∫

0

[
α1(t)v2

ttt(0, t)− β1(t)vttt(0, t)vttt(1, t)
]
(λ0 − t) dt
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= −
T∫

0

1∫

0

c(t)vvttt(λ0 − t) dxdt

+ελ

T∫

0

{[3β′1(t)vtt(0, t) + 3β′′1 (t)vt(0, t) + β′′′1 (t)v(0, t)]vttt(1, t)

−[3α′1(t)vtt(0, t) + 3α′′1 (t)vt(0, t) + α′′′1 (t)v(0, t)]vttt(0, t)}(λ0 − t) dt

+ε

T∫

0

{[(vxttvt)(1, t)− (vxttvt)(0, t)](λ0 − t) + (vxtvt)(1, t)− (vxtvt)(0, t)} dt

+
T∫

0

{[(vxv + vxtvtt)(1, t)− (vxv + vxtvtt)(0, t)](λ0 − t) + vxtvt(1, t)− vxtvt(0, t)} dt

+
T∫

0

1∫

0

[f2(x, t) + λh1xx(x, t)v(0, t)](−v + vttt)(λ0 − t) dxdt.

In view of (12), (13) for λ0 = 2T , the Young inequality and (8)–(10) yield

T∫

0

1∫

0

[
v2
x − c(t)v2] dxdt +

T∫

0

1∫

0

v2
t dxdt +

1∫

0

v2
t (x, T ) dx

+(1 + ε)
[ T∫

0

1∫

0

v2
xt dxdt +

1∫

0

v2
xt(x, T ) dx

]
+

T∫

0

1∫

0

v2
ttt dxdt + ε

T∫

0

1∫

0

v2
xttt dxdt

≤ ελT

4

T∫

0

v2(1, t) dt + 2Tδ0

T∫

0

1∫

0

(v2 + v2
ttt) dxdt +

T

δ0

T∫

0

1∫

0

f2
2 dxdt

+2Th0

[ T∫

0

v2(0, t) dt +
1
2

T∫

0

1∫

0

(v2 + v2
ttt) dxdt

]
.

Hence,

T∫

0

1∫

0

[
v2
x − c(t)v2] dxdt +

T∫

0

1∫

0

v2
t dxdt

1∫

0

v2
t (x, T ) dx

+(1 + ε)
[ T∫

0

1∫

0

v2
xt dxdt +

1∫

0

v2
xt(x, T ) dx

]

+
T∫

0

1∫

0

v2
ttt dxdt + ε

T∫

0

1∫

0

v2
xttt dxdt

≤ 2Tδ0

T∫

0

1∫

0

(v2 + v2
ttt) dxdt +

T

δ0

T∫

0

1∫

0

f2
2 dxdt
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+2T
(

1
8

+ h0

)[
δ1

T∫

0

1∫

0

v2
x dxdt + C(δ1)

T∫

0

1∫

0

v2 dxdt

]

+Th0

T∫

0

1∫

0

(
v2 + v2

ttt

)
dxdt, (30)

where δ1 is an arbitrary positive number satisfying the inequality

1− 2T
(

1
8

+ h0

)
δ1 > 0.

For a fixed δ1 and δ0 = 1
4T , in view of the conditions of Theorem (11) there exists

a sufficiently large −c0 > 0 such that

−c0 − 2Tδ0 − T

(
1
4

+ 2h0

)
C(δ1)− Th0 > 0.

Therefore, (30) implies that

T∫

0

1∫

0

[
v2
x − c(t)v2] dxdt +

T∫

0

1∫

0

v2
t dxdt +

1∫

0

v2
t (x, T ) dx+

+(1 + ε)
[ T∫

0

1∫

0

v2
xt dxdt +

1∫

0

v2
xt(x, T ) dx

]
+

+
T∫

0

1∫

0

v2
ttt dxdt + ε

T∫

0

1∫

0

v2
xttt dxdt ≤M1

T∫

0

1∫

0

f2
2 dxdt, (31)

with a constant M1 defined by c0, f(x, t), and h(x, t).
Consider the equality

T∫

0

Lε(λ)v ·
[
−vxxttt +

(
x− 1

2

)
vxttt + vxx + vttt

]
dxdt

=
T∫

0

1∫

0

F ·
[
−vxxttt +

(
x− 1

2

)
vxttt + vxx + vttt

]
dxdt,

F = f2(x, t) + λh1xx(x, t)v(0, t).

Integrating by parts and (27), (28) for v(x, t) ensures the equality

(
1 +

3ε
2

) T∫

0

1∫

0

v2
xttt dxdt +

T∫

0

1∫

0

[
v2
xx +

1
2
v2
ttt

]
dxdt +

1∫

0

v2
xt(x, T ) dx

+ε

T∫

0

1∫

0

v2
xxttt dxdt +

1 + ε

2

1∫

0

v2
xxt(x, T ) dx
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+
T∫

0

{[
λ(1 + ε)α1(t) +

1
4
− λε

4
(α2

1(t) + β2
1(t))

]
v2
ttt(0, t)

−λ(1 + ε)β1(t)vttt(0, t)vttt(1, t) +
1
4
v2
ttt(1, t)

}
dt

=
λε

4

T∫

0

[((α′′′1 (t))2 + (β′′′1 (t))2)v2(0, t) + 9((α′′1 (t))2 + (β′′1 (t))2)v2
t (0, t)

+9((α′1(t))
2 + (β′1(t))

2)v2
tt(0, t) + 6(α′′′1 (t)α′′1 (t) + β′′′1 (t)β′′1 (t))v(0, t)vt(0, t)

+6(α′′′1 (t)α′1(t) + β′′′1 (t)β′1(t))v(0, t)vtt(0, t) + 2(α′′′1 (t)α1(t) + β′′′1 (t)β1(t))v(0, t)vttt(0, t)

+18(α′′1(t)α′1(t) + β′′1 (t)β′1(t))vt(0, t)vtt(0, t) + 6(α′′1(t)α1(t) + β′′1 (t)β1(t))vt(0, t)vttt(0, t)

+6(α′1(t)α1(t) + β′1(t)β1(t))vtt(0, t)vttt(0, t)] dt

+
T∫

0

1∫

0

[
−c(t)vxvxttt −

(
x− 1

2

)
vxxvxttt −

(
x− 1

2

)
c(t)vvxttt

−c(t)vvxx − c(t)vvttt + Fxvxttt +
(
x− 1

2

)
Fvxttt + Fvxx + Fvttt

]
dxdt

−λ(1 + ε)
T∫

0

{[3α′1(t)vtt(0, t) + 3α′′1(t)vt(0, t) + α′′′1 (t)v(0, t)]vttt(0, t)

−[3β′1(t)vtt(0, t) + 3β′′1 (t)vt(0, t) + β′′′1 (t)v(0, t)]vttt(1, t)}dt

+
T∫

0

[c(t)v(1, t)vxttt(1, t)− c(t)v(0, t)vxttt(0, t)− 2vxt(0, t)vtt(0, t)

+2vxt(1, t)vtt(1, t) + F (0, t)vxttt(0, t)− F (1, t)vxttt(1, t)] dt.

Using (11)–(14), replacing vxttt(0, t) and vxttt(1, t) from (27) and estimating the
summands on the right-hand side with the help of the Young inequality, (8) and (31),
we obtain the a priori estimate

(1 + ε)
T∫

0

1∫

0

v2
xttt dxdt +

T∫

0

1∫

0

[
v2
xx + v2

ttt

]
dxdt +

1∫

0

v2
xt(x, T ) dx

+ε

T∫

0

1∫

0

v2
xxttt dxdt + (1 + ε)

1∫

0

v2
xxt(x, T ) dx ≤M2

T∫

0

1∫

0

[
f2
2 + f2

2x
]
dxdt, (32)

with the constant M2 defined by c0, f(x, t), and h(x, t).
Consider the equality

T∫

0

Lε(λ)vxvxxx dxdt =
T∫

0

1∫

0

[f2x(x, t) + λh1xxx(x, t)v(0, t)]vxxx dxdt.

Integrating by parts and using the Young inequality, (31), (32), and the initial
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conditions (28) for v(x, t), we arrive at the inequality
T∫

0

1∫

0

v2
xxx dxdt + ε

1∫

0

v2
xxxt(x, T ) dxdt ≤M3

T∫

0

1∫

0

f2
2x dxdt (33)

with constant M3 defined by c0, f(x, t), and hx, t).
Estimates (31)–(33) and equation (26) yield the estimate

‖v‖W1 ≤M0 (34)

uniform in λ.
These estimates allows us to apply the method of continuation in a parameter.

Hence, under the conditions of the theorem, the boundary value problem (26)–
(28) has a solution v(x, t) = vε(x, t) from W1 for all values of λ including λ = 1.
Demonstrate that the family of solutions {vε(x, t)} satisfies an a priori estimate
uniform in ε which allows us to pass to the limit as ε→ 0.

The solutions {vε(x, t)} to (26)–(28) satisfy (31)–(33). Choose a subsequence
{εn} such that εn > 0, εn → 0 as n → ∞. By the theorem on weak closedness of
a bounded set in L2(Q), there exist a sequence {vm(x, t)} and a function v(x, t) such
that

vm(x, t)→ v(x, t) weakly in W 2,3
2,x,t(Q),

vmx(x, t)→ vx(x, t) weakly in W 2,3
2,x,t(Q),

εmwmxxttt(x, t)→ 0 weakly in L2(Q)
as m→∞.

It is obvious that the limit function v(x, t) satisfies (19). Put w(x, t) = v(x, t)−
δ(x, t, 1)v(0, t). The function w(x, t) belongs to V0 and it is a solution to (19)–(21).

It remains to show that a solution u(x, t), q(t) to the boundary value problem
(1)–(4) is determined by v(x, t). Indeed,

uxx(x, t) = v(x, t), (35)

ux(0, t) = ux(1, t) = 0. (36)
The function u(x, t) can be determined from these equalities. Let

w(x, t) = uttt + uxx + c(t)u− f1(x, t) − h1(x, t)v(0, t). (37)

In this case (16)–(18) imply that w(x, t) satisfies the equalities

wxx(x, t) = 0, wx(0, t) = wx(1, t) = 0, (38)

and so w(x, t) ≡ 0 for all t ∈ [0, T ].
Thus, u(x, t) is a solution to the equation

uttt + uxx + c(t)u − f1(x, t)− h1(x, t)v(0, t) = 0. (39)

Taking x = 0 in (39), we conclude that

uttt(0, t) + uxx(0, t) + c(t)u(0, t)− f1(0, t)− h1(0, t)v(0, t) = 0, (40)

and so we arrive at the boundary value problem

uttt(0, t) + c(t)u(0, t) = 0, (41)
u(0, 0) = ut(0, 0) = u(0, T ) = 0, (42)

whose only solution is zero; i.e., u(0, t) ≡ 0.
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In accord with the condition u(0, t) = 0 and (39), we derive that uxx(0, t) =
v(0, t); i.e., u(x, t) meets (2)–(4). Hence, our functions

u(x, t), q(t) =
uxx(0, t)− f(0, t)

h(0, t)

belong to the required classes, satisfy (1) and define a solution to Inverse Boundary
Value Problem 1. The theorem is proven.

4. Solvability of Boundary Value Problem 2

Introduce the notations

�(t) = h1(0, t)h2(1, t)− h2(0, t)h1(1, t),

f̃1(x, t) =
h1(x, t)
�(t)

(h2(0, t)f(1, t)− h2(1, t)f(0, t))

−h2(x, t)
�(t)

(h2(0, t)f(1, t)− h2(1, t)f(0, t)) + f(x, t),

α0(t) = f̃1x(0, t), β0(t) = f̃1x(1, t),

α1(t) =
1
�(t)

(h2(1, t)h1x(0, t)− h1(1, t)h2x(0, t)),

α2(t) =
1
�(t)

(h1(0, t)h2x(0, t)− h2(0, t)h1x(0, t)),

β1(t) =
1
�(t)

(h2(1, t)h1x(1, t)− h1(1, t)h2x(1, t)),

β2(t) =
1
�(t)

(h1(0, t)h2x(1, t)− h2(0, t)h1x(1, t)),

α(x, t) =
1
�(t)

(h2(1, t)h1xx(x, t)− h1(1, t)h2xx(x, t)),

β(x, t) =
1
�(t)

(h1(0, t)h2xx(x, t)− h2(0, t)h1xx(0, t).

We assume that
f̃1x(0, t) + f̃1x(1, t) = 0 for t ∈ [0, T ],

f̃1x(0, 0) = f̃1xt(0, 0) = f̃1x(0, T ) = 0.
(43)

Theorem 2. Assume that

c(t) ∈ C1[0, T ], −c(t) ≥ c0 � 0 for t ∈ [0, T ],

h(x, t) ∈ C3(Q), h0 <
1

2T
, �(t) 	= 0,

(44)

α2
1(t) + β2

1(t) <
1
2
,

1
2

+ 2(α2(t)β1(t)− α1(t)β2(t)) ≥ α2
1(t) + β2

1(t) + α2
2(t) + β2

2(t) for t ∈ [0, T ],
(45)

α1(t)ξ2
1 + [−β1(t) + α2(t)] ξ1ξ2 − β2(t)ξ2

2 ≥ 0 for t ∈ [0, T ], (ξ1, ξ2) ∈ R2, (46)

f(x, t) ∈W 3
2 (Q), fxxttt(x, t) ∈ L2(Q). (47)
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Then there exists a regular solution to (5), (2), (3), (6) such that u(x, t) and uxx(x, t)
belong to W 2,3

2,x,t(Q) and q1(t), q2(t) ∈ L2(0, T ).
Proof. Consider the auxiliary boundary value problem: Find a solution u(x, t)

to
uttt + uxx + c(t)u = f̃1xx(x, t) + λ[α(x, t)u(0, t) + β(x, t)u(1, t)] (48)

in Q such that

ux(0, t) = α1(t)u(0, t) + α2(t)u(1, t) + α0(t), 0 < t < T,

ux(1, t) = β1(t)u(0, t) + β2(t)u(1, t) + β0(t), 0 < t < T,
(49)

and
u(x, 0) = ut(x, 0) = u(x, T ) = 0, x ∈ �. (50)

As in Section 3, instead of (48)–(50) we consider the boundary value problem: Find
a solution v(x, t) to the equation

vttt + vxx + c(t)v = f2(x, t) + λ[α(x, t)v(0, t) + β(x, t)v(1, t)] (51)

in Q such that

vx(0, t) = α1(t)v(0, t) + α2(t)v(1, t), 0 < t < T,

vx(1, t) = β1(t)v(0, t) + β2(t)v(1, t), 0 < t < T,
(52)

v(x, 0) = vt(x, 0) = v(x, T ) = 0, x ∈ �. (53)

where
f2(x, t) = f̃1xx(x, t) + B0(x, t),

B0(x, t) =
1
2
λβ(x, t)(α0(t) + β0(t))− γttt(x, t) − γxx(x, t) − c(t)γ(x, t).

As in Section 3, without loss of generality we can consider the homogeneous initial
conditions (53). Given (x, t) ∈ Q and λ ∈ [0, 1], we put

γ1(x, t, λ) =
λx2

2
[β1(t)− α1(t)] + λxα1(t), δ1(x, t, λ) =

λx2

2
[β2(t)− α2(t)] + λxα2(t),

w(x, t) = v(x, t)− γ1(x, t, λ)v(0, t) − δ1(x, t, λ)v(1, t),

γ11(x, t, λ) = γ1(x, t, λ) +
δ1(x, t, λ)γ1(1, t, λ)

1− δ1(1, t, λ)
, δ11(x, t, λ) =

δ1(x, t, λ)
1− δ1(1, t, λ)

,

v(x, t) = w(x, t) + γ11(x, t, λ)w(0, t) + δ11(x, t, λ)w(1, t).

Let v(x, t) be a solution to (51). In this case w(x, t) satisfies

wttt + wxx + c(t)w = f2(x, t) + 	(x, t, λ, w(t)),

where

w(t) = (wttt(0, t), wttt(1, t), wtt(0, t), wtt(1, t), wt(0, t), wt(1, t), w(0, t), w(1, t)),

	(x, t, λ, w(t)) = A1(x, t, λ)wttt(0, t) + A2(x, t, λ)wttt(1, t) + A3(x, t, λ)wtt(0, t)
+A4(x, t, λ)wtt(1, t) + A5(x, t, λ)wt(0, t) + A6(x, t, λ)wt(1, t)

+A7(x, t, λ)w(0, t) + A8(x, t, λ)w(1, t),

A1(x, t, λ) = −γ11(x, t, λ), A2(x, t, λ) = −δ11(x, t, λ),

A3(x, t, λ) = −3γ11 t(x, t, λ), A4(x, t, λ) = −3δ11 t(x, t, λ),
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A5(x, t, λ) = −3γ11 tt(x, t, λ), A6(x, t, λ) = −3δ11 tt(x, t, λ),

A7(x, t, λ) = λα− γ11 ttt(x, t, λ) − γ11xx(x, t, λ)− c(t)γ11(x, t, λ),

A8(x, t, λ) = λβ − δ11 ttt(x, t, λ) − δ11xx(x, t, λ) − c(t)δ11(x, t, λ).

Consider the auxiliary boundary value problem: Find a solution w(x, t) to

wttt + wxx + c(t)w = f2(x, t) + 	(x, t, λ, w(t)) (54)

in Q such that
wx(0, t) = wx(1, t) = 0, t ∈ (0, T ),

w(x, 0) = wt(x, 0) = w(x, T ) = 0, x ∈ �.
(55)

As in Section 3, this problem is solvable in V0. To justify it, we need to utilize
the methods of regularization and continuation in a parameter. The function v(x, t)
constructed allows us to define a solution u(x, t), q(t) to the boundary value problem
(5), (2), (3), (6). The theorem is proven.

5. Conclusions

1. Conditions (12) are some smallness conditions for Inverse Boundary Value
Problem 1. Obviously, the set of data f(x, t) and h(x, t) satisfying this condition is
not empty. Similarly, the smallness conditions (44) and (45) for Inverse Problem 2
also make some sense.

2. Note that the fulfilment of (45) implies the nonnegative definiteness of the
quadratic form

[
1
2
− α2

1(t)− β2
1(t)
]
ξ2
1 − 2 [α1(t)α2(t) + β1(t)β2(t)] ξ1ξ2

+
[
1
2
− α2

2(t)− β2
2(t)
]
ξ2
2 ≥ 0

for t ∈ [0, T ] and (ξ1, ξ2) ∈ R2.
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COEFFICIENT INVERSE PROBLEMS FOR HIGHER

ORDER QUASIHYPERBOLIC EQUATIONS

WITH INTEGRAL OVERDETERMINATION
S. S. Pavlov

Abstract. We study a linear coefficient inverse problem for higher order quasihyperbolic
equations. Solvability is established of an inverse problem of determining a solution and
an external force for higher order equations in time with an integral overdetermination
condition. Existence and uniqueness theorems are proven for solutions to these coefficient
inverse problems.

Keywords: inverse problem, integral ovedetermination condition, method of continua-
tion in a parameter, a priori estimate, existence, uniqueness

Introduction

We study the linear coefficient inverse problem for quasihyperbolic equations
which is reduced to finding functions u(x, t) and q(t) in the equation

(−1)m−1D2m
t u−�u+ c(x, t)u = f(x, t) + q(t)h(x, t)

(
Dk

t =
∂k

∂tk

)
.

For the first time, some well-posed boundary value problem for quasihyperbolic
equations was stated by V. N. Vragov in [1]. A series of results on solvability of
boundary value problems and properties of solutions to these equations are exposed
in the articles by I. E. Egorov V. E. Fedorov [2, 3], A. N. Terekhov [4], A. I. Kozhanov
and E. F. Sharin [5]. Inverse problems for quasihyperbolic equations were not con-
sidered by now.

Linear and nonlinear inverse problems for hyperbolic equations in various set-
tings are studied in the articles by M. M. Lavrent′ev [6], V. G. Romanov [7], Yu. E.
Anikonov [8–11], Yu. Ya. Belov [12, 13], B. A. Bubnov [14, 15], S. I. Kabanikhin [16],
A. I. Prilepko [17], etc. The problems of determining coefficients of hyperbolic equa-
tions on some additional information about a solution are of great importance for
practice [18–20].

The articles [21, 22] are devoted to the study of an inverse problem of recover-
ing an external force for a hyperbolic equation with an integral overdetermination
condition. Similar inverse problems for hyperbolic equations were studied earlier
in [23–27]. Solvability of an inverse problem for a hyperbolic equation with several
unknown sources is studied in the articles by I. R. Valitov and A. I. Kozhanov [25].

1. Statement of the Problem

Let � be a bounded domain in R with boundary � , Q = �× (0, T ) is a cylinder
with the lateral boundary S = � × (0, T ), f(x, t), c(x, t), h(x, t), and K(x, t) are
given functions, and m is a positive integer.

c© 2015 Pavlov S. S.
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Inverse problem I. Find u(x, t) and q(t) satisfying the equation

(−1)m−1D2m
t u−�u+ c(x, t)u = f(x, t) + q(t)h(x, t), (1)

in Q, the boundary conditions

Di
tu(x, 0) = 0, i = 0,m,

Dj
tu(x, T ) = 0, j = 1,m− 1, x ∈ �, (2)

u(x, t)|S = 0, (3)

and the overdetermination conditions∫
�

K(x, t)u(x, t) dx = 0 for t ∈ (0, T ). (4)

Inverse Problem II. Find u(x, t) and q(t) satisfying (1) in Q, the boundary
conditions (2), the ovedetermination conditions (4), and such that

∂u(x, t)
∂ν

∣∣∣∣
S

= 0, (5)

(ν is the inner normal to � ).
Without loss of generality, we can consider the case of m = 2. In the case of

m > 2, all arguments are quite similar to this case but more cumbersome.
Introduce the notations

h0(t) =
∫
�

K(x, t)h(x, t) dx, α0(t) =
1

h0(t)

∫
�

K(x, t)f(x, t) dx,

f1(x, t) = f(x, t)− α0(t)h(x, t), H1 = max
Q
|h(x, t)|,

c1 = max
i=1,...,n

max
Q
|cxi(x, t)|, H2 = max

i=1,...,n
max
Q
|hxi(x, t)|,

M1 = max
t∈[0,T ]

(
3

h2
0(t)

∫
Q

(∫
�

(K2(y, t) dy
)
dxdt

)
,

M2 = max
t∈[0,T ]

(
3

h2
0(t)

∫
Q

(∫
�

(K(y, t)c(y, t))2 dy
)
dxdt

)
,

M3 = max
t∈[0,T ]

(
3

h2
0(t)

∫
Q

(∫
�

K2(y, t) dy
)
dxdt

)
,

M0 = max{M1,M2,M3}.
Denote by V the anisotropic space of functions having generalized derivatives

in space and time variables up to the second order and forth order, respectively. The
space V is endowed with the natural norm

‖u‖V =
(∫
Q

[
u2 +

n∑
i,j=1

u2
xixj

+
(
D4

tu
)2]

dxdt

) 1
2

.
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Theorem 1. Assume that

h(x, t) ∈ C1(Q), c(x, t) ∈ C4(Q), K(x, t) ∈ C4(Q),

f(x, t), fxi(x, t) ∈ L2(Q), i = 1, . . . , n,

h0(t) �= 0, t ∈ [0, T ], c(x, T ) ≥ 0 for x ∈ �,
f(x, t)|S = h(x, t)|S = 0

and there exists λ0: λ0 > T , [(λ0 − t)c(x, t)]t ≤ 0 for (x, t) ∈ Q,

M0

(
λ2

0T
2
(
H2

1 +
H2

2

2(1− λ2
0c

2
1T

6)

)
+ 2H2

1

)
< 1.

Then there exist u(x, t) ∈ V and q(t) ∈ L2(0, T ) that solve the inverse problem
(1)–(4).

Proof. We start with some auxiliary constructions. Multiply (1) by K(x, t)
and integrate the result over �. We can calculate q(t) from the equality obtained as
follows:

q(t) = Z(t, u)− α0(t),

Z(t, u) =
1

h0(t)

[
−
∫
�

K(x, t)utttt(x, t) dx

−
∫
�

K(x, t)�u(x, t) dx +
∫
�

K(x, t)c(x, t)u(x, t) dx
]
.

Let us consider
Auxiliary Boundary Value Problem: Find a solution u(x, t) to the equation

−utttt −�u+ c(x, t)u = f1(x, t) + Z(t, u)h(x, t), (6)

in Q satisfying

u(x, 0) = ut(x, 0) = utt(x, 0) = 0, ut(x, T ) = 0, x ∈ �, (7)

u|S = 0. (8)

We will prove that this problem is solvable in V . To this end, we employ
regularization and the method of continuation in a parameter.

Let ε be a positive real number. Consider the new boundary value problem of
finding a solution u(x, t) to the equation

−utttt −�u + c(x, t)u− ε�ut = f1(x, t) + Z(t, u)h(x, t) (9)

in Q satisfying (7) and (8).
Apply the method of continuation in a parameter.
Let λ be a number in [0, 1]. Examine the following problem: Find a solu-

tion u(x, t) to

−utttt −�u+ c(x, t)u − ε�ut = f1(x, t) + λZ(t, u)h(x, t) (10)

in Q satisfying (7) and (8).
Demonstrate that if ε is a fixed number and f1(x, t) belongs to the L2(Q) space

then the boundary value problem (10ε,λ), (7), (8) is solvable in V .
In accord with the theorem on the method of continuation in a parameter [28,

Chapter 3, Section 14], the problem (10ε,λ), (7), (8) is solvable in the space V
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whenever it is solvable for λ = 0 in V and all solutions satisfy an a priori estimate
uniform (in λ ∈ [0, 1]) in the same space [3, 29].

Solvability of the boundary value problem (10ε,0), (7), (8) for a fixed ε and
f1(x, t) from L2(Q) is known [3]. Show that all solutions to the boundary value
problem (10ε,λ), (7), (8) from V satisfy the required a priori estimate.

Consider the equality∫
Q

[−utttt(x, t)−�u(x, t) + c(x, t)u(x, t) − ε�ut(x, t)]ut(x, t)(λ0 − t) dxdt

=
∫
Q

[f1(x, t) + λZ(t, u)h(x, t)]ut(x, t)(λ0 − t) dxdt, (11)

which is a consequence of (10ε,λ). We have

−
∫
�

T∫
0

utttt(x, t)ut(x, t)(λ0 − t) dxdt

=
1
2

∫
�

T∫
0

∂(u2
tt(x, t)(λ0 − t))

∂t
dxdt+

3
2

∫
�

T∫
0

u2
tt(x, t) dxdt

=
(λ0 − T )

2

∫
�

u2
tt(x, T ) dx+

3
2

∫
�

T∫
0

u2
tt(x, t) dxdt,

−
∫
�

T∫
0

�u(x, t)ut(x, t)(λ0 − t) dxdt

=
1
2

n∑
i=1

∫
�

T∫
0

∂(u2
xi

(x, t)(λ0 − t))
∂t

dxdt+
1
2

n∑
i=1

∫
�

T∫
0

u2
xi

(x, t) dxdt

=
(λ0 − T )

2

n∑
i=1

∫
�

u2
xi

(x, T ) dx+
1
2

n∑
i=1

∫
�

T∫
0

u2
xi

(x, t) dxdt,

∫
�

T∫
0

c(x, t)u(x, t)ut(x, t)(λ0 − t) dxdt =
1
2

∫
�

T∫
0

∂(u2(x, t)c(x, t)(λ0 − t))
∂t

dxdt

+
1
2

∫
�

T∫
0

(c(x, t) − ct(x, t)(λ0 − t))u2(x, t) dxdt =
(λ0 − T )

2

∫
�

u2(x, T )c(x, T ) dx

+
1
2

∫
�

T∫
0

(c(x, t)− ct(x, t)(λ0 − t))u2(x, t) dxdt,

−ε
∫
�

T∫
0

�ut(x, t)ut(x, t)(λ0 − t) dxdt = ε
n∑

i=1

∫
�

T∫
0

u2
xit(x, t)(λ0 − t) dxdt.
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Integrating by parts and using the Young inequality and (11), we can easily
derive that

3
2

∫
Q

u2
tt(x, t) dxdt +

1
2

n∑
i=1

∫
Q

u2
xi

(x, t) dxdt

+
1
2

∫
Q

(c(x, t)− ct(x, t)(λ0 − t))u2(x, t) dxdt

+ε
n∑

i=1

∫
Q

u2
xit(x, t)(λ0 − t) dxdt +

(λ0 − T )
2

∫
�

u2
tt(x, T ) dx

+
(λ0 − T )

2

n∑
i=1

∫
�

u2
xi

(x, T ) dx+
(λ0 − T )

2

∫
�

c(x, T )u2(x, T ) dx

≤ δ21 + δ22
2

∫
Q

u2
t (x, t) dxdt +

1
2δ21

∫
Q

f2
1 (x, t)(λ0 − t)2 dxdt

+
1

2δ22

∫
Q

(λ0 − t)2Z2(t, u)h2(x, t) dxdt

(here δ1 and δ2 are arbitrary positive numbers).
The inequality

∫
Q

u2
t (x, t) dxdt ≤ T 2

∫
Q

u2
tt(x, t) dxdt (12)

holds. Let δ1 = δ2 = 1
T . In view of (12) and the conditions of Theorem 1, we infer

∫
Q

u2
tt(x, t) dxdt +

n∑
i=1

∫
Q

u2
xi

(x, t) dxdt

+
∫
Q

(c(x, t) − ct(x, t)(λ0 − t))u2(x, t) dxdt

+2ελ0

n∑
i=1

∫
Q

u2
xit(x, t) dxdt + (λ0 − T )

∫
�

u2
tt(x, T ) dx

+(λ0 − T )
n∑

i=1

∫
�

u2
xi

(x, T ) dx

≤ λ2
0T

2
∫
Q

f2
1 (x, t) dxdt + λ2

0H
2
1T

2
∫
Q

Z2(t, u) dxdt. (13)

Multiply (10) by (−�ut(x, t))(λ0 − t). Integrating by parts on the left-hand
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side and applying the Young inequality on the right-hand side, we justify that

3
n∑

i=1

∫
Q

u2
xitt(x, t) dxdt +

∫
Q

[�u(x, t)]2 dxdt

+
n∑

i=1

∫
Q

u2
xi

(x, t)[c(x, t) − ct(x, t)(λ0 − t)] dxdt

+(λ0 − T )
n∑

i=1

∫
�

u2
xitt(x, T ) dx+ (λ0 − T )

n∑
i=1

∫
�

c(x, T )u2
xi

(x, T ) dx

+2ε
∫
Q

[�ut(x, t)]2(λ0 − t) dxdt

≤ δ23
∫
Q

[�ut(x, t)]2(λ0 − t) dxdt+
1
δ23

∫
Q

f2
1 (x, t)(λ0 − t) dxdt

+δ24
n∑

i=1

∫
Q

u2
xit dxdt+

1
δ24

n∑
i=1

∫
Q

h2
xi

(x, t)(λ0 − t)2Z2(t, u) dxdt

+δ25
n∑

i=1

∫
Q

(λ0 − t)2c2xi
(x, t)u2(x, t) dxdt +

1
δ25

n∑
i=1

∫
Q

u2
xit(x, t) dxdt.

Put

δ3 =
√
ε, δ4 =

√
2(1− λ2

0 c
2
1 T

6)
T

, δ5 =
√

2
2λ0c1T 2 .

Taking (12) and the conditions of Theorem 1 into account, we find that
n∑

i=1

∫
Q

u2
xitt(x, t) dxdt +

∫
Q

[�u(x, t)]2 dxdt

+
n∑

i=1

∫
Q

(c(x, t)− ct(x, t)(λ0 − t))u2
xi

(x, t) dxdt

+ε
∫
Q

[�ut(x, t)]2(λ0 − t) dxdt+ (λ0 − T )
n∑

i=1

∫
�

u2
xitt(x, T ) dx

≤ 1
2

∫
Q

u2
tt(x, t) dxdt +

1
ε

∫
Q

f2
1 (x, t)(λ0 − t) dxdt

+
λ2

0 H
2
2 T

2

2(1− λ2
0c

2
1T

6)

∫
Q

Z2(t, u) dxdt. (14)

Consider the inequality∫
Q

(−utttt(x, t) −�u(x, t) + c(x, t)u(x, t) − ε�ut(x, t))(−utttt(x, t)) dxdt

=
∫
Q

(f1(x, t) + λZ(t, u)h(x, t)) (−utttt(x, t)) dxdt. (15)
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Put δ27 = δ28 = 1
2 . Integrating by parts and involving the Young inequality and (15),

we infer

∫
Q

u2
tttt(x, t) dxdt − 2

n∑
i=1

∫
Q

u2
xitt(x, t) dxdt − 2

∫
Q

c(x, t)u2
tt(x, t) dxdt

−
∫
Q

u2(x, t)ctttt(x, t) dxdt + 4
∫
Q

u2
t (x, t)ctt(x, t) dxdt

+ε
n∑

i=1

∫
�

u2
xitt(x, T ) dx+

∫
�

u2(x, T )cttt(x, T ) dx

= −2
∫
�

ct(x, T )u(x, T )utt(x, T ) dx− 2
∫
�

c(x, T )u(x, T )uttt(x, T ) dx

≤ 2
∫
Q

f2
1 (x, t) dxdt + 2H2

1

∫
Q

Z2(t, u) dxdt. (16)

Inequalities (13), (14), and (16) yield

∫
Q

u2
tttt(x, t) dxdt +

∫
Q

[�u(x, t)]2 dxdt + ελ0

∫
Q

[�ut(x, t)]2 dxdt

+ +
n∑

i=1

∫
Q

[1 + (c(x, t)− ct(x, t)(λ0 − t))]u2
xi

(x, t) dxdt

+
∫
Q

(
1
2
− 2c(x, t)

)
u2
tt(x, t) dxdt +

∫
Q

(c(x, t)− ct(x, t)(λ0 − t)

−ctttt(x, t))u2(x, t) dxdt −
n∑

i=1

∫
Q

u2
xitt(x, t) dxdt

+2ελ0

n∑
i=1

∫
Q

u2
xit(x, t) dxdt + (λ0 − T )

n∑
i=1

∫
�

u2
xi

(x, T ) dx

+4
∫
Q

ctt(x, t)u2
t (x, t) dxdt + (ε+ (λ0 − T ))

n∑
i=1

∫
�

u2
xitt(x, T ) dx

+(λ0 − T )
∫
�

u2
tt(x, T ) dx ≤

(
λ2

0T
2 +

λ0

ε
+ 2
)∫

Q

f2
1 (x, t) dxdt

+
(
λ2

0T
2
(
H2

1 +
H2

2

2(1− λ2
0c

2
1T

6)

)
+ 2H2

1

)∫
Q

Z2(t, u) dxdt. (17)

The inequality

(a1 + · · ·+ ap)2 ≤ p
(
a2
1 + · · ·+ a2

p

)
,
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and the Hölder inequality imply that

Z2(t, u) ≤ 3
h2

0(t)

[(∫
�

K(y, t)utttt(y, t) dy
)2

+
(∫

�

K(y, t)�u(y, t) dy
)2

+
(∫

�

K(y, t)c(x, t)u(y, t) dy
)2]

.

The inequalities

3
h2

0(t)

(∫
Q

K(y, t)utttt(y, t) dy
)2

≤ 3
h2

0(t)

∫
Q

(∫
�

K2(y, t) dy
)(∫

�

u2
tttt(y, t) dy

)
dxdt

≤ 3
h2

0(t)

∫
Q

(∫
�

(K2(y, t) dy
)
dxdt

∫
Q

(∫
�

u2
tttt(y, t) dy

)
dxdt

≤ max
T

(
3

h2
0(t)

∫
Q

(∫
�

(K2(y, t) dy
)
dxdt

)∫
Q

u2
tttt(x, t) dxdt

≤M1

∫
Q

u2
tttt(x, t) dxdt,

3
h2

0(t)

(∫
Q

K(y, t)c(y, t)u(y, t) dy
)2

≤ 3
h2

0(t)

∫
Q

(∫
�

(K(y, t)c(y, t))2 dy
)(∫

�

u2(y, t) dy
)
dxdt

≤ 3
h2

0(t)

∫
Q

(∫
�

(K(y, t)c(y, t))2 dy
)
dxdt

∫
Q

(∫
�

u2(y, t) dy
)
dxdt

≤ max
T

(
3

h2
0(t)

∫
Q

(∫
�

(K(y, t)c(y, t))2 dy
)
dxdt

)∫
Q

u2(x, t) dxdt

≤M2

∫
Q

u2(x, t) dxdt,

3
h2

0(t)

(∫
Q

K(y, t)�u(y, t) dy
)2

≤ 3
h2

0(t)

∫
Q

(∫
�

K2(y, t) dy
)(∫

�

[�u(y, t)]2 dy
)
dxdt

≤ 3
h2

0(t)

∫
Q

(∫
�

K2(y, t) dy
)
dxdt

∫
Q

(∫
�

[�u(y, t)]2 dy
)
dxdt
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≤ max
T

(
3

h2
0(t)

∫
Q

(∫
�

K2(y, t) dy
)
dxdt

)∫
Q

[�u(x, t)]2 dxdt

≤M3

∫
Q

[�u(x, t)]2 dxdt,

hold, where the constants M1, M2, and M3 are defined by h(x, t), K(x, t), and the
domain �, (

λ2
0T

2
(
H2

1 +
H2

2

2(1− λ2
0c

2
1T

6)

)
+ 2H2

1

)∫
Q

Z2(t, u) dxdt

≤M0

(
λ2

0T
2
(
H2

1 +
H2

2

2(1− λ2
0c

2
1T

6)

)
+ 2H2

1

)

×
∫
Q

(∫
�

u2(y, t) dy +
∫
�

u2
tttt(y, t) dy +

∫
�

[�u(y, t)]2 dy
)
dxdt

≤M0

(
λ2

0T
2
(
H2

1 +
H2

2

2(1− λ2
0c

2
1T

6)

)
+ 2H2

1

)

×
∫
Q

(
u2(x, t) + u2

tttt(x, t) + [�u(x, t)]2
)
dxdt. (18)

Inequalities (18) and (17) and the conditions of Theorem 1 validate the a priori
estimate (

1−M0

(
λ2

0T
2
(
H2

1 +
H2

2

2(1− λ2
0c

2
1T

6)

)
+ 2H2

1

))

×
(∫
Q

u2
tttt(x, t) dxdt +

∫
Q

[�u(x, t)]2 dxdt
)

+ελ0

∫
Q

[�ut(x, t)]2 dxdt +
n∑

i=1

∫
Q

[1 + (c(x, t) − ct(x, t)(λ0 − t))]u2
xi

(x, t) dxdt

+
∫
Q

(
1
2
− 2c(x, t)

)
u2
tt(x, t) dxdt +

∫
Q

(
c(x, t) − ct(x, t)(λ0 − t)− ctttt(x, t)

−M0

(
λ2

0T
2
(
H2

1 +
H2

2

2(1− λ2
0c

2
1T

6)

)
+ 2H2

1

))
u2(x, t) dxdt

−
n∑

i=1

∫
Q

u2
xitt(x, t) dxdt + 2ελ0

n∑
i=1

∫
Q

u2
xit(x, t) dxdt

+(λ0 − T )
n∑

i=1

∫
�

u2
xi

(x, T ) dx+ 4
∫
Q

ctt(x, t)u2
t (x, t) dxdt

+(ε+ (λ0 − T ))
n∑

i=1

∫
�

u2
xitt(x, T ) dx+ (λ0 − T )

∫
�

u2
tt(x, T ) dx

≤
(
λ2

0T
2 +

λ0

ε
+ 2
)∫

Q

f2
1 (x, t) dxdt +M4, (19)
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where the constantM4 is defined by h(x, t), f(x, t), and K(x, t) and ε, T, λ0, and H1.
Estimate (19) and the theorem on the method of continuation in a parameter

[28, Chapter 3, Section 14] imply that for a fixed ε the boundary value problem
(10ε,λ), (7), (8) is solvable in V for all λ in [0, 1]. In other words the boundary value
problem (10ε,λ), (7), (8) has a solution uε(x, t), from V.

Next, we obtain a priori estimates uniform in ε and justify the passage to the
limit as ε→ 0.

By the same arguments as those for obtaining (19), but integrating over xi in
the summands with f1(x, t), we demonstrate that the family of functions {uε(x, t)}
satisfies the inequality

∫
Q

u2
tttt(x, t) dxdt +

∫
Q

[�u(x, t)]2 dxdt + ελ0

∫
Q

[�ut(x, t)]2 dxdt

+
n∑

i=1

∫
Q

[1 + (c(x, t) − ct(x, t)(λ0 − t))]u2
xi

(x, t) dxdt

+
∫
Q

(
1
2
− 2c(x, t)

)
u2
tt(x, t) dxdt

+
∫
Q

(c(x, t)− ct(x, t)(λ0 − t)− ctttt(x, t))u2(x, t) dxdt

−
n∑

i=1

∫
Q

u2
xitt(x, t) dxdt + 2ελ0

n∑
i=1

∫
Q

u2
xit(x, t) dxdt

+(λ0 − T )
n∑

i=1

∫
�

u2
xi

(x, T ) dx+ 4
∫
Q

ctt(x, t)u2
t (x, t) dxdt

+(ε+ (λ0 − T ))
n∑

i=1

∫
�

u2
xitt(x, T ) dx+ (λ0 − T )

∫
�

u2
tt(x, T ) dx

≤ (2 + λ2
0T

2) ∫
Q

f2
1 (x, t) dxdt +

1
2(H2

2λ
2
0 + 2λ2

0c
2
1T

4 + 1
T 2 )

n∑
i=1

∫
Q

f2
1xi

(x, t) dxdt

+
(

1
2

+ λ2
0H

2
1T

2 + 2H2
1

)∫
Q

Z2(t, u) dxdt. (20)

From (20) it follows that

(1−M5)
(∫
Q

u2
tttt(x, t) dxdt +

∫
Q

[�u(x, t)]2 dxdt
)

+ ελ0

∫
Q

[�ut(x, t)]2 dxdt

+
n∑

i=1

∫
Q

[1 + (c(x, t)− ct(x, t)(λ0 − t))]u2
xi

(x, t) dxdt +
∫
Q

(
1
2
− 2c(x, t)

)
u2
tt(x, t) dxdt

+
∫
Q

(c(x, t)− ct(x, t)(λ0 − t)− ctttt(x, t)−M6)u2(x, t) dxdt
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−
n∑

i=1

∫
Q

u2
xitt(x, t) dxdt + 2ελ0

n∑
i=1

∫
Q

u2
xit(x, t) dxdt

+(λ0 − T )
n∑

i=1

∫
�

u2
xi

(x, T ) dx+ 4
∫
Q

ctt(x, t)u2
t (x, t) dxdt

+(ε+ (λ0 − T ))
n∑

i=1

∫
�

u2
xitt(x, T ) dx+ (λ0 − T )

∫
�

u2
tt(x, T ) dx

≤ (2 + λ2
0T

2) ∫
Q

f2
1 (x, t) dxdt

+
1

2(H2
2λ

2
0 + 2λ2

0c
2
1T

4 + 1
T 2 )

n∑
i=1

∫
Q

f2
1xi

(x, t) dxdt +M6, (21)

where the constant M6 is defined by h(x, t), K(x, t), and c(x, t), the domain �, and
the numbers λ0, T , and

M5 = M0

(
1
2

+ λ2
0H

2
1T

2 + 2H2
1

)
.

Estimate (21) implies that we can pass to the limit as ε → 0 in the family
{uε(x, t)} of solutions to (10ε), (7), (8). The limit function belongs to V and is
a solution to (6)–(8).

Demonstrate that u(x, t) and q(t) are a solution to Inverse Problem I. To this
end, we multiply (1) by K(x, t) and integrate the result over �. We obtain

ψtttt(t) ≡ ∂4

∂t4

(∫
�

K(x, t)u(x, t) dx
)

= 0. (22)

Since the initial conditions of Inverse Problem I are homogeneous, we have ψ(t) = 0
for t ∈ (0, T ). The latter means that a solution u(x, t) to the boundary value problem
(6)–(8) satisfies the overdetermination condition (4). Since u(x, t) and q(t) belong
to the required classes, we can conclude that these functions is a solution to Inverse
Problem I.

The theorem is proven.
In the case of Inverse Problem 2, we can establish a similar result to that of

Theorem 1.

Theorem 2. Assume that

h(x, t) ∈ C1(Q), c(x, t) ∈ C4(Q), K(x, t) ∈ C4(Q),

f(x, t), fxi(x, t) ∈ L2(Q), i = 1, . . . , n,
h0(t) �= 0, t ∈ [0, T ], c(x, T ) ≥ 0

and there exists λ0 such that λ0 > T, [(λ0 − t)c(x, t)]t ≤ 0 for (x, t) ∈ Q, and

M0

(
λ2

0T
2
(
H2

1 +
H2

2

2(1− λ2
0c

2
1T

6)

)
+ 2H2

1

)
< 1,

Then there exist u(x, t) ∈ V and q(t) in L2[0, T ] solving Inverse Problem II.
The proof of Theorem 2 is rather similar to that in Theorem 1.
Remark. We can take a general elliptic operator of the second order in (1)

rather than the Laplace operator.
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RECOVERING PARAMETERS IN BOUNDARY

VALUE PROBLEMS FOR LINEAR PARABOLIC

EQUATIONS OF FOURTH ORDER

L. A. Teleshova

Abstract. We prove the existence theorems of regular solutions to boundary value prob-
lems for parabolic equations of fourth order when either the boundary conditions or the
right-hand side contain unknown parameters depending on time. The overdetermination
conditions are integrals over a spatial domain or its boundary.

Keywords: parabolic equation, inverse problem, integral overdetermination condition,
Fourier series, regular solution, solvability

1. Introduction

In the article we study the problems of finding solutions to fourth order parabolic
equations when either the boundary conditions or the right-hand side are unknown.
These problems can be treated as inverse problems, i.e., the problems of determining
some parameters (coefficients) of the problem together with a solution itself. As
a rule, it is assumed in these problems that the unknown parameters have a special
form and the natural boundary conditions are complemented with some additional
conditions called the overdetermination conditions.

In the present article we assume that the unknown parameters are functions of
time. We employ integral overdetermination conditions in which some integral of
a solution over a spatial domain or its boundary are equated to zero.

The article consists of two sections and an addendum. In the first section, we
study inverse problems of determining the boundary data and, in the second section,
inverse problems of determining the right-hand side. These sections are unified by
a common approach.

Possible generalizations of the results obtained are pointed out in the addendum.

2. Recovering Boundary Conditions

Assume that � is a bounded domain in Rn with smooth (infinitely differentiable)
boundary � , while Q is the cylinder �×(0, T ) of finite height T , and S = �×(0, T ) is
the lateral boundary of Q. Next, c(x), f(x, t), h1(x), h2(x), K(x), and N(x) are
given functions defined for x ∈ � and t ∈ [0, T ]. Assume that (l1, l2) is one of the
pairs of boundary operators, with either l1u = u, l2u = ∂u

∂ν , or l1u = u, l2u = �u, or
l1u = ∂u

∂ν , l2u = ∂�u
∂ν (here and in what follows ν = (ν1, . . . , νn) is the inner normal

to � at a point x, � is the Laplace operator in x1, . . . , xn ).

c© 2015 Teleshova L. A.
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Inverse Problem I. Find u(x, t), q1(t), and q2(t) such that u(x, t) satisfies
the equation

ut +�2u+ c(x)u = f(x, t), (1)

in Q and the conditions
u(x, 0) = 0, x ∈ �; (2)

l1u(x, t)|(x,t)∈S = q1(t)h1(x)|(x,t)∈S , l2u(x, t)|(x,t)∈S = q2(t)h2(x)|(x,t)∈S ; (3)∫

�

K(x)u(x, t) dx = 0,
∫

�

N(x)u(x, t) dx = 0, 0 < t < T. (4)

Inverse problems of determining unknown boundary data and a solution were
studied in various settings in dependence on the form of unknown data and overdeter-
mination conditions. A series of results on solvability of such problems is presented
in the monographs [1–3] and the articles [4–9].

On the other hand, the problems for different classes of nonstationary equations
with conditions in the form of integrals of a solution (with a weight) over a spatial
domain have intensively been studied since recently (see [10–19]). Mainly, these arti-
cles refer to second order parabolic and hyperbolic equations in the one-dimensional
case. However, we can note that the problems with the integral conditions are
treated in [8, 11, 19, 20] as inverse problems; but only some special case of Inverse
Problem I are examined.

One more remark. The statement of the inverse problem I is close to that of [8],
but the methods to those used in [20].

Proceed with an essential part of the article.
We expose now some formal constructions. Define v0(x, t) as a solution to (1)

satisfying (2) and the condition

l1u(x, t)|(x,t)∈S = l2u(x, t)|(x,t)∈S = 0. (3′)

Let h̃j(x), j = 1, 2, be solutions to the problems

�2h̃j + c(x)h̃j = 0,

lkh̃j(x)|x∈� = δjkhj(x)|x∈� , j, k = 1, 2

(δjk stands for the Kronecker symbol).
A solution u(x, t) to Inverse Problem I is representable as

u(x, t) = v0(x, t) + V (x, t) + w(x, t),

with V (x, t) of the form

V (x, t) = q1(t)h̃1(x) + q2(t)h̃2(x),

and w(x, t) a solution to the problem

wt +�2w + c(x)w = −q′1(t)h̃1(x) − q′2(t)h̃2(x),

l1w(x, t)|(x,t)∈S = l2w(x, t)|(x,t)∈S = 0.

Let {wk(x)}∞k=1 be an orthonormal system (in the L2(�) space) of the eigen-
functions of the problem

�2w + c(x)w = λw, x ∈ �, l1w(x)|x∈� = l2w(x)|x∈� = 0,
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where λk, k = 1, . . . , are the corresponding eigenvalues.
Consider the Fourier series of h̃j(x), j = 1, 2, with respect to the system

{wk(x)}∞k=1

h̃j(x) =
∞∑
k=1

ajkwk(x).

The function w(x, t) is also representable by its Fourier series as follows:

w(x, t) =
∞∑
k=1

ck(t)wk(x), (6)

where the unknowns ck(t) are solutions to the Cauchy problem

c′k(t) + λkck(t) = −a1kq
′
1(t)− a2kq

′
2(t), ck(0) = 0.

Put
dk(t) = ck(t) + a1kq1(t) + a2kq2(t).

We require that qj(t), j = 1, 2, satisfy the condition

qj(0) = 0

(note that this condition is equivalent the natural consistency condition for solutions
to Inverse Problem I). In this case dk(t) is a solution to the Cauchy problem

d′k(t) + λkdk(t) = λk(a1kq1(t) + a2kq2(t)), dk(0) = 0.

With dk(t) in hand, we can find ck(t) as follows:

ck(t) = λk

[
a1k

t∫

0

e−λk(t−τ)q1(τ) dτ + a2k

t∫

0

e−λk(t−τ)q2(τ) dτ
]

−a1kq1(t)− a2kq2(t).

If ck(t) are known then we can obtain the following representation of u(x, t)
through the known quantities and the unknown coefficients q1(t) and q2(t):

u(x, t) = v0(x, t) + q1(t)h̃1(x) + q2(t)h̃2(x)−
∞∑
k=1

[a1kq1(t) + a2kq2(t)]wk(x)

+
∞∑
k=1

λk

[
a1k

t∫

0

e−λk(t−τ)q1(τ) dτ + a2k

t∫

0

e−λk(t−τ)q2(τ) dτ
]
wk(x). (7)

Introduce the notations

ψ1(t) =
∫

�

K(x)v0(x, t) dx, ψ2(t) =
∫

�

N(x)v0(x, t) dx,

α1k =
∫

�

K(x)wk(x) dx, α2k =
∫

�

N(x)wk(x) dx, k = 1, 2, . . .

Ri,j(t) =
∞∑
k=1

λkajkαike
−λkt, i, j = 1, 2.
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Multiply (7) by K(x) and integrate it over �. Taking (4) into account, we infer

ψ1(t) +
t∫

0

R1,1(t− τ)q1(τ) dτ +
t∫

0

R1,2(t− τ)q2(τ) dτ = 0. (8)

Similarly, multiplying (7) by N(x) and integrating, we arrive at the relation

ψ2(t) +
t∫

0

R2,1(t− τ)q1(τ) dτ +
t∫

0

R2,2(t− τ)q2(τ) dτ = 0. (9)

Equalities (8) and (9) give rise a system of Volterra integral equations of the first
kind respectively for the functions q1(t) and q2(t), its solvability allows us to find
a solution u(x, t) to (1) satisfying (2)–(4).

Denote by R0 the matrix with entries Ri,j(0), i, j = 1, 2.

Theorem 1. Assume that

c(x) ∈ C(�), c(x) ≥ 0 for x ∈ �,

K(x) ∈ C(�), N(x) ∈ C(�), hj(x) ∈W 4
2 (�), j = 1, 2;

detR0 �= 0;

and the series
∑∞

k=1 λ
p
kajkαik converge absolutely for i, j = 1, 2, p = 1, 2, 3.

Then, for every f(x, t) such that f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q), and ftt(x, t)
∈ L2(Q), Inverse Problem I has a solution {u(x, t), q1(t), q2(t)} such that u(x, t) ∈
W 4,1

2 (Q) and q1(t) ∈W 1
2 ([0, T ]), q2(t) ∈W 1

2 ([0, T ]).

Proof. Consider the system of integral equations (8), (9). Using the standard
passage from the integral Volterra equation of the first kind to an integral equation
of the second kind (by differentiation, which is possible), it is easy to verify that
under the conditions of the theorem the system (8), (9) has a solution {q1(t), q2(t)},
with qi(t) ∈W 1

2 ([0, T ]), i = 1, 2. Obviously, the function u(x, t) defined as

u(x, t) = v0(x, t) + V (x, t) + w(x, t),

where V (x, t) and w(x, t) are calculated through q1(t) and q2(t), is a solution to (1)
such that u(x, t) ∈W 4,1

2 (Q) and (2)–(4) hold.
The theorem is proven.

Make some remarks.

1. The convergence of
∑∞

k=1 λ
p
kajkαik means that the numbers aij or αij (or

their products) rapidly decrease. The latter holds for instance, if the functions
K(x) and N(x) are smooth and vanish on � together with their derivatives of the
corresponding order.

2. The functions K(x), N(x), h1(x), and h2(x) can depend on t. In contrast
to the previous case the corresponding series turn into functional series and the
conditions of uniform convergence arise; the remaining arguments are almost the
same.
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3. Recovering the Right-Hand Side

Let f(x, t), h(x, t), and K(x) be given for x ∈ � and t ∈ [0, T ]. In this section
we consider the equation

ut +�2u = f(x, t) + q(t)h(x, t). (10)

Inverse Problem II. Find u(x, t) and q(t) satisfying (10) in Q and such
that u(x, t) meets the homogeneous boundary conditions of the form

∂u

∂ν

∣∣∣∣
(x,t)∈S

=
∂�u

∂ν

∣∣∣∣
(x,t)∈S

= 0, (11)

the initial condition (2) and the boundary integral overdetermination condition∫

�

K(x)u(x, t)dsx = 0, t ∈ (0, T ). (12)

Inverse Problem III. Find u(x, t) and q(t), satisfying (10) in Q such that
u(x, t) meets (2), (11) and the interior integral overdetermination condition∫

�

N(x)u(x, t) dx = 0, t ∈ (0, T ). (13)

Note that Inverse Problem II for higher order parabolic equations was studied
earlier only in [21]. Inverse Problem III is studied by many authors (see the mono-
graphs [22–24] and the articles [25, 26]. We study solvability of Inverse Problem III
here in order to describe solvability conditions in other terms than those in the
above-mentioned articles.

Again we present some formal constructions.
Write out the Fourier series of h(x, t) and f(x, t) in the system {wk(x)}∞k=1 as

follows:

h(x, t) =
∞∑
k=1

hk(t)wk(x), f(x, t) =
∞∑
k=1

fk(t)wk(x).

The function u(x, t) is also representable by its Fourier series

u(x, t) =
∞∑
k=1

ck(t)wk(x),

where the unknowns ck(t) are solutions to the Cauchy problem

c′k(t) + λkck(t) = fk(t) + q(t)hk(t), ck(0) = 0. (14)

Solving this problem, we find that

ck(t) = pk(t) +
t∫

0

q(τ)hk(τ)e−λk(t−τ) dτ.

Inserting wk(x) and ck(t) into the representation for u(x, t), we conclude that

u(x, t) =
∞∑
k=1

[ t∫

0

fk(τ)e−λk(t−τ) dτ +
t∫

0

q(τ)hk(τ)e−λk(t−τ) dτ

]
wk(x). (15)
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Introduce the notations

h̄k = max
[0,T ]
|hk(t)|, pk(t) =

t∫

0

fk(τ)e−λk(t−τ) dτ, p̄k = max
[0,T ]
|pk(t)|,

bk =
∫

�

N(x)wk(x)dsx, φ(t) =
∞∑
k=1

bkpk(t), G(t, τ) =
∞∑
k=1

bkhk(τ)e−λk(t−τ).

βk =
∫

�

N(x)wk(x) dx, η(t) =
∞∑
k=1

βkpk(t), H(t, τ) =
∞∑
k=1

βkhk(τ)e−λk(t−τ).

Multiply (15) by K(x) and integrate over � . Taking (12) into account, we infer

φ(t) +
t∫

0

q(τ)G(t, τ) dτ = 0. (16)

Similarly, multiplying (15) by N(x), integrating over �, and taking (13) into
account, we find that

η(t) +
t∫

0

q(τ)H(t, τ) dτ = 0. (17)

Equations (16) and (17) are integral Volterra equations of the first kind respectively
q(t) and their solvability allows us to find a function u(x, t) that is a solution to (10)
satisfying (2) and (11).

Theorem 2. Assume that

h(x, t) ∈ C(Q̄), Gt(t, τ) ∈ C((0, T ), (0, T )),

φ(t) ∈ C1([0, T ]), φ′(t) ∈ L2([0, T ]);∣∣∣∣
∞∑
k=1

bkhk(t)
∣∣∣∣ ≥ b0 > 0 for t ∈ [0, T ];

and the series
∑∞

k=1 |bk|h̄k,
∑∞

k=1 |bk|p̄k, and
∑∞

k=1 |bk|h̄kλk converge absolutely.
Then for every f(x, t) such that f(x, t) ∈ L2(Q) and ft(x, t) ∈ L2(Q), there

exists a solution {u(x, t), q(t)} to Inverse Problem II such that u(x, t) ∈ W 2,4
2 (Q)

and q(t) ∈ L2((0, T )).

Theorem 3. Assume that

h(x, t) ∈ C(Q̄), η(t) ∈ C1([0, T ]),

η′(t) ∈ L2([0, T ]), Ht(t, τ) ∈ C((0, T ), (0, T ));∣∣∣∣
∞∑
k=1

βkhk(t)
∣∣∣∣ ≥ d0 > 0 for t ∈ [0, T ],

and the series
∑∞

k=1 |βk|h̄k,
∑∞

k=1 |βk|p̄k, and
∑∞

k=1 |βk|h̄kλk converge absolutely.
Then, for every function f(x, t) such that f(x, t) ∈ L2(Q) and ft(x, t) ∈ L2(Q),

there exists a solution решение {u(x, t), q(t)} to Inverse Problem III such that
u(x, t) ∈W 2,4

2 (Q) and q(t) ∈ L2((0, T )).
The proofs of Theorems 2 and 3 are reduced to the proof of solvability of (15)

and (16), respectively. Under the conditions of Theorems 1 and 2 these equations
are solvable (see, for instance, [27]).
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4. Addendum

1. The results similar to those in Theorems 1 and 2 are easy to establish for
parabolic higher order equations, for example for the equations

ut + (−1)m�mu+ c(x)u = f(x, t).

For these equations, we assume that the system {lj}mj=1 of boundary operators with
coefficients independent of the variable t is such that the problem

wt + (−1)m�mw + c(x)w = λw,

ljw(x)|x∈� = 0, j = 1, 2, . . . ,m,

possesses a system {wk}∞k=1 of eigenfunctions complete in W 2m
2 (�) and orthonormal

in L2(�) with the corresponding nonpositive eigenvalues λk, k = 1, 2, . . . .
Point out that the operator lu = umust not be among the operators l1, l2, . . . , lm

in the case of Inverse Problem II.

2. In all constructions the operator � can be replaced with an operator L of
the form

L =
n∑

i,j=1

∂

∂xi

(
bij(x)

∂

∂xj

)
,

with smooth coefficients bij(x) in �.

3. Together with Inverse Problems II and III, it is not difficult to study the
problems with point overdeterminations, namely, with the condition u(x0, t) = 0 for
some x0 ∈ � or x0 ∈ �.
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RESURGENT FUNCTIONS AND SINGULAR ODES

J. R. Ecalle

Abstract. We propose a brief introduction to the resurgence theory and give several
applications to the study of singular ODEs.

Keywords: resurgent function, ordinary differential equation

§ 1. Divergence and Resurgence

Introduction: singular ODEs. The topic of the present article is the nat-
ural divergence (i.e., the divergence of power series appearing in solving purely ana-
lytic problems) and ways of its overcoming: resurgent functions and alien derivation.
Explain what it is about by the example of local analytic ODEs (ordinary differential
equations), i.e., on the example of the germs of such ODEs near a singular point z0.
It is convenient to take∞ but not 0 as a singular point. Everything depends on the
nature of a complete solution ˜Y (z, u) (that is, of a formal solution saturated by the
parameters u) to our ODE.

The case when a complete formal solution contains only power series is trivial
(from the local standpoint) because these series converge.

The opposite case, when there is no complete formal solution (or no formal
solution whatever) is hopeless (again from the local standpoint) since there is nothing
to sum there.

The intermediate, so-called singular, case, when a formal solution is a mixture
of exponents and power series is interesting and accessible: the series usually diverge
but can be summed.

Borel summation method. Consider a singular analytic ODE E(z, Y ) = 0
around∞ and confine ourselves first to the monocritical case, i.e., to the case when
there is a complete formal solution with expansion

˜Y (z, u) = ˜Y0(z) +
∑

n∈Nd

uneλnz
˜Yn(z) (u = (u1, . . . , ud)) (1)

with divergent power series

˜Yn(z) =
∑

an,kz
−k,

but with simple exponents eλnz (“monocriticality”). The problem consists in turning
this formal solution into a real one. To this end, we must sum up each ˜Yn(z), i.e.,
turn it into an analytic germ Yn,θ(z) defined in some sectorial neighborhood of ∞
with bisector arg z−1 = θ and admitting ˜Yn(z) as an asymptotic series. However,
the “tilde removal,” i.e., summation, is possible only indirectly, via the intermediate
step ̂Yn:

˜Yn(z) B=Borel−→ ̂Yn(ζ) L =Laplace−→ Yn,θ(z)
asymptly∼ ˜Yn(z). (2)

c© 2015 Ecalle J. R.
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The Borel transform (B) acts “termwise”:

B : z−σ �→ ζσ−1/� (σ) (σ /∈ −N); zn �→ δ(n) (n ∈ N, δ = Dirac), (3)

and turns each series ϕ̃(z) of Gevrey type 1 into a series ϕ̂(ζ) with nonzero radius
of convergence

B : ϕ̃(z) =
∑

anz
−n �→ ϕ̂(ζ) =

∑ anζn−1

(n− 1)!
. (4)

Moreover, if a series ϕ̃ is of a “natural origin” then ϕ̂ usually admits an analytic
extension along almost all axes from 0 to∞ without analytic barriers with a discrete
configuration of singular points ωi and at most exponential growth near ∞, which
makes it possible to apply to ϕ̂ to the Laplace transform (L ) formally inverse to B:

L : ϕ̂ �→ ϕθ с ϕθ(z) :=
∞.eiθ
∫

0

ϕ̂(ζ) e−ζ z dζ. (5)

The Borel transform turns the usual product into the so-called convolution ∗, and
derivation with respect to z becomes multiplication by ζ. The Laplace transform
carries out the inverse conversions:

B : ϕ̃1 · ϕ̃2 �→ ϕ̂1 ∗ ϕ̂2 с (ϕ̂1 ∗ ϕ̂2)(ζ) :=

ζ
∫

0

ϕ̂1(ζ1) ∗ ϕ̂2(ζ − ζ1) dζ1, (6)

B : ∂zϕ̃(z) �→ −ζϕ̂(ζ), (7)

B : ψ(z) = (ω + ∂z)ϕ(z) =⇒ ϕ̂(ζ) = (ω − ζ)−1
̂ψ(ζ), (8)

B : ψ(z) = ϕ(z)− ϕ(z + 1) =⇒ ϕ̂(ζ) = (1− exp(−ζ))−1
̂ψ(ζ). (9)

Relations (8) and (9) show that a solution to differential or difference equations can
create in the functions ϕ̂ not only simple poles but, under a second convolution, more
complicated singularities. The general ”Borel” summation scheme looks as follows:

ϕ̃(z) . . . . ϕθ(z) z-plane (multiplication)
B ↘ ↗ L

ϕ̂(ζ) ζ-plane (convolution)
Any axis of integration arg ζ = θ can move exactly as long as the singular points
ωi allow, and to each regular sector of angular measure δθ in the ζ-plane there
corresponds a regular sector of angular measure δθ + π in the z-plane.

This shows the main problems and difficulties we face.

Problem 1. For integrating in the sense of Laplace, we must make sure that
ϕ̂(ζ) has no analytic barriers and does not grow superexponentially as ζ →∞ along
the straight line axes.

Problem 2. For controlling this growth, we must be able to bound the convo-
lution integrals occurring implicitly in the definition of the function ϕ̂(ζ).

Problem 3. We must find all singular points ω of ϕ̂ and find out the behavior
of ϕ̂ at each such ω since these singularities are responsible for the divergence of the
initial series ϕ̃, and the (Stokes constants) bear important information.

Difficulty 1. The possible presence of singular points for ω over R+.
Difficulty 2. A high branching of the Riemann surfaces.
Difficulty 3. The complexity of integration paths over which we must calcu-

late the simple and n-fold convolution.
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§ 2. Multiplicative Averaging

Physicists are bound to think that, in the presence of singular points for ωi

over R+, the series ϕ̃ cannot be summed. However, this fails. One should simply
apply a suitable averaging μ of separate branches of a multi-valued function:

ϕ̃(z) B−→ ϕ̂(ζ) μ−→ μϕ̂(ζ) L−→ ϕ(z). (10)

The averaging μ : ϕ̂ �→ μϕ̂ is defined by weights μ( ε
ω ):

μϕ̂(ζ) :=
∑

εi∈{+,−}
μ( ε1

ω1
,...,
,...,

εr
ωr

)ϕ̂( ε1
ω1

,...,
,...,

εr
ωr

)(ζ) if ωr < ζ < ωr+1. (11)

Here ω1, ω2, . . . stand for singular points lying over R+ and ϕ̂( ε1
ω1

,...,
,...,

εr
ωr

) denotes the
parametrization of the function ϕ̂ over the interval ]ωi, ωi+1[ that corresponds to
the bypass of the next point ωi from the right if εi = + or from the left if εi = −.
Moreover, μ must satisfy the following two main conditions:

(i) it must preserve reality for applications to the problems where only real
solutions are acceptable. Hence, if a multivalued function ϕ̂(ζ) is real for small
ζ > 0 then the single-valued μ ϕ̂(ζ) must remain real for all ζ > 0;

(ii) it must commute with the convolution:

μ(ϕ̂1 ∗ ϕ̂1) ≡ (μϕ̂1) ∗ (μϕ̂2), (12)

for applications to nonlinear problems. In other words, in scheme (10), as well
as the left and right arrows, the middle arrow must be not only linear but also
a multiplicative homomorphism. Both these conditions are hardly compatible. For
example, it is clear that the “half-sum”

μ( ε1
ω1

,...,
,...,

εr
ωr

) =
{ 1

2 if ε1 = ε2 = · · · = εr,

0 otherwise
(13)

satisfies (i) but not (ii). Fortunately, suitable averagings satisfying all requirements
exist. Here are two main examples:

The standard averaging. Its weights are given by a direct formula:

μ( ε1
ω1

,...,
,...,

εr
ωr

) :=
� (p+ 1

2 )� (q + 1
2 )

� (r + 1)� (1
2 ) � (1

2 )
=

(2 p)!(2 q)!
4p+qp!q!(p+ q)!

(14)

with
p :=

∑

εi=+

1, q :=
∑

εi=−
1 (p+ q = r). (15)

The “organic” averaging. Its weights are given by a recurrent formula:

μ( ε1
ω1

,...,
,...,

εr
ωr

) := μ
( ε1
ω1

,...,
,...,

εr−1
ωr−1

) 1
2

(

1 + εr−1 εr
ωr−1

ωr

)

with μ( ±ω1
) :=

1
2
. (16)

§ 3. Alien Derivation

Calculation of the convolution over SSR-paths. Let  = {ω1, ω2, . . . }
be a discrete subset in C and let ϕ̂1, ϕ̂2 be two analytic functions on R := C̃ \ .
For small ζ, the convolution integral (6) is calculated over the segment [0, ζ], and,
for remote ζ, it must be calculated over so-called self-symmetrically reducible (SSR)
paths, i.e., over paths �∗ ⊂ C \, that are not only symmetric with respect to their
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midpoint ζ/2 but also continuously contractible to zero under the constant preser-
vation of the self-symmetry. Excluding a countable set, every ζ ∈ R is an endpoint
of such an SSR-path but the problem is that, even for simple surfaces R, SSR-paths
rotate and get more complicated as their endpoint moves away from ζ to an extent
that they are practically inapplicable.

The definition of �-operators. Instead of useless SSR-paths, we need
the linear operators ̂�ω with subscripts ω ∈ C̃ \ {0}, which describe in details the
behavior of ϕ̂(ζ) near a singular point ω (more exactly, over it), and acting “by the
Leibniz rule”:

̂�ω(ϕ̂1 ∗ ϕ̂2) ≡ (̂�ωϕ̂1) ∗ ϕ̂2 + ϕ̂1 ∗ (̂�ωϕ̂2). (17)

Their action is defined by the formula

̂�ωϕ̂(ζ) :=
∑

εi=±

εr
2πi

δ(
ε1
ω1

,...,
,...,

εr
ωr

)ϕ̂( ε1
ω1

,...,
,...,

εr
ωr

)(ζ + ω) (ωr := ω), (18)

first for small ζ ∈ [0, ω] and is then extended analytically. Here ω1, ω2, . . . are
singular points lying between 0 and ωr := ω, and in order to guarantee (17), the
weights δ must satisfy strict algebraic conditions. For the “standard” �-operators,
the weights depend only on ε:

δ(
ε1
ω1

,...,
,...,

εr
ωr

) :=
p!q!

(p+ q + 1)!
с p :=

1≤i≤r−1
∑

εi=+

1, p :=
1≤i≤r−1
∑

εi=−
1, (19)

and for the “organic” �-operators, they also depend on ω:

δ(
ε1
ω1

,...,
,...,

εr
ωr

) :=

⎧

⎪

⎨

⎪

⎩

(ωp+1 − ωp)/(2ωr) if (ε1, . . . , εr) = ((+)p, (−)q, εr),
(ωq+1 − ωq)/(2ωr) if (ε1, ..., εr) = ((−)q, (+)p, εr),
0 otherwise.

In view of (17), the operators ̂�ω are called alien derivations, and the function ̂�ω ϕ̂
is referred to as the alien derivative of ϕ̂.

Properties of the �-operators. Alongside ̂�ω, it is convenient to consider
the operators �ω and �ω, which act directly in the z-plane both at series ϕ̃ and
germs ϕθ:

̂�ω
pull back=⇒ �ω = B−1

̂�ωB =⇒ �ω := e−ωz�ω. (20)

For these versions, the Leibniz rule takes the form

̂�ω(ϕ̂1 ∗ ϕ̂2) ≡ (̂�ω ϕ̂1) ∗ ϕ̂2 + ϕ̂1 ∗ (̂�ωϕ̂2) (ζ-plane), (21)
�ω(ϕ1 · ϕ2) ≡ (�ωϕ1) · ϕ2 + ϕ1 · (�ωϕ2) (z-plane), (22)
�ω(ϕ1 · ϕ2) ≡ (�ωϕ1) · ϕ2 + ϕ1 · (�ωϕ2) (z-plane). (23)

Owing to the exponential factor, the “boldfaced,” or invariant, operators �ω com-
mute with the ordinary derivation ∂ := ∂z :

[̂�ω, ̂∂] = −ω̂�ω =⇒ [�ω, ∂] = −ω�ω =⇒ [�ω, ∂] = 0. (24)

The �-operators of a certain type, that is, of “standard” or “organic” type, freely
generate the same Lie algebra ��; i.e., for every

� :=
∑

γω1,...,ωr [�ωr . . . [�ω2 ,�ω1 ]]
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there exists ϕ such that �ϕ �= 0. Observe that, in many applications, the action of
the operators �ω depends not on ω as an element of C• := C̃ \ {0} but only on its
projection ω̇ to C.

The algebra RES of resurgent functions. Without going into details,
refer as resurgent “functions” to the series ϕ̃(z), functions ϕ̂(ζ), and germs ϕθ(z)
satisfying the general scheme of § 1. For more simplicity, we usually denote these
“functions” by ϕ(z) without a tilde and θ, not forgetting that all assertions about
them must be interpreted in the “three” models parallelly. The space RES of resur-
gent functions is closed not only under multiplication (under the usual product in
the z-models) and under convolution (in a ζ-model) but also under alien derivation.

A first application: the resurgence equations. There are simple crite-
ria that make it possible to predict whether a formal solution ϕ to a given ODE is
a resurgent function with respect to the first variable z. Let E = 0 be such an equa-
tion. Using the Leibniz rule, it is easy to obtain in a purely formal manner new
equations both for the ordinary derivative and the alien derivatives of ϕ:

E(z, ϕ) = 0 =⇒
{

E∗(z, ϕ, ∂ϕ) = 0 (linear homogeneous in ∂ϕ),
Eω(z, ϕ,�ωϕ) = 0 (linear homogeneous in �ωϕ).

The general solution to the equation Eω = 0 usually has the form

�ω ϕ = Aω ϕω (∗)
or, less frequently,

�ωϕ =
j=s
∑

j=1

Aj,ωϕj,ω, (∗∗)

whereAω (or Aj,ω) is a nontrivial (usually transcendent) scalar quantity (the Stokes
constant) and ϕω (or ϕj,ω) is a simple power series purely formally deducible from
Eω = 0 and hence from E = 0. Note that here, without any analysis, we establish
an analytic fact because formulas (∗), (∗∗) give an analytic extension of ϕ̂ up to ω
in the ζ-plane. In the close relationship between ϕ and �ωϕ is the curious but still
universal tendency of such functions to self-reproduce at their singular points, at
each of them! This explains the term “resurgence.”

Getting rid of SSR-paths and overcoming “multi-valuedness.” The
action of the “broken” ω-shifts ̂T� and the ̂�� -operators is given by the formulas

̂T� ϕ̂(ζ) := ϕ̂� (ζ+ ω), ̂�� ϕ̂(ζ) := ϕ̂+
� (ζ + ω)− ϕ̂−� (ζ + ω) (ω = the end of � )

first for small ζ, and then in the large, by analytic extension along a finite finitely
punctured broken line � with a prescription for bypassing each of the punctured
points. These “broken” operators can be represented uniquely as a polynomial of
finitely many ̂�-operators and the rotation R := ϕ̂(ζ) �→ ϕ̂(e2πiζ) (ζ ∈ C• :=
C̃ \ {0}):

̂T� = id +
∑

r

∑

n

∑

ωi

(2πi)rτω1,...,ωrRn
̂�ωr . . . ̂�ω1 (τω ∈ Q, n ∈ Z), (26)

̂�� = ̂�ω +
∑

r

∑

n

∑

ωi

(2πi)rλω1,...,ωrRn
̂�ωr . . . ̂�ω1 (λω ∈ Q,

∑

ωi = ω).
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This representation is extremely convenient since it reduces all operations of the
type (ϕ̂1, ϕ̂2) �→ ϕ̂1 ∗ ϕ̂2 or of the type ϕ̂ �→ (ϕ̂)∗n to operations on the first leaf of
a Riemann surface, i.e., on the common “analyticity star.”

As we see, the �-operators deliver us from
(i) multivalued functions ϕ̂;
(ii) complicated multisheet Riemannian surfaces,
(iii) impossibly winding SSR-paths of integration.
Owing to the �-operators, it suffices to consider the functions ϕ̂ and all their

alien derivatives as single-valued functions on their common analyticity star (cen-
tered at 0•), and then all operations are reduced to ordinary operations over single-
valued functions.

A survey of the main notions and principal rules.
The primary �-operators (alien derivations):

̂�ω in the ζ-plane =⇒ �ω in the z-plane (“pull back”) (27)

The secondary �-operators: �ω := e−ω z�ω in the z-plane:

[∂z,�ω] ≡ 0, �ω(f ◦ g)(z) ≡ (�ωf) ◦ g(z) in g(z) ∼ z. (28)

The Z-symbols Zω = Zω1,...,ωr (pseudovariables). This notation is dual to
the �-operators. The product of Z-symbols is given by “shuffling” the indices:

∂zZω ≡ 0, Zω ◦ g ≡ Zω, Zω
′
Zω

′′
=
∑

Zω (shuffle product). (29)

The display. This is a kind of an “alien Taylor series”:

dplϕ := ϕ+
∑

r

∑

ωj

Zω1,...,ωr�ωr . . .�ω1ϕ. (30)

It has both local nature (the z-part) and global nature (the Z-part). It encodes in
an extremely concise and convenient form the information about a function ϕ̂(ζ) on
all leaves of its Riemannian surface. The main property of displays is the automatic
extension of any relation between functions to a relation between displays:

R(ϕ1, . . . , ϕs) ≡ 0 =⇒ R(dplϕ1, . . . , dplϕs) ≡ 0. (31)

§ 4. Singular ODEs and the Bridge Equation

The bridge equation owes its name to the fact that it connects the alien and
usual derivatives. It has a vast field of applications. Let us first point out the main
facts about it and then give several examples. Its looks as follows:

�ωY (z, u) = AωY (z, u) (∀ω ∈ ) (32)

• Y (z, u) is a formal solution to a singular ODE with maximal number of pa-
rameters u := (u1, . . . , ud). We omit the tilde for simplicity.
• �ω is the “alien derivation.” The subscript ω ranges over a countable set

 ⊂ C \ {0} or  ⊂ C̃ \ {0}.
• Aω is a “Stokes operator.” This is an ordinary differential operator with

respect to z and the parameters u1, . . . , ud. Its form is the “most general of all
formally admissible forms.”
• {Aω;ω ∈ } is a complete system of Stokes constants.
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• The whole divergence of Y (z, u) is concentrated in power series with respect
to z−1.

The bridge equation and the display. Since the bridge equation can be
iterated:

�ω1Y (z, u) = Aω1Y (z, u) =⇒
�ω2�ω1Y (z, u) = �ω2Aω1Y (z, u)

= Aω1�ω2Y (z, u)
= Aω1Aω2Y (z, u) (order reversal!),

it immediately gives the alien derivatives of all orders:

�ωr . . .�ω1Y (z, u) = Aω1 . . .AωrY (z, u). (33)

Involving (33) in the definition of the display (30), we get

dplY (z, u) = Y (z, u) +
∑

r

∑

ωi

Zω1,...,ωr�ωr . . .�ω1Y (z, y)

= Y (z, u) +
∑

r

∑

ωi

Zω1,...,ωrAω1 . . .AωrY (z, y). (34)

Riccati singular equations are the simplest nonlinear ODEs:

Y ′ = Y +H−(z) +H+(z)Y 2 (H±(z) ∈ z−1
C{z−1}). (35)

The general solution can be written down in inhomogeneous or homogeneous form
with the use of Si or Ti. The former have infinitely many singular points in the
ζ-plane, and the latter have only two:

Y (z, u) =
uezS0 + S−
uezS0S+ + 1

=
uezT1 + T2

uezT3 + T4
, det

(

T1 T2
T3 T4

)

= 1, (36)

̂S±(ζ) sing. over±βN∗ ‖ ̂T1, ̂T3 sing. over{0, 1},
̂S0(ζ) sing. over Z ‖ ̂T2, ̂T4 sing. over{0,−1}.

In this case, the bridge equation has a rather simple form:

�±1Y (z, u) = A±1Y (z, u) с A±1 = α±1u
1±1∂u. (37)

Hence, we obtain the following resurgence equations for separate components:

�+1T1 = α1T2, �+1T2 = 0, �+1T3 = α1T4, �+1T4 = 0,

�−1T2 = α−1T1, �−1T1 = 0, �−1T4 = α−1 T3, �−1T3 = 0,

�+1S0 = a1S−, �+1S+ = a1S
−1
0 (1− S+S−), �+1 S− = 0,

�−1S0 = a−1S+, �−1S− = a−1S0(1− S+S−), �−1S+ = 0.

The corresponding displays, with their clear separation of the z-variable and the
Z-symbols, carefully algebrize the complicated geometry of the ζ-plane:

(

dplT1 dplT2
dplT3 dplT4

)

=
(

T1 T2
T3 T4

)

×
(

T1 T2
T2 T4

)

, (38)

dplS0 =
S0S0 + S−S0S+

1 + S0S+S−
, dplS± =

S± + S∓1
0 S±

1 + S∓1
0 S∓S±

, (39)
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T1 = 1 +
∑

(α1α−1)nZ{1,−1}n , T2 =
∑

α−1(α1α−1)nZ−1,{1,−1}n ,

T3 =
∑

α1(α−1α1)nZ1,{−1,1}n ,T4 = 1 +
∑

(α−1α1)nZ{−1,+1}n ,

logS0 =
∑

1≤r

εi=±1
∑

ε1+δ+εr=0

ε1γε1,...,εrαε1 . . . αεrZ
ε1,...,εr ,

S± = ±
∑

2≤r

εi=±1
∑

ε1+···+εr=±1

γε1,...,εrαε1 . . . αεrZ
ε1,...,εr ;

moreover,
γε1,...,εr :=

∏

εj
∏

(ε1 + · · ·+ εr).

Starting from these formulas, it is interesting to follow how the relations between
the components of two types

T1T4 − T2T3 = 1, Y0 = T1/T4, Y+ = T3/T1, Y− = T2/T4, (40)

T 2
1 ≡ Y0(1 − Y+Y−)−1, T 2

2 ≡ Y −1
0 Y 2

−(1 − Y+Y−)−1, (41)

T 2
3 ≡ Y0Y

2
−(1− Y+Y−)−1, T 2

4 ≡ Y −1
0 (1− Y+Y−)−1 (42)

automatically yield relations between displays:

R(Ti, Yj) ≡ 0 =⇒ R(dplTi, dplYj) ≡ 0 =⇒ R(Ti,Yj) ≡ 0.

For checking the relations R(Ti,Yj) ≡ 0, we can put α1 = α−1 = 1 and apply
the multiplication rule (29) to the series of Z-symbols:

T1 = 1 + Z+− + Z+−+− . . . , T2 = Z− + Z−+− + Z−+−+− . . . ,

T3 = Z+ + Z+−+ + Z+−+−+ . . . , T4 = 1 + Z−+ + Z−+−+ . . . ,

Y+ = Z+ − 2Z+−+ + 4Z++−+− + 12Z+++−− + · · · ,
Y− = Z− − 2Z−+− + 4Z−−+−+ + 12Z−−−++ + · · · ,

logY0 = (Z+− − Z−+)− 2(Z++−− − Z−−++)

+ 4(Z++−+− − Z−−+−+)− 12(Z+++−− − Z−−−++) . . . .

First-order singular ODEs. Pass to the general ODE formally adjoint to
the equation Y ′ = Y :

Y ′ = Y +
∑

0≤n

Hn(z)Y n (
∑

HnY
n ∈ z−1

C{z−1, Y }). (44)

The complete solution involves exponents and divergent series Ym:

Y (z, u) = Y0(z) +
∑

1≤m

umemzYm(z) (Ym(z) ∈ C[[z−1]]). (45)

Each Ym(z) is a resurgent function, and the singular points of ̂Ym(ζ) lie over m ∈ N.
Here the bridge equation takes the form

�nY (z, u) = AnY (z, u) с An = an u
n+1∂u (∀n ∈ {−1} ∪ N∗), (46)



58 J. R. Ecalle

which leads to separate resurgence equations

�nYm = (m− n)anYm−n (m ∈ N, −1 ≤ n ≤ m, an ∈ C). (47)

The special equations

�−1Y0 = a−1 Y1, �−1Y1 = 2a−1Y2, . . . , �−1Ym−1 = ma−1Ym

imply that (�−1)mY0 = m!(a−1)mYm. This means that (provided that the key
coefficient a−1 �= 0) the whole sequence Y1, Y2, Y3 . . . can be constructively deduced
from known Y0, which is of course impossible for regular ODEs. This shows that, on
contrast to regular ODEs, singular ODEs are remarkably connected: knowing even
a small part of their solution, one can reconstruct the whole solution.

For comparison: if P (x) is an irreducible (reducible) polynomial over Q then it
is possible (not possible) to deduce all roots from one root x0.

Singular differential systems. Results very close to those given above are
available:

(i) for an ODE of order d ≥ 2 with dihedral Newton polygon;
(ii) for nonautonomous differential systems:

Y ′j = λjYj + hj(z, Y1, . . . , Yn) (1 ≤ j ≤ n), (48)

(iii) for autonomous differential systems (“vector fields”):

Y ′j = λjYj + hj(Y1, . . . , Yn) (1 ≤ j ≤ n) (49)

with single resonance
∑

mjλj = λj0 (mj ≥ 0).

§ 5. Transcendence. Analysis and Synthesis.

Transcendence and independence theorems. The display facilitates prov-
ing the theorems on the independence of solutions ϕi(z) =

∑

aj,nz−n to separate
ODEs, i.e., proving the fact that such ϕi are in general not connected by any new
relations. And the reason is simple: the embedding of 2-symbols into a hypothetical
relation R imposes a huge number of new, very hardly fulfillable conditions:

R(ϕ1, . . . , ϕs) = 0 =⇒ R(dplϕ1, . . . , dplϕs) =
p,q,ωi
∑

Rp,ω1,...,ωq

p+q=:N
︷ ︸︸ ︷

z−p
Z
ω1,...,ωq = 0.

Indeed, when N := p + q → ∞, the number of the relations Rp,ω1,...,ωq = 0 grows
as O(N1+k), and the number of their coefficients aj,n grows only as O(s.N), which
easily leads us to a contrdiction.

In this context, analysis is the problem of describing the Stokes constants Aω.
Here the two approaches are possible: a computational approach and a theoretical
approach.

For the dominant constants Aω (ω on the boundary of the convergence disk),
starting from ̂�ωϕ̂(ζ) := Aωϕ̂ω(ζ), where ϕ̂ and ϕ̂ω are well known, one can ef-
fectively compute Aω by means of the asymptotic analysis of the coefficients ϕ̂.
For the nondominant Stokes constants Aω, we must first take the point ω into the
convergence disk by a conformal mapping.

Now, let us discuss the theoretical approach. Expanding a solution ϕ in the
series

ϕ(z) =
(

∑

r

∑

ωi

W ω1,...,ωr(z)Bωr . . .Bω1

)

z, (50)
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deduce the explicit expression for the Stokes constants:

Aω0 =
(

∑

r

∑

ω1+···+ωr=ω0

Wω1,...,ωr(z)Bωr . . .Bω1

)

z, (51)

where Bω are simple differential operators encoding the Taylor coefficients of our
ODE and W ω1,...,ωr are elementary resurgent functions with elementary behavior
under the �-derivation:

�ω0W
ω1,...,ωr(z) =

∑

1≤j≤r

∑

ω1+···+ωj=ω0

Wω1,...,ωjW ωj+1,...,ωr (z). (52)

The elementary functionsWω(z) are called the resurgent monomials, and the num-
bers Wω are known as the resurgent monics. The resurgent monics are similar to
hyperlogarithms in their form.

Synthesis is the problem inverse to “analysis”: for a certain type of a sin-
gular ODE, it is required to construct by explicit formulas the more “natural” or
the “simplest” ODE of a given form possessing a prescribed set of Stokes constant:
{Aω, ω ∈ } =⇒ ODE.

The synthesis relies upon resurgent monomials Uωc (z) different from the mono-
mials Wω

c (z) used in the analysis. Here is their definition:

Uω1,...,ωr
c (z) := SPA

∞
∫

0

e
∑

j
ωj(z−yj)+c2

∑
j
ω̄j(z−1−y−1

j ) dy1 . . . dyr
(yr − yr−1) . . . (y2 − y1)(y1 − z) , (53)

where SPA is the standard averaging of the integration paths. List the main prop-
erties of these new “monomials”:

Uω
′

c U
ω′′
c =

ω∈sha(ω′,ω′′)
∑

Uωc (“shuffle product”), (54)

�ω0U
ω1,...,ωr
c = Uω2,...,ωr

c if ω0 = ω1 (respectively = 0 if ω0 = ω1), (55)

∂zU
ω
c =

∑

ω′·ω′′=ω

Uω
′

c Uω
′′

c = earlier monomials Uω
′

c . (56)

One should also observe the similatity of the behaviors ofUωc at the antipodes z =∞
and z = 0. Now, pass to the general scheme of the synthesis. For each c > 0, it
is easy to find the (unique) formal solution in the form of the Stokes constants Aω

on the one side and the “monomials” Uωc on the other. For example, for resonance
vector fields X , the solution is as follows: X = �∂�−1, where

� := 1 +
∑

(−1)rUω1,...,ωr
c Aωr . . .Aω1 , (57)

�−1 := 1 +
∑

Uω1,...,ωr
c Aω1 . . .Aωr . (58)

The convergence of these series (which is important) is guaranteed automatically
for sufficiently large c. We should also mention the following curious phenomenon:
though the constructed ODE is defined near z =∞, by the antipodality of our Uw ,
to it there corresponds another ODE, defined near z = 0 (its “antipodal shadow”).
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§ 6. Multicritical ODEs and Acceleration

When the complete solution to a given ODE is a series in z−1 and various
elementary blocks uieσijzj and also z1 ≺ z2 ≺ · · · ≺ zr (for example, zj ≡ zαj and
0 < αj ↑)), the summation scheme gets more complicated. For example, this applies
to ODEs with more than one dihedral Newton polygon and to vector fields with
multiple resonance. One must pass through several Borel planes: as many as there
are “critical times” zj . The transitions ϕ̂j(ζj) → ϕ̂j+1(ζj+1) are carried out by the
so-called acceleration integrals Cj,j+1 but the situation remains the same in each of
the ζj-planes: at each function ϕ̂j(ζj), there act its own �-operators, generating
their own resurgence equations with their own Stokes constants Aω. The general
scheme is as follows:

ϕ̃1(z1) ← ϕ̃(z) ϕ(z) ← ϕr(zr)
↓B L ↑
ϕ̂1(ζ1) → ϕ̂2(ζ2) → · · · → ϕ̂r−1(ζr−1) → ϕ̂r(ζr)

C1,2 C2,3 Cr−1,r

§ 7. Conclusion

In mathematics, resurgent functions are also applied:
(i) in the so-called difference equations;
(ii) in various functional equations; for example, in delay ODEs;
(iii) in discrete dynamical systems;
(iv) in singular perturbations, i.e., in expansions in a regular parameter ε; for

example, in ODEs of the type

E(z, ϕ, ϕ′, . . . , ϕ(d−1)) + ε ϕd = 0;

(v) in partial differential equations (O. Costin);
and many other problems.

In physics, resurgent functions are more and more frequent in expansions:
(i) in the Planck constant �, in the so-called quasiclassical approach to quantum

mechanics;
(ii) in the gauge coupling parameter α;
(iii) and in seemingly all important “small” constants of physics since, in ac-

cordance with Berry’s principle: “When the nonvanishing of some small physical
parameter ε means passing from a classical theory to its nonclassical generalization
then the expansions in power series in ε as a rule diverge, which reflects the non-
triviality of this passage” (See the recent conference on resurgence and string theory
held in CERN, Geneva from June 29 to July 3, 2014). In conclusion, we stress that:

(i) the �-operators generate a new “calculus,” which is original and many-sided
and has both a “differential” side and an “integral” side;

(ii) the resurgent functions “algebrize” and thus simplify many analytical prob-
lems, especially in the study of singular ODEs;

(iii) they are more and more frequent in theoretical physics, where the frequent
divergence is not a “curse” but rather a source of new insights.

We indicate some references to the topic under consideration: [1–7] (the reader
is referred to the author’s web site for a more complete list).
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ASYMPTOTICALLY OPTIMAL ERRORS

OF LATTICE CUBATURE FORMULAS
Ts. Zh. Yumova

Abstract. The norm of a periodic error is minimized by a functional analytical method
of the cubature theory. The quality of the formulas constructed is improved for a large
family of elements of an anisotropic space.

Keywords: lattice cubature formula, periodic error, anisotropic Sobolev space

Introduction. The statements and basic results of the theory of cubature
formulas are due to Academician S. L. Sobolev [1] who proposed the functional
analytical method for a family of integrands of a Hilbert space. His articles serve as
fundamentals and sources of intensive development of the modern theory of partial
differential equations, functional analysis, and numerical mathematics.

Multi-dimensional integrals are difficult to compute in view of bulky calcula-
tions, since at present there are no universal methods for optimization of cubature
formulas on function spaces. Hence, the studies are realized from the standpoints of
various research directions. One of these directions is the “functional analytical” ap-
proach connected with the study of error estimates in classes of summable functions
and normed linear vector spaces of integrable functions.

The main results of optimization problems for cubature formulas over the aniso-
tropic function spaces Wm

p (En) with different smoothness for different coordinate
directions are exposed in the articles by Ts. B. Shoinzhurov [2, 3] and M. D. Ra-
mazanov [4]. In particular, M. D. Ramazanov investigates cubature formulas on
a nonweighted space of periodic functions with main period the unit cube. But with
this definition of the norm of a function evokes certain difficulties with periodic ex-
tension of a function onto the unit cube. Ts. B. Shoinzhurov extends functions from
their domains by “removing” constraints, which fact allows him to apply the Fourier
transform to a function periodic on the whole space.

To construct lattice cubature formulas, asymptotically optimal with respect
to integrable functions and depending on their differential properties, we explic-
itly present the main term of the norm of a periodic error with finite summability
exponent.

Preliminaries. Assume that hk > 0, k = 1, . . . , n, is the mesh width, xk

is a node of the formula, Ck is the coefficient of a formula, mk is the smooth-
ness of a function along the coordinate direction, m = (m1,m2, . . . ,mn), m∗ =
n/
(∑n

k=1 m
−1
k

)
, h̄ = diag(h1, h2, . . . , hn) is the matrix of periods, �h̄ = {x ∈ En,

0 ≤ xk < hk, k = 1, 2, . . . , n} is the fundamental parallelepiped with edge length hk,
�h̄ = hn = det h̄ �= 0, and � = {x ∈ En, 0 ≤ xk < 1, k = 1, 2, . . . , n} is the
fundamental unit cube.

c© 2015 Yumova Ts. Zh.
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In the article we study cubature formulas on classes of periodic functions from
an anisotropic space with the matrix h̄ of periods whose generalized derivatives has
different smoothness properties along different coordinate directions. The formu-
las constructed are used for a family of the integrands from the anisotropic space
Wm

p (En) endowed with the natural norm

‖ϕ‖Wm
p (En) =

[ ∫

En

(
|ϕ(x)|p +

n∑

k=1

|Dmkϕ(x)|p
)
dx

]1/p
<∞.

The difference between the integral and an approximating combination of the
values of the integrand is treated as the result of applying some generalized function
that is defined by the cubature formula and is called an error.

The cubature sum approximating an integral from the functional standpoint is
spanned by the Dirac delta functions δ(x), i.e.

N∑

k=1

Ckϕ(x(k)) =
( N∑

k=1

Ckδ(x− x(k)), ϕ(x)
)
.

The delta-functions can be applied only to a continuous test function and so we
require the embedding of the basic space into the space of continuous functions
Wm

p (En) ⊂ C(En), which is ensured by the embedding condition p−∑n
k=1 m

−1
k > 0

(see [5]). This embedding is continuous, i.e., the error of a cubature formula is linear
and bounded on Wm

p (En). The numerical majorant of its norm in the dual space
Wm∗

p (En) allows us to obtain guaranteed estimates for proximity of the integral of
this function and the cubature sum in question.

As is known [6], the differential properties of an anisotropic space are different
in different directions; while the space is complete for 1 ≤ p ≤ ∞, separable for
1 ≤ p <∞, and reflexive and uniformly convex for 1 < p <∞.

General representation of the error and the extremal function. A cu-
bature formula is assumed to be of a better quality if its error has smaller norm.
To find the norm of the error in the corresponding space, we involve the extremal
function that is a generalized solution to some partial differential equations. The
differential operator L(D) =

∑n
k=0(−1)mkD2mk occurring in such equation is gen-

erated by the form of the norm of a function in the basic space.
It is proven (see, for instance, [3]) that every linear functional l(x) in Wm∗

p is
representable as

〈l, ϕ〉 =
∫

En

n∑

k=0

(−1)mkDmku ∗Dmkϕdx,

where ϕ ∈Wm
p , u ∈Wm

p′ and

L(D)u = l(x), l ∈Wm∗
p . (1)

As is known [7], the fundamental solution ε2m(x) to L(D) is not unique, it
is defined to within some summand ε0

2m(x) that is a solution to the homogeneous
equation L(D)ε0

2m = 0. For ε2m(x) ∈ Wm∗
p (En) satisfying

L(D)ε2m(x) = δ(x) (2)
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to be a fundamental solution to (1), it is necessary and sufficient that the Fourier
transform of ε2m(x) satisfy the equation L(2πiξ)F [ε2m(x)] = 1, where

L(2πiξ) =
n∑

k=1

(−1)mk(2πiξk)2mk + 1 = 1 +
n∑

k=1

(2πξk)2mk .

A fundamental solution ε2m(x) to L(D), called a kernel in what follows, is
a function infinitely differentiable at x �= 0, summable in En, and

ε2m(x) = F−1
(

1
n∑

k=0
(−1)mk |2πξk|2mk

)
.

Owing to the special norm introduced by Ts. B. Shoinzhurov in [2] for which the
corresponding differential operator was well studied and described in the literature
(see, for instance, [5]), it is possible to apply the properties of its fundamental
solution for finding extremal functions and norms of errors of cubature formulas.
The general representations of the periodic error l̃0(h−1x) = 1 − �0(h−1x) is as
follows:

〈l̃0(h−1x), ϕ(x)〉�h̄
=
∫

�h̄

n∑

k=0

(
Dmkϕ0(h−1x) + hmk

k C(0)
k

)
Dmkϕ(x) dx,

and the corresponding extremal function

ϕ0(h−1x) = hm∗p′
∑

γ �=0

e2πih−1γ(x−y)

|2πγ|2m∗ Cγ , (3)

Cγ =
∫

�h̄

n∑

k=0

(−1)mk

∣
∣
∣
∣C

(0)
k

∑

β �=0

Dmke−2πih−1βy

1 +
n∑

j=1
(2πih−1βj)2mj

+ hmk
k C(0)

k

∣
∣
∣
∣

1
p−1

× sgn
(
C(0)

k

∑

β �=0

Dmke−2πih−1βy

1 +
n∑

j=1
(2πih−1βj)2mj

+ hmk
k C(0)

k

)
dy,

were obtained earlier in [8] under the condition 1 − p−1
n∑

k=1
m−1

k > 0. Here C(0)
k is

a solution to the system of equations
∫

�

n∑

k=1

∣
∣
∣
∣
(−2πiβk)mke−2πiβkxk

n∑

j=0
(2πiβj)2mj

+C(0)
k

∣
∣
∣
∣

1
p−1

sgn
(

(−2πiβk)mke−2πiβkxk

n∑

j=0
(2πiβj)2mj

+C(0)
k

)
dx = 0.

(4)
An approach similar to that in [2] with the use of properties of the fundamental

solution ε2m(x) allows us to determine the norm of the periodic error of cubature
formulas as follows:

‖l̃0(h−1x)‖
˜Wm∗

p (�h̄)

=
( ∫

�h̄

n∑

k=0

∣
∣
∣
∣
∑

β �=0

(
2πih−1

k βk

)mke−2πih−1
k βkxk

1 +
n∑

j=1
(2πih−1βj)2mj

+ hmk
k C(0)

k

∣
∣
∣
∣

p′

dx

)1/p′

. (5)
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Asymptotic representation for the norm of an optimal error. In the
space of periodic functions we extract the main term of the norm of (5) which is
independent of h̄ =

√
h2

1 + h2
2 + · · ·+ h2

n when vanishes.
In view of the difficulty (see [4]) of characterization of an anisotropic space

of functions periodic with the same basic period whose differential properties are
different in different directions, we need to require that the norm of a function does
not increase after subtracting the zero coefficient in the corresponding series. To
resolve this problem, the authors of [8] obtain a criterion for asymptotic optimality
of a cubature formula on coefficients, namely: the order of convergence must agree
with the lattice mesh and smoothness of a functions in coordinate directions by the
relations

hm1
1 = hm2

2 = · · · = hmn
n = hm∗ . (6)

It allows us to establish the order optimality on the class of lattice cubature formulas
on an anisotropic space and to determine with the use of (6) the following dependence
of the lattice mesh on smoothness of a function in a given direction:

hk = hm∗/mk , Nk = Nm∗/mk , k = 1, 2, . . . , n.

Since the order of convergence must agree with the lattice mesh and smoothness
of a function in coordinate directions by (6), we transform the integral on the right-
hand side of (5) as follows:

J =
∫

�h̄

n∑

k=0

∣
∣
∣∣
∑

β �=0

(−2πihkβk)mke−2πihkβkxk

n∑

j=0
(2πihkβj)2mj

+ hmk
k C(0)

k

∣
∣
∣∣

p′

dx

= hm∗p′hn

∫

�

n∑

k=0

∣
∣
∣∣
∑

β �=0

(−2πiβk)mke−2πiβkxk

n∑

j=0
(2πiβj)2mj

+ C(0)
k

∣
∣
∣∣

p′

dx. (7)

The equality
(−2πiβk)mke−2πiβx = hm∗e−2πiβx

holds for the zero value of k and so (7) can be rewritten as

J=
∫

�

∣
∣
∣
∣
∑

β �=0

hm∗e−2πiβkxk

h2m∗ +
n∑

j=1
(2πiβj)2mj

∣
∣
∣
∣

p′

dx+
n∑

k=1

∣
∣
∣
∣
∑

β �=0

(−2πiβk)mke−2πiβkxk

h2m∗ +
n∑

j=1
(2πiβj)2mj

+ C
(0)
k

∣
∣
∣
∣

p′

dx.

Theorem. Assume that the conditions (2) and (3) hold in W̃m
p (�h̄),

l̃0(h−1x) ∈ W̃m∗
p (�h̄), 1− p−1

n∑

k=1

m−1
k > 0, 1 < p <∞,

1
p

+
1
p′

= 1,

hk is the lattice mesh, the norm of a functional l̃0(h−1x) is defined by (5), with the
parameters C(0)

k solutions to (4). Then the norm of an optimal periodic error as
h̄→ 0 has asymptotic representation

‖l̃0(h−1x)‖
˜Wm

p (�h̄)

= hm∗+n+ n
p′
(∫

�

n∑

k=1

∣
∣
∣
∣
∑

β �=0

(−2πiβk)mke−2πiβkxk

h2m∗ +
n∑

j=1
(2πiβj)2mj

+ C(0)
k

∣
∣
∣
∣

)1/p′

(1 + O(h)). (8)
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Proof. In view of (6), taking h−1
k xk = yk, k = 1, 2, . . . , n, in (5), we infer

‖l̃0(h−1x)‖
˜Wm

p (�h̄)

=
( ∫

�h̄

n∑

k=0

∣
∣
∣∣
∑

β �=0

(− 2πih−1
k

βk

)mke−2πih−1
k

βkxk

n∑

j=0

(
2πih−1

j βj

)2mj

+ hmk
k C(0)

k

∣
∣
∣∣

p′

dx

)1/p′

=
〈
y = h−1x dx = hndy
x = hy �h̄ → �

〉

= hn

(∫

�

n∑

k=0

(∑

β �=0

(−2πiβk)mkh−mk
k

e−2πih−1
k

βkyk

n∑

k=0

(
2πih−1

k βk

)2mk

+ hmk
k C(0)

k

)
dy

)1/p′

.

Transform the denominator as follows:

n∑

k=0

(
2πih−1

k βk

)2mk =
n∑

k=0

∣
∣2πh−1

k βk

∣
∣2mk =

n∑

k=0

|2πβk|2mkh−2m∗
k

= h−2m∗
k

n∑

k=0

|2πβk|2mkh2m∗−2mk
k . (9)

Next,

n∑

k=0

|2πβk|2mkh2m∗−2mk
k = h2m∗ + |2πβ1|2m1h2m∗−2m1

k + |2πβ2|2m2h2m∗−2m2
k

+ · · ·+ |2πβn−1|2mn−1h
2m∗−2mn−1
k + |2πβn|2m∗ > |2πβk|2m∗ . (10)

Taking (9) and (10) into account, we conclude that

‖l̃0(h−1x)‖ = hn

(∫

�

n∑

k=0

(∑

β �=0

(−2πiβk)mkh−mk
k

e−2πiβkyk

−h−2m∗
k

n∑

k=0
(2πiβk)2mkh2m∗−2mk

k

+ hmk
k C(0)

k

)
dy

)1/p′

= hn

(∫

�

n∑

k=0

(∑

β �=0

(−2πiβk)mkh2m∗−mk
k

e−2πiβkyk

−
n∑

k=0
(2πiβk)2mkh2m∗−2mk

k

+ hmk
k C(0)

k

)
dy

)1/p′

= hn

(∫

�

n∑

k=0

h(2m∗−mk)p′
k

(∑

β �=0

(−2πiβk)mke−2πiβkyk

−
n∑

k=0
(2πiβk)2mkh2m∗−2mk

k

+ C(0)
k

)
dy

)1/p′

≤ Khn
n∑

k=0

h(2m∗−mk)p′
k

(∫

�

(∑

β �=0

(−2πiβk)mke−2πiβkyk

−
n∑

k=0
(2πiβk)2mkh2m∗−2mk

k

+ C(0)
k

)
dy

)1/p′

.

(11)
Rewrite (11) as follows:

‖l̃0(h−1x)‖p′ ≤ Khn
n∑

k=0

∫

�

n∑

k=0

∣∣
∣
∣
∑

β �=0

(−2πiβk)mke−2πiβkxk

1 +
n∑

k=1
(2πβk)2mk

+ Ck

∣∣
∣
∣

p′

dyh(2m∗−mk)p′
k
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= Khn

∫

�h̄

n∑

k=0

h2m∗p′
∣
∣
∣
∣
∑

β �=0

(−2πiβ0)m0e−2πiβ0x0

1 +
n∑

k=1
(2πβk)2mk

+ C0

∣
∣
∣
∣

p′

dy

+Khn

∫

�h̄

n∑

k=0

h(2m∗−m1)p′
∣∣
∣
∣
∑

β �=0

(−2πiβ1)m1e−2πiβ1x1

1 +
n∑

k=1
(2πβk)2mk

+ C1

∣∣
∣
∣

p′

dy

+ · · ·+ Khn

∫

�h̄

n∑

k=0

h(2m∗−mn)p′
∣
∣
∣
∣
∑

β �=0

(−2πiβn)mne−2πiβnxn

1 +
n∑

k=1
(2πβk)2mk

+ Cn

∣
∣
∣
∣

p′

dy

≤ Khn

∫

�

n∑

k=0

hm∗p′
∣
∣∣
∣
∑

β �=0

(−2πiβk)mke−2πiβkxk

1 +
n∑

k=1
(2πβk)2mk

+ Ck

∣
∣∣
∣

p′

dy(1 + K1h
p′).

Since smoothness of functions in an anisotropic space is different in different
directions with the lattice mesh hk, we find that

‖l̃0(h−1x)‖p′≤Khn

∫

�

n∑

k=0

h(m∗+n)p′
∣
∣∣
∣
∑

β �=0

(−2πiβk)mke−2πiβkxk

1 +
n∑

k=1
(2πβk)2mk

+ Ck

∣
∣∣
∣

p′

dy(1 + O(hp′ )),

‖l̃0(h−1x)‖≤Kh(m∗+n)h
n
p′
(∫

�

n∑

k=1

∣
∣
∣
∣
∑

β �=0

(−2πiβk)mke−2πiβx

n∑

j=1
(2πiβj)2mj

+ C(0)
k

∣
∣
∣
∣

)1/p′

(1 + O(h)).

Thus, the norm (4) as h̄→ 0 has asymptotic representation (8).
The theorem is proven.
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THE INFLUENCE OF NONLINEAR

EFFECTS ON THE SOCIETY STABILITY
E. K. Basaeva, E. S. Kamenetsky,

and Z. Kh. Khosaeva

Abstract. We consider the interaction of the elite and workers in a society. Our quali-
tative analysis of the differential equations describing this interaction shows that a fold
catastrophe can occur when the number of real stationary points changes. The form
of the fold depends on the coefficient characterizing the intrinsic tendency to reduce or
increase influence.

Keywords: dynamical model, stationary points, fold catastrophe

No adequate dynamical models are available to describe social systems on the mi-
crolevel, i.e., on the level of interactions between separate individua and/or small
groups. At the same time, numerous attempts were made at applying dynamical
models based on reasonable and realistic social hypotheses, i.e., information on the
driving social forces, to analyze the interactions between large social groups (the
macrolevel), see the survey [1]. In this case the problem arises of extracting the
macroparameters essential for a particular study and write down the equations de-
termining how the macroparameters change.

The nonlinear character of state social systems change is generally accepted
presently. Nonlinear effects can lead to unstabilities of the system (see [2–6] for
instance); thus, the appearance of social crises and revolutions is related to nonlinear
effects. Some nonlinear model application to describing the interaction between the
ruling group and a hostile social group striving for power exemplify in [5]. As
the controlling parameter grows above a certain threshold value, that system of
equations leads to a sharp jump in the hostility level between the groups; i.e., a fold
catastrophe occurs. The controlling parameter is the level of initial discontent of the
group striving for power, which is related to worsening economic situation, increasing
inequality, the feeling of discrimination in ethnic, religious, language, and regional
groups, as well as the introduction of political sanctions. There are no estimates
in [5] for the coefficients of the model and the influence of these factors on the
controlling parameter.

The model of collective actions proposed in [7], considers the influence of emo-
tions and stereotypes on the people’s actions in a crowd. This model describes the
interaction between individuals in a group. We can apply the same approach to
describe the interaction among several social groups. As an integral characteristic
of the mental state of the group we take the social and political tension.

By social and political tension we understand the integral phenomenon reflecting
the dissatisfaction of a large number of people with the system of social, economic,
and political relations.

c© 2015 Basaeva E. K., Kamenetsky E. S., and Khosaeva Z. Kh.
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To describe tension in a social group, we use the differential equation that
is obtained by simple transformations and translation to the limit from the finite
difference equation of [7]:

dP

dt
= γ[1 − η(1 − β)]U + γ[η((U + β(1 − 2U)) − 1]P,

where P ∈ [0, 1] (with P = 0 corresponding to the total absence of tension, and
P = 1 to the maximal possible tension), while U is the controlling parameter, γ is
the intensity of the influence perception, η ∈ [0, 1] is the internal tendency to reduce
or increase the influence, and β ∈ [−1, 1] is the perceptiveness to affects.

If the internal tendency to increase the influence is absent (i.e., η = 0) then

dP

dt
= γ(U − P ). (1)

This equation can describe the dependence of tension in the group on the changing
economic situation or another, less influential social group. Note that sharp wors-
ening of the economic situation corresponds to U → 1, while sharp improvement,
to U → 0.

When the intergroup influence is essential, for instance, when β = 1, we have
dP

dt
= γ[(U − P ) + ηP (1 − U)]. (2)

However, when tension in a social group is substantially determined by the influence
of another group, it is expedient [8] to assume that the intensivity coefficient γ is not
constant and write it as γ = cU/(1−U). Here the constant c ∈ [0, 4] determines the
danger perception degree for this social group related to a conflict with the other
group.

Consider the change of tension in a society consisting of the two groups: the
ruling elite and the workers. Assume that the influence of changing economic situa-
tion and intergroup interaction is additive, while the influence of the workers on the
elite is minor. Denote tension in the elite by P1 and in the workers by P2. Then
tension in the elite consists of the two terms of the form (1): γэ1(U1 − P1) is the
influence of economic factors, and γ12(P2−P1) is the influence of the workers on the
elite, where U = P2. Thus,

dP1

dt
= γэ1(U1 − P1) + γ12(P2 − P1). (3)

If the elite guarantees itself the maximally favorable economic situation, i.e., U1 = 0;
then

dP1

dt
= −γэ1P1 + γ12(P2 − P1). (4)

Similarly, tension in the workers is the sum of a term of the form (1) reflecting the
influence of changes in economic situation on the workers and a term of the form (2)
characterizing the influence of the elite on the workers. Since tension in the workers
is considerably influenced by the elite, assume that γ21 = c2P1/(1−P1). Therefore,
we arrive at the following equation describing tension in the workers P2:

dP2

dt
= γэ2(U2 − P2) + c2

P1

1 − P1
[(P1 − P2) + η2P2(1 − P1)]. (5)

The system of (4) and (5) coincides with the equations proposed in [5] in the
case that “the cost of collective action is proportional to the squared tension in the
ruling elite.”
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Let us find the stationary points of the resulting system of equations. From (4)
we obtain the relation between the stationary value of tension in the elite, P ∗

1 , and
the workers, P ∗

2 :
P ∗

1 =
γ12

γэ1 + γ12
P ∗

2 .

Inserting this expression into (5), we obtain

η2c2

(
γ12

γэ1 + γ12

)2

(P ∗
2 )3 +

(
γэ2 +

γ12γэ2

γэ1 + γ12
U2

)
P ∗

2 − γэ2U2

−
[

γ12γэ2

γэ1 + γ12
+ c2

γ12

γэ1 + γ12

(
γ12

γэ1 + γ12
− 1

)
+ η2c2

γ12

γэ1 + γ12

]
(P ∗

2 )2 = 0.

Depending on U2, for γэ1 = 0.1, γэ2 = 0.1, η2 = 0.4, c1 = 0.3, and γ12 = 1, the
resulting cubic equation for P ∗

2 can have one or three real solutions (Fig. 1). The
lower and upper branches of the solution correspond to stable stationary points,
while the middle branch is unstable. This means that in transition from three
stationary points to one tension in the workers may change sharply, i.e., a fold
catastrophe occurs for a certain critical value of the controlling parameter. For
greater values of the controlling parameter there is one stationary point with a large
value of tension in the workers.

Fig. 1. Change of tension in the workers Fig. 2. Change of tension in the workers
as the economic situation changes as the economic situation changes

(curve 1: η2 = 0.6,
curve 2: η2 = 0.4, curve 3: η2 = 0.2)

The critical value U2 ≈ 0.11 of the controlling parameter obtained for the
specified values of constants corresponds to a growing economy, and therefore it is
unreal. Moreover, we have not managed to increase substantially this critical value
for any values of constants. This means that the model (4), (5) is unsatisfactory.

To improve the model, suppose that the influence of workers on the elite is
described by an expression similar to that for the influence of the elite on the workers,
but with different constants: γ12 = c1P2/(1 − P2) and η1 = 0. The first equation of
the system becomes

dP1

dt
= −γэ1P1 + c1

P2

1 − P2
(P2 − P1). (4′)

Some algebraic equation of the six degree is obtained for the stationary points of the
system (4′), (5).
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The constants in (4′) and (5) are determined by the developed intergroup re-
lations and mentality and change rather slowly (the characteristic time is of the
order of decades). The parameter η2, the internal tendency to reduce or increase the
influence, is an exception; under the influence of information it can change quickly.
Therefore, it is of interest to study the behavior of (4′), (5) for various values of η2.

Using the model (4′), (5), we ran a series of computational experiments. For
γэ1 = 0.1, γэ2 = 0.1, c1 = 0.3, and c2 = 0.8, depending on the value of η2, one or
two branches of the solution to the algebraic equation for the stationary points lie
(Fig. 2) in the domain P2 ∈ (0, 1).

The lower branch is stable, whereas the upper branch is unstable. As η2 in-
creases, so does the distance between the branches, and the upper branch leaves the
region of interest.

This behavior of the system corresponds to the understanding that society may
destabilize under the influence of a sharply worsening economic situation (Fig. 2,
curves 1 and 2). Observe that for sufficiently small values of η2 destabilization never
occurs at all (Fig. 2, curve 3). The reason for this is the appearance of feedback for
large η2. Increasing tension in the workers leads to increasing tension in the elite,
which causes an additional increase of tension in the workers.

Note that, as usual, catastrophe theory implicitly assumes an instantaneous
transition from one state into another, i.e., a jump from one equilibrium point to
another or to the boundary of the domain. Actually, for the social system under
consideration this process takes some time. Hence, if during this time the controlling
parameter will return to the original value (which corresponds to improving the
economic situation), while the state of the system still lies in the basin of attraction
of the stable stationary point, then the system returns into that stable state.

Previously it was thought [9] that “the drop in living standards by one order
of magnitude means a defeat, a revolutionary situation, or a change of the regime.”
However, already it is noted in [10] that “the events of recent years in a series of states,
which we witnessed, show that this is false.” Our results suggest explanation for the
ambiguity of the influence of economic factors on the destabilization of society; i.e.,
apart from economic factors, the parameter η2 also affects destabilization, and it
apparently depends on the share of young people in the society [11], the presence
of well-off and/or well-educated people devoid the possibilities of influencing the
society management processes [12], and the information influence often external
character [13].
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3D MODELING OF SEISMIC WAVE FIELDS IN

A MEDIUM SPECIFIC TO VOLCANIC STRUCTURES
B. M. Glinskĭı, V. N. Martynov,

and A. F. Sapetina

Abstract. The problem of predicting the catastrophic events that could be caused by
an impending outbreak of volcanic activity is urgent. To solve this problem, we must
conduct comprehensive and unbiased investigations including the numerical modeling of
the processes occurring at the surface and inside a volcanic structure. This should be
done in order to create a vibroseismic monitoring system. We have developed the parallel
2D and 3D algorithms and the programs for simulating the elastic wave propagation
in media of complex subsurface 3D geometries (the 2D models are cross-sections of
the original 3D model by planes at various angles). We use explicit finite difference
schemes for staggered grids and the CFS-PML method of absorbing boundaries. The
proposed numerical method and its parallel implementation efficiently use the modern
supercomputer architecture that is based on graphic accelerators. For creating a possible
system of vibroseismic monitoring of the strata-volcano Elbrus we have carried out
a series of 3D calculations aimed at studying the structure of a wave field, generated
by the geometry of internal boundaries of a certain model, and at refining its kinematic
and dynamic characteristics.

Keywords: monitoring, 3D simulation, elastic waves, finite difference schemes, hybrid
cluster, GPU

1. Introduction

In the present state-of-the-art, the software tools for carrying out the numeri-
cal modeling Are becoming increasingly dependent on supercomputer architecture,
taming r not only on the choice of algorithms for solving the problems posed on the
chosen architecture, but also on the choice of the statement as it is. Many algo-
rithms work faster on appropriate types of architecture, and we often need to adapt
a chosen algorithm to the available architecture, which can yield a large performance
gain when solving the problem. Thus, the time needed for a simulation is decreased.
This paper is aimed at designing the software tools for carrying out the numerical
modeling of seismic wave fields in the 3D media characteristic of volcanic structures.

Volcanoes, including inactive ones, pose potential threats of sudden strong
catastrophic events. The ability to predict an imminent eruption would enable us
to save human lives and their property. Hence, it is necessary to monitor the state
of volcanoes, to trace changes in parameters of their interior, and to make correct
conclusions. The latter requires a preliminary thorough and comprehensive study of
the processes occurring inside volcanoes and at their surfaces.

Active vibroseismic monitoring is one of the appropriate tools. The information
it brings is difficult to interpret and requires preliminary and concurrent numerical
modeling of the processes inside a geophysical object in question with allowance for

c© 2015 Glinskĭı B. M., Martynov V. N., and Sapetina A. F.
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its specific structure. Usually the shape of an object is complex that makes difficult to
place An observational station for solving the inverse geophysics problem. Therefore,
we have to solve the direct problem by varying the parameters of a simulated medium
so that the results of the numerical and field experiments coincide.

In addition, this approach enables us to consider different possible types of the
composition of magma volcanoes and their various states in order to distinguish the
main effects appearing in the data recorded by the surface observational system at
the surface of a volcano. The approach proposed facilitates the interpretation in the
immediate monitoring.

Thus, when carrying out the vibroseismic monitoring we are facing the prob-
lem of the large-scale simulation of the processes occurring in volcanoes of various
compositions.

Solving this problem requires the use of the supercomputer technologies of the
latest design.

2. Statement of the Problem and the Method of Solution

To simulate seismic waves in elastic inhomogeneous media, we solve the com-
plete system of elasticity equations with appropriate initial and boundary conditions
written down in terms of the displacement velocity vector �u = (U, V,W )T and the
stress tensor �σ = (σxx, σyy, σzz , σxy, σxz, σyz)T .

As the domain of simulation we take an isotropic 3D-inhomogeneous elastic
medium of complex subsurface geometry which is a parallele piped one of whose
sides is a free surface (the plane z = 0).

The constitutive equations can be expressed in the vector form as

ρ
∂�u

∂t
= [A]�σ + �F (t, x, y, z),

∂�σ

∂t
= [B]�u,

A =

⎡
⎢⎣

∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y

⎤
⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(λ + 2μ) ∂
∂x λ ∂

∂y λ ∂
∂z

λ ∂
∂x (λ + 2μ) ∂

∂y λ ∂
∂z

λ ∂
∂x λ ∂

∂y (λ + 2μ) ∂
∂z

μ ∂
∂y μ ∂

∂x 0

μ ∂
∂z 0 μ ∂

∂x

0 μ ∂
∂z μ ∂

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1)

where t is the time, ρ(x, y, z) is the density, while λ(x, y, z) and μ(x, y, z) are the
Lamé coefficients. The initial conditions are the following:

σxz|t=0 = 0, σyz |t=0 = 0, σxy|t=0 = 0, σxx|t=0 = 0, σyy|t=0 = 0, σzz |t=0 = 0,
(2)

U |t=0 = 0, V |t=0 = 0, W |t=0 = 0,

and the boundary conditions at the free surface are:

σxz |z=0 = 0, σyz |z=0 = 0, σzz |z=0 = 0. (3)
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To numerically solve equations (1)-(3)
we apply the well-known Verrier finite difference method [1–3]. The calculation

of its difference coefficients uses integral conservation laws and The method is of
second order of approximation with respect to time and space [1]. In this paper we
consider only uniform grids.

Let us present as an example a few finite difference equations of the scheme
used.

ρi,j,k + ρi−1,j,k

2
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.

The boundaries of the simulated domain cause false reflections inside it. To ab-
sorb them, we use the auxiliary method CFS-PML [4–6], which has some advantages
over the classical PML method. It yields a better qualitative picture of the wave
field for this problem, is simpler to implement, and is efficient from the standpoint
of doing the calculation.l экономичен

To apply this method, each of the boundaries of the parallelepiped,i/e/ the
domain to be simulated, is bounded by the absorbing layer except for the free surface
on its upper side.

We calculate the wave field interior using the original finite difference equations,
but when a wave arrives in the absorption zone, the calculation is carried out by
other formulas with damping parameters which describe the approach to creating ab-
sorbing boundaries. To choose the values of damping parameters for the calculation
in appropriate absorbing layers, is made based on the results obtained in [5].

3. Program Package for Carrying out Simulations

In this paper we propose an approach to simulating the seismic wave propagation
in the media specific to volcanic structures. In this connection we need to de-

velop a enabling us to construct a grid model of a medium of complex subsurface
geometry and to carry out necessary calculations. In this case depending on our
intent and available resources, we propose to perform either 3D modeling in the
entire domain of interest, or 2D modeling in the cros s-sections of the original do-
main containing the most interesting features of the wave field, or to combine both
approaches.

Therefore, the proposed program package must include the following parts:
—a program for constructing grid models of media of complex subsurface ge-

ometries with inclusions characteristic of magma volcanoes;
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—a program for the numerical modeling of the elastic waves propagation in 3D
inhomogeneous elastic media with a curvilinear free surface;

—a program for the numerical modeling of elastic waves propagation in 3D
inhomogeneous elastic media with a rectilinear free surface;

—a program for the numerical modeling of the elastic waves propagation in 2D-
inhomogeneous elastic media with a curvilinear free surface for a prescribed section
of the 3D model under consideration;

—a program for simulating the elastic waves propagation in 2D-inhomogeneous
elastic media with a rectilinear free surface for a prescribed section of the 3D model
under consideration.

By now the proposed program package has been partially implemented. This
enables us to handle the case of a rectilinear free surface. The programs were de-
veloped with allowance for specific features of the architecture of the hybrid clus-
ter НКС-30Т+GPU ( the Siberian Supercomputing Center (http://www2.sscc.ru),
which consists of 40 computer nodes equipped with NVIDIA Tesla M2090 graphics
cards on the Fermi architecture. Its peak performance is 85 teraflops.

The efficient use of the hybrid architecture requires adapting and optimizing
the simulation algorithms that are based on the knowledge of the architecture of the
cluster, its components, and appropriate program facilities. A detailed description
of the developed program tools as well as a parallel implementation, adaptation, and
optimization of the algorithms is given in [7, 8]. Let us recall a few key points.

The developed program package includes a constructor of media models enabling
us to design complicated elastic media models based on the idea of Z order [2, 3].
In the parallel implementation data are immediately constructed at the computer
nodes to be used in the subsequent calculation.

Moreover, we have created a parallel program for the numerical modeling of
wave propagation in three-dimensional inhomogeneous elastic media with a rec-
tilinear free surface. This program implements the above-mentioned Verrier and
CFS-PML methods adapted to the hybrid cluster architecture.

To parallelize the problem in question, we decompose the domain into lay-
ers along one of the coordinate axes. Each layer is calculated at a separate node,
where, in turn, it is sub-divided into sub-layers along the other coordinate axis ac-
cording to the number of graphics accelerators at a node. In such implementation,
each graphics card calculates its own grid domain inside the sub-layer at each timel
step independent of others, except for points at the interface between two adjacent
domains. These points are common to each of domains, and, to continue the cal-
culation, it is necessary to exchange information about the required values among
the graphics cards at the node and between the adjacent nodes in the directions of
different coordinate axes. The exchanges are made using the MPI technology (Mes-
sage Passing Interface) and graphics accelerators are controlled using the CUDA
technology (Compute Unified Device Architecture). In this case, a parallel part of
the code is carried out on each graphics card as a large number of threads. This
hybrid approach ensures a high degree of parallelization.

The developed program package also includes a program for simulating the seis-
mic wave propagation in a two-dimensional elastic medium. It has been developed
based on the program for the three-dimensional case. To solve the 2D problem,
we use the same difference method on staggered grids and the auxiliary CFS-PML
method in the two-dimensional version.

The 2D calculation takes much less computer resources, including the memory
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for storing all necessary data. Therefore, the implementation in question employs
only one computer node of the hybrid cluster with three graphics accelerators. As
a result, the developed program enables us to complete the calculation in an accept-
able time with a lesser number of resources as compared to the 3D version, which
requires for calculation of solution almost all resources of the hybrid cluster and
more time for calculation.

For example, constructing a model and calculating the wave field at a node
with three graphics accelerators for the corresponding grids with respect to time
and space and (6000× 9000 nodes with respect to space and 25000 time steps) takes
only 12 minutes.

4. Scalability of the Developed Software

To analyze the performance of the developed software, we study its strong and
weak scalabilities, simulate the program execution on a large number of cores, and
compare its running time on the hybrid cluster with a similar time for the program
execution on a cluster with the classical MPP-architecture.

By the strong scalability we understand a decrease in the running time of one
step of the same problem when more graphics cores per one graphics card are used.
Studying the strong scalability

we can understand how efficiently the algorithms use the architecture of the
graphics card as it is. By the weak scalability we understand the preservation of the
calculation time of one step of the same volume of the problem when the number of
graphics cards increases.

Figs. 1 and 2 present the results of investigations obtained with the program
for the 3D simulation. It is clear from the graph in Fig. 1 that the problem is well-
suited to the graphics card architecture: there is roughly 40-fold acceleration when
all GPU cores are used in comparison with one GPU core.

It is clear from the graph in Fig. 2 that the efficiency of about 92% is attained
when increasing the number of graphics cards up to 30. Based on the collected

data about the calculation time spent on the required components of the stress
tensor and the displacement velocity vector, as well as the time for exchanging data
among the computer nodes and graphics accelerators for the implemented software,
we have employed the simulation of the algorithm of the numerical modeling of the
seismic wave propagation in an elastic medium using the distributed agent-oriented
system AGNES

developed at the Institute of Computational Mathematics and Mathematical
Geophysics.

(The AGNES package (AGent NEtwork Simulator relies on Java Agent Develop-
ment Framework (JADE), which is a powerful tool for creating multi-agent systems
in Java consisting of three parts: an agent execution environment; a library of the
basic classes required for developing agent systems; a collection of utilities enabling
us to monitor and to administer the multi-agent system. To simulate large calcula-
tions, it is important that JADE is a FIPA-compatible distributed agent platform
capable of using one or several computers (network nodes), on each one there should
be only one virtual Java machine [9]. This system enables us to map a numerical
algorithm onto a hypothetical supercomputer, to study its behavior, and to adjust
the computational method. Examples when this approach is applied are presented
in [10].

Fig. 3 presents the simulation results. The beginning of the simulation process
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Fig. 1. Strong scalability graph

Fig. 2. Weak scalability graph

is compared with the real data of weak scalability. The simulation shows that as the
number of computer cores increases up to one million, the efficiency of the proposed
program is about 75%. This indicates to the fact that the developed software enjoys
good scalability, which makes it suitable for large-scale supercomputer calculations.

We have compared the time spent on the numerical modeling of the 3D model
with the use of nodes with GPU to the time needed for the calculation on the classical
cluster with CPU. To this end, we use the time of the full-scale calculation [2] for the
spatial grid of 1677x1059x971 size and 1677× 1059× 971 and 10313 time steps. The
calculation has been done on 20 computer blade- servers HP ProLiant BL2x220c G5,
which are part of the НКС-30Т supercomputer at the Institute of Computational
Mathematics and Mathematical Geophysics. The time needed for the calculation
was 31 h 15 m 17 s (160 CPU cores were involved).

For the same grid the time at 15 nodes of the hybrid cluster using the developed
program package was 2 h 56 m (15360 GPU cores were involved); the resulting
acceleration was by the factor of 10,66.

Thus, the developed software, adapted to modern hybrid computer architecture
with graphics accelerators, used at many computer centers in Russia and abroad,
demonstrates a high performance.
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Fig. 3. The dependence of the relative acceleration SL(M)
on the general number M of simulated GPU cores

(the horizontal axis is logarithmic)

5. Numerical Experiments

Based on the data of [11–15], as well as on data of other published works we have
constructed a geophysical model of the Elbrus stratovolcano. The volcanic structure
lies on a granite block +I (Fig. 4); effusive rocks build up the volcanic cone +II;
below the zero mark we can distinguish eight layers (Table 1). Let us define the
upper magma chamber as an ellipsoid with horizontal and vertical axes of 9 and
6 km (ρ = 2, 1g/cm3, Vp = 2, 2 km/s); the diameter of the former channel being
130 m. Let us define the parent magma chamber as an ellipsoid with horizontal and
vertical axes of 24 and 13 km (ρ = 1, 8 g/s3, Vp = 1, 9 km/s), and the diameter
of the presumed feeding channel being 250 m. The middle channel is a cylinder of
160 m in diameter. Thus, as an approximate model of the Elbrus volcano we can
take a multi-layer medium with inclusions as ellipsoids, cylinders with parameters
listed in Table 1. A detailed description of the geophysical model can be found in
[8].

Table 1. Parameters for the geophysical model of the Elbrus volcano

Vp, km/s Vs, km/s ρ, g/cm3

Layer +II 2,85 1,65 2,4

Layer +I 3,1 1,79 2,66

Layer I 3,2 1,82 2,7

Layer II 5,9 3,42 2,85

Layer III 6,22 3,59 2,62

Layer IV 5,82 3,37 2,7

Layer V 5,97 3,45 2,75

Layer VI 6,43 3,72 2,78

Layer VII 6,95 4,03 2,81

Layer VIII 8,1 4,68 2,85

The constructed model was taken as the basis for subsequent computer experi-
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Fig. 4. Fig.4 The geophysical model of the Elbrus volcano
and the scheme of vibroseismic monitoring

ments, whose results are presented below, to illustrate the efficiency of the developed
program package as well as to demonstrate various possibilities of applying the pro-
posed technology of supercomputer modeling of seismic wave propagation in the
media typical of volcanic structures.

All the calculations were done at 11 nodes of the clusterНКС-30Т+GPU equipped
with graphics cards. The simulation with 12,000 time steps requires, on average, 1.5
hours.

The results of the 3D numerical modeling contain a large bulk of information.
For this reason, to represent and to analyze the results of numerical modeling we
use theoretical seismograms and snapshots of different sections of the 3D wave field
by the planes passing through the lines of a selected observational system.

The excitation system for all calculations consists of a point source of the pres-
sure center type with the dominant frequency 8 Hz which is near the free surface on
the left side of the calculation domain in one plane with the symmetry axis of the
magma channels and chambers.

For the beginning of calculation we took as a medium a fragment of the origi-
nal approximate model of the Elbrus stratovolcano, which includes only the upper
magma chamber of a modified shape and the adjacent channels lying in 5-layer
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medium. We used the parameters of the medium given in Table 1. The calculation
was aimed at illustrating the potentialities of the constructor of grid models of the
medium, with the aid of which we can construct a medium with inclusions of a com-
plicated shape, for example, the intersection of several objects of different nature at
different angles. In this case the magma chamber has the shape of two intersecting
ellipsoids.

Fig. 5 shows the results of the calculation as snapshots of the wave field in the
plane XZ passing through the point source and the symmetry axis of the upper
channel. The snapshots were visualized using the program Aspis developed by the
Sibneftegeofizika company. In the snapshots the boundaries of domains between
parts with different parameters of the simulated medium are marked.

It is clear from Fig. 5 that the wave field has a complicated structure and sig-
nificantly depends on the geometry, size, and properties of inclusions. To make a
geophysical interpretation of the theoretical seismograms resulting from the calcu-
lation of such a complicated medium a large series of computer experiments for the
3D model of the medium as well as of its characteristic 2D sections is needed.

The results of the 3D and the 2D calculations for a fragment of the proposed
approximate model of the Elbrus stratovolcano are compared in [8]. The presented
snapshots illustrate our assumption that The 2D modeling can be used to construct
3D models of a medium. The calculation can be simultaneously done for a 3D model
and several 2D sections to collect necessary information about peculiar features of
the wave field structure for the chosen geophysical model, the observational system,
and the location of a source. This approach considerably speeds up the process
of studying the features of a wave field when modeling of vibroseismic sounding of
a volcanic structure and enables us to do fewer calculations for the three-dimensional
problem, requiring more computer costs.

Developing this software suite, we aimed at studying the processes inside magma
volcanoes and on their surface in order to monitor subsequent eruptions. The fol-
lowing calculations could be the first step to attain these ends.

As a simulated medium we take a fragment of the proposed approximate model
of the Elbrus stratovolcano, which includes only the upper magma chamber of the
ellipsoidal shape and the adjacent feeding channel lying in 5-layer medium. The
difference between these media is that in one case the upper channel is filled with
magma (an eruption), while in the other case it merges with the surrounding layers
. The parameters of the medium are as described above.

Figures 6, 7 present, respectively, the results of calculations as snapshots and
theoretical seismograms of the wave field in the

plane XZ passing through the source and the symmetry axis of the upper chan-
nel. In these figures the difference in the results obtained is clearly seen. A thorough
study of theoretical seismograms based on the snapshots of the wave field and addi-
tional calculations can reveal the features to be used for the monitoring of eruptions.

Interpreting the data obtained in the course of the numerical modeling for com-
plex subsurface geometries with different inclusions is a difficult task. Nevertheless,
the carried out experiments show that the numerical modeling can give significant
information for conducting experiments and interpreting the results of observations
obtained in the process of vibroseismic monitoring.

Fig. 7 presents theoretical seismograms which clearly show the differences arising
in the general picture of media models.

A careful study of theoretical seismograms based on these snapshots of the
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T = 1.15 s

T = 1.84 s

T = 2.53 s

T = 3.22 s

Fig. 5. Snapshots of cross-sections of 3D wave field
at various moments of time for a 5-layer medium

with the inclusion of two intersecting ellipsoids (component U , the XZ plane)
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A1 T = 2.07 s A2 T = 2.76 s

B1 T = 2.07 s B2 T = 2.76 s

C1 T = 2.07 s C2 T = 2.76 s

Fig. 6. Snapshots of cross-sections of the 3D wave field
at different instants of time (component U , the XZ plane):

A—without upper channel
B—with the upper channel filled with magma (eruption),

C—the difference between seismograms A and B

A B C

Fig. 7. Theoretical seismograms for the components of U :
A—without upper channel

B—with the upper channel filled with magma (eruption),
C—the difference between seismograms A and B
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wave field and additional calculations could be useful in the monitoring of volcanic
structures.

6. Conclusion

This paper proposes a new technology for solving the problem of the elastic
waves propagation in media of complex subsurface geometries with the use of dif-
ferent numerical methods for studying inhomogeneous media of different dimensions
associated with the same model and aimed at the hybrid supercomputer architecture
with graphics accelerators.

We have developed a bundle a parallel programs package with allowance for a
chosen architecture to implement the simulation of the elastic wave propagation in
2D and 3D models of the media of complex subsurface geometries specific to vol-
canic structures. We have studied the time needed for the calculation of the model
in question, including the simulation of the program execution on a large number
of cores. The created software demonstrates high performance and can efficiently
use the resources of large computer systems. We have carried out a series of ex-
periments for simplified models of the Elbrus volcano. The conducted experiments
have shown a high efficiency of the developed software and various possibilities for
its applications in the subsequent research. The use of the proposed methodology
makes possible to identify a model of the volcanic structure which would be adequate
in its kinematic and dynamic characteristics to the results of experimental obser-
vations. Further we assume to develop the proposed technology of calculations for
models with a curvilinear free surface. , and properties of inclusions. It is a difficult
problem to interpret the data obtained in the simulations for media of compound
structure with various inclusions required by an approximation to a real model of
the medium. Nevertheless, the presented simulations show that modeling can yield
important information for organizing field work and interpreting the results of vibro-
seismic monitoring. The particular features which can be gleaned from the results
can be useful in vibroseismic monitoring of volcanic structures. Making a series of
similar simulations enables us to choose a model of volcanic structure adequate in
kinematical and dynamic characteristics to the results of field observations.

Subsequently we are planning to extend the above-proposed technique of super-
computer simulations to models with curvilinear free surface.
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ANALYTICAL MODELING OF

SUPERLONG–DISTANCE WAVE FIELDS

IN THE MEDIA WITH COMPOSITE

SUBSURFACE GEOMETRIES
A. G. Fatyanov

Abstract. We propose an analytical method of modeling seismic wave fields for a wide
range of geophysical media: elastic, non-elastic, anisotropic, anisotropic-non-elastic,
porous, random-inhomogeneous, etc. for super-remote (far) distances. As finite dif-
ference approximations are not used, there is no grid, no dispersion when computing
wave fields for arbitrary media models and observation points. The analytical solution
representation in the spectral domain makes possible to carry out analysis of a wave field
in parts, specifically, to obtain the primary waves. Based on the developed program of
computing wave fields, we carried out the simulation of seismic “ringing,” on the Moon
and compare it with the ray method.

Keywords: mathematical modeling, analytical solution, full wave field, primary waves,
elastic, non-elastic, anisotropic-non-elastic, porous, random-inhomogeneous media; seis-
mic ray method

Introduction

Mathematical modeling nowadays is one of the main tools for studying seismic
wave propagation for various models of media. Continual improvement of measuring
equipment leads, on the one hand, to higher accuracy of experimental data, and on
the other, to increasing spatial and temporal scales. This makes it necessary to
develop the new methods and refine the available methods for calculating wave
fields. This article develops an analytical modeling method enabling us to calculate
wave fields for considerable spatial and temporal scales arising in experimental work.

The possibility of analyzing the total wave field in parts is important, and often
crucial, for the problems of experimental data interpretation. This article develops
an analytical algorithm for modeling wave fields at long distances without bounds on
the accuracy, models of media, and observation bases, and enabling us to calculate
the dynamics of separate waves (primary waves and others) avoiding the restrictions
of the ray method. As a result of comparison with the ray method, we show that
in addition to the known geometric restrictions of the ray method there are also
restrictions related to the input pulse duration.

The analytical modeling method enables us to consider various applied prob-
lems. In this article we carry out mathematical modeling of seismic wave field for
an elastic Moon model, in which there is a surface zone of small velocities in the

The author was supported by the Russian Foundation for Basic Research (Grants 14–07–00832
and 15–07–06821).

c© 2015 Fatyanov A. G.
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case of considerable spatial and temporal scales (hour-long records of experimental
data). The modeling goes in the framework of a 3D planar stratified medium. Lu-
nar seismograms differ substantially from the seismograms obtained on the Earth.
The most characteristic feature of lunar seismograms is the large duration of signal
exceeding hour-long records. The results of modeling show that, in the presence of
a zone of small velocities in the medium, seismic “ringing” arises, leading to consid-
erable increase in the recorded duration of seismic signal. In the first approximation
we can explain the duration of seismic ringing on the Moon by resonance phenomena
that arise in the wave field in the presence of a thin low-velocity stratum (regolith).

We develop an analytical modeling method for media of composite structure,
including elastic, inelastic, anisotropic, anisotropic-inelastic, porous, randomly in-
homogeneous, and others. The analysis of experimental data in the field near the
Shugo volcano (Krasnodar region of Russia) elucidates the property of wave field
related to the appearance of a series of resonances in the low-frequency range. Fur-
thermore, the resonance is steadily shifting into the range of lower frequencies as
registration distance increases, which lacks an intuitive physical explanation. This
phenomenon is explained by multi-scale effects (lumpiness) in the framework of ran-
domly inhomogeneous medium.

The analytical approach enables us to estimate the accuracy of finite difference
methods. The comparison of analytical and mesh approaches yields a number of
conclusions on the choice of meshsizes in the difference scheme. We find that in
the mesh methods, in order to make artifact-free calculations, we should not sim-
ply take a small meshsize of the difference scheme, but it must decrease inversely
proportionally to the increase in the spatial and temporal scales.

1. Statement of the Modeling Problem

The mathematical formulation of the problem of modeling wave fields in Carte-
sian coordinates is as follows: Determine the displacement vector components for
inelastic anisotropic medium satisfying the system of equations
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with the initial conditions

ux =
∂ux

∂t
= uy =

∂uy

∂t
= uz =

∂uz

∂t
= 0

at t = 0 and boundary data
σz = τxz = τyz = 0 (2)

at z = 0.
Assume that the relations between the stress and deformation tensor compo-

nents (as well as of the latter to the displacement components) are known. According
to Volterra’s principle, the anisotropic coefficients cij are replaced by the integral
operators Cij accounting for the influence of the elastic aftereffect:

Cijx ≡ cijx(t) − c1ij

t∫

−∞

hij(t− τ)x(τ) dτ , (3)
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where c1ij determine the anisotropic absorption level. The aftereffect functions (ker-
nels) hij(ξ) determine the spectral composition of absorption. Assume that the
medium

(
cij , c1ij , ρ

)
is piecewise constant with respect to the depth coordinate z.

For a full description of anisotropic absorption, some additional physical parameters
of absorption are introduced (the absorption decrements of quasi-longitudinal and
quasi-transverse waves) which are determined by c1ij [1]. The components fx, fy,
and fz of the force describe concentrated and distributed sources of various types.

2. Analytical Modeling of Seismic Waves

For clarity, we present the analytical solution in the case of propagating SH-
waves when the source lies on the free surface. Confine the discussion to considering
the already classical case of transversally isotropic medium, when the symmetry axis
coincides with the z-axis. In this case the problem of determining the displacement
vector in cylindrical coordinates reduces to finding the only nonzero component of
the displacement vector:

C66
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uϕ|t=0 =
∂uϕ

∂t

∣∣∣∣
t=0

= 0. (6)

We impose the well-known conjugation conditions on the discontinuity boundaries
of the parameters.

To construct a solution, we apply the Fourier–Bessel transform with respect
to the variables (r, t), while in the spectral domain (k, ω) we obtain the following
two-parameter family of boundary problems in each stratum:

d2w

dz2 = ν2w,
dw

dz

∣∣∣∣
z=0

= f(ω), (7)

where ν2 = k2 − ω2ρ/
(
c66 − c166

∫ T
0 h66(t)e−iωt dt

)
.

Then we introduce the two unknown functions x(z, k, ω) and y(z, k, ω) such that
dx

dz
= α(z)x,

dy

dz
= −β(z)y, (8)

while x and y satisfy (7). Then we find α and β from the Riccati equations
dα

dz
+ α2 = ν2,

dβ

dz
− β2 = −ν2. (9)

Suppose that the medium consists of N strata. Then in the halfspace we have

α = β|z>hN = νN+1. (10)

It is not difficult to verify that the functions x and y are linearly independent [2],
and so w = x + y. By the conditions of causality of absorption and boundedness of
the solution, we have x ≡ 0 and Re(ν) > 0.

Therefore, the problem reduces to the following: Find y satisfying

dy

dz
= −βy,

dβ

dz
− β2 = −ν2, y|z=0 = − f

β(0)
, (11)

[β]|z=hi = 0, β|z≥hN = νN+1. (12)
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The Riccati equation admits the analytical solution in each stratum:

β(z) = νi
βi + νi th(νi(hi − z))
νi + βi th(νi(hi − z))

. (13)

As the spatial and temporal scales increase, arithmetic overflow occurs in the cal-
culation of the hyperbolic tangent in (13). Thus, we can express (13) in equivalent
form

β(z) = νi
βi + νi − (νi − βi) exp(−2νi(hi − z))
βi + νi + (νi − βi) exp(−2νi(hi − z))

, (14)

where βi is the value of β(z) on the upper boundary of stratum i. Finally, the
original boundary problem (7) reduces to two Cauchy problems, one of which is
nonlinear but not hard because it admits the analytical solution (13).

To summarize, the algorithm is as follows: Firstly, we recalculate the value of β
from the halfspace to the upper boundary of stratum N (in this case they coincide).
Then from (14) we find the value of β on the lower boundary of stratum N − 1 and
recalculate it on the upper boundary of N − 1. Repeating this process N times,
we evaluate β(0). From (11) we determine y for z = 0 and so w as well, thus
solving (7). Knowing β(z), we find w analytically at each point of the stratified
medium. Applying the inverse Fourier–Bessel transform, we determine the solution
to (4)–(6) for arbitrary r, z, and t.

Numerous experimental observations indicate that we encounter various types
of absorption and anisotropy. Four thin-stratum models of transversally isotropic
medium of various types are suggested in [3]. Fig. 1 depicts seismograms of the
vertical component and the indicatrix of the quasi-longitudinal and quasi-transverse
ray velocity for a transversally isotropic medium for a source of “pressure center
type” with the parameters of [3]. The wave fields are output around circles with
the meshsize of 4.5◦ for an elastic (on the left) and an inelastic medium. We choose
equal anisotropic absorption decrements p⊥, p‖ and s⊥, s‖. It is clear that
each branch of the ray indicatrix in the elastic and inelastic cases corresponds to
a certain wave in the total field. Furthermore, as simulations show, the opening angle
of the “loop” in the elastic wave field of quasi-transverse waves is 8◦–10◦ greater than
the opening angle of the loop on the ray indicatrix of the corresponding waves. Thus,
this phenomenon is of “nonray” class.

Simulations show that the introduction of absorption does not lead to signifi-
cant decrease in the opening angle of the “loop” when the “nonray” domain generally
decreases. Noticeable change of spectra occurs in the inelastic case. The shape
of seismic pulse also changes substantially: it integrates itself. As in the “simply”
inelastic medium, substantial redistribution of energy occurs and the spectral com-
positions of quasi-longitudinal and quasi-transverse waves change. In general, the
influence of absorption depends on the decrement, the frequency, and the distance of
wave propagation. For low frequencies and short distances the loss due to diversion
exceeds the loss due to absorption. As the frequency and distance increase, the loss
due to absorption grows and becomes dominating. This applies to both isotropic
and anisotropic media. Ignoring this, we may arrive, for instance, at the incorrect
determination of kinematics.

The wave portrait for four anisotropy types of [3] is studied in detail in [1].
The substantial difference of the wave portrait in anisotropic inelastic media from
anisotropic elastic media is the presence of anomalous dispersion, which leads to the
increase of observable periods with registration time.
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Fig. 1. The vertical component uz and polarization diagrams
for anisotropic elastic (on the left) and inelastic media

The analytical modeling method we develop enables us to consider various ap-
plied problems. With its capabilities we can model a seismic wave field for an elastic
Moon model, in which there is a surface zone of small velocities (regolith) in the
case of considerable spatial and temporal scales (hour-long records of experimental
data). We made simulations in the framework of a 3D planar stratified medium.

Since the regolith stratum is very thin, we paid particular attention to the ac-
curacy of calculations. For instance, in the matrix method and its modifications, the
calculation of wave fields for high frequencies (thin strata) incurs accuracy loss [4].
With mesh methods, it is also practically impossible to calculate wave fields without
artifacts when a thin regolith stratum is present. Modeling wave fields in this case,
especially for long distances, requires the use of a small spatial meshsize, which leads
to colossal computational work.

Basing on the method of [5, 6], we wrote software enabling us to model wave
fields for considerable spatial and temporal scales typical of lunar experimental da-
ta. The analytical modeling method applied in this article was developed already
in the 1990s. Since computers had been insufficiently powerful, simulations ran for
the spatial and temporal scales on the order of 50 wavelengths. Here we do cal-
culations for tens of thousands of wavelengths. This required some modernization
of the method. To make calculations for considerable spatial and temporal scales
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possible on common computers, we modify the algorithm, trying to exclude large
intermediate arrays, which are calculated analytically during calculation. We also
introduce higher calculation accuracy, carry out additional testing, and so on.

Fig. 2. Calculation of the minute-long record of the component uz

for the Moon model without the zone of small velocities (regolith).
Receivers are at the distances of 40, 50, and 60 km away from the source

Finally, the analytical approach (avoiding meshes) enables us to simulate seis-
mic ringing on the Moon on ordinary computers without using high-performance
computing technology.

The scheme of simulation relies on the available Moon models [7, 8]. The first of
the models used is the model of the surface part of the Moon in which we distinguish
several small strata with low velocities. The upper stratum in the first model is
10 m thick regolith. The longitudinal wave velocity in regolith equals 100 m/s, the
transverse wave velocity is 40 m/s [7]. The second model is a depth model reaching
the center of the Moon and consisting of thickness of many kilometer strata [8]. The
Moon model used in the simulations combines these models by replacing the first
stratum of the depth model [8] with the strata of the model [7]. Below we present the
results of simulation for a source of normal force type lying on the daylight surface
with the dominating frequency of the input signal 1 Hz. In the first approximation,
this source corresponds to a meteorite strike.
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Fig. 3. Calculation of hour-long record of the component uz

for the Moon model with a zone of small velocities (regolith).
Receivers are at the distance of 40, 50, and 60 km from the source

Lunar seismograms differ greatly from the seismograms on the Earth. The most
characteristic feature of lunar seismograms is the significant duration of the seismic
signal exceeding hour-long records [7], which is explained in [9]. It is assumed that
seismic “ringing” is due to the high degree of inhomogeneity of the medium leading to
intensive scattering with very low seismic energy absorption in the surface stratum.
However, simulations of a wave field in a scattering medium of this kind have never
been made.

Fig. 2 implies that in the model without regolith, the oscillations die out com-
pletely during one minute, and there is no ringing in this case. Fig. 3 presents
an example of calculation for the Moon model with a zone of small velocities (re-
golith). It is clear that ringing in the presence of regolith is of significant duration,
which at long distances exceeds an hour.

The simulations show the essential dependence of the duration of ringing on
the presence of a thin low-velocity stratum consisting of regolith. We also observe
significant duration of ringing in the presence of thin regolith stratum both in the
model of the upper part of depth cut of the Moon [7], and in its general model [8].
However, if we take the Moon model without thin regolith stratum (Fig. 2) then wave
field has duration of less than a minute, and ringing is not observed. The simula-
tion allows us to draw the following conclusion: In the first approximation, seismic
ringing on the Moon can be explained by the resonant properties of a thin stratum
without invoking the scattering effects due to the high degree of inhomogeneity of
the medium.
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3. Calculation of Primary Waves
Without Using Reflection Coefficients
and Comparison with the Ray Method

There are many methods for calculating wave fields in stratified media. They
are all applicable to specific domains and can calculate only total wave field without
selecting separate wave types from it. At the same time, the algorithms enabling
us to calculate the dynamics of separate waves are important and often crucial in
the problems of modeling wave fields in composite media. In stratified inhomoge-
neous media with many strata the asymptotic ray method is the unique method for
simulating wave field in parts. Its applicability, however, is restricted. Below we
consider an algorithm for calculating primary and monotype waves for stratified in-
homogeneous media with an arbitrary number of strata basing on special expansions
of exact solutions, which is free of the restrictions of the ray method.

For clarity, consider the wave equation for P waves. In this case the solution in
the spectral domain upon transformations is obtained on the free surface in explicit
form

u(k, ω) = −F (ω)
ν1

[
1 − 2p1e

−2ν1h − 2p2e
−2(ν2+ν1)h

(
1 − p2

1
)
− · · ·

]
, (15)

where pi = (νi+1 − νi)/(νi+1 + νi).
Let us elucidate the physical meaning of the parameters in (15). For greater

clarity, consider the case of planar waves. In this case pi = (ci − ci+1)/(ci + ci+1).
Therefore, (15) is just the spherical analog of the well-known planar representation
of singly reflected waves [10].

An algorithm for calculating primary longitudinal and transverse waves for elas-
tic and inelastic media is developed in [11]. For comparison between the analytical
and ray methods, see [12].

Fig. 4. Comparison of the analytical (a) and ray (e) methods for PP waves
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Fig. 4 depicts an example that compares analytical and ray methods for primary
longitudinal (PP) waves for a two-stratum model of a medium at the same scale.
The normalization is with respect to the direct wave. Differences in the amplitude
and phase are visible. Furthermore, the differences are present not only at the exit
point of the head wave, as previously presumed. We also observe differences in
some domain depending on the input pulse duration. The results of [12] show that
in addition to the geometric restrictions of the ray method there are restrictions
related to the duration of the input pulse. The greater pulse duration, the greater
the domain in which the ray method is inaccurate.

4. Analytical Modeling of Wave Fields
in Media of Composite Structure

Often the structure of an inhomogeneous medium is such that its characteristic
sizes in depth, for instance, vary in a wide range. It is known [13] that in this case it
is practically impossible to consider this problem in the framework of deterministic
approach. In any case, deterministic approach requires considerably more compli-
cated calculations. To construct a model of multi-scale inhomogeneity, we use the
telegraph random process ξ(z) = a(−1)n(0,z) of [14], where n(z1, z2) is a random
sequence of integers describing the number of jumps on the interval (z1, z2). The
probability of n points on (z1, z2) is given by Poisson’s formula

Pn(z1,z2)=n =
〈n(z1, z2)〉n

n!
e−〈n(z1,z2)〉,

where 〈n(z1, z2)〉 = ν|z2 − z1| is the averaged value of the points on (z1, z2), while ν is
the averaged number of points per unit distance. The length of the interval between
adjacent jumps is distributed exponentially.

We illustrate the construction of equations for a multi-scale medium on the
example of the wave equation for longitudinal waves in cylindrical coordinates:

∂2u

∂z2 +
∂2u

∂r2 +
1
r

∂u

∂r
=

1
c2

∂2u

∂t2
. (16)

The Fourier–Bessel transform converts (16) into (omitting inessential indices)

d2u

dz2 = k2u− ω2

c2
u = ν2

pu. (17)

In order to consider a multi-scale medium in (17), use the telegraph random
process ξ(z):

d2u

dz2 = k2u− ω2

c2
[1 + ξ(z)]u (18)

The solution to (18) as some functional of ξ(z) is a random quantity. With practical
applications in mind, consider the mean value 〈u〉 of the fluctuating field. The exact
complete equation

d4〈u〉
dz4 + 4ν

d3〈u〉
dz3 +

(
4ν2 +

ω2

c2
− ν2

p

)
d2〈u〉
dz2

−4νν2
p
d〈u〉
dz

−
(
ω4

c4
a4 + 4ν2ν2

p +
ω2

c2
ν2
p

)
〈u〉 = 0 (19)

for the mean of the field is obtained in [15].
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Therefore, instead of the ordinary second-order wave equation (17), in the case
of a randomly inhomogeneous medium we obtain a fourth-order equation for the
mean value of the field. Complement (19) with appropriate boundary conditions for
the mean value of the field [16]. The parameter a in (19) determines the magnitude of
multi-scale inhomogeneity, while r0 = 1/2ν is the characteristic size of inhomogeneity
(lumpiness) of the medium. The parameters a and r0 can be arbitrary. An analytical
method for calculating multi-scale waves appears in [16].

Fig. 5. Wave field on the daylight surface for a multi-scale inhomogeneous medium.
Characteristic size of inhomogeneity λ/16

Fig. 5 depicts wave fields for long distances in the source/receiver system with
large multiple scales of inhomogeneity. The output is on the free surface. The
characteristic size of inhomogeneity is r0 = λ/16, where λ is the wavelength. The
first receiver lies at the distance of 30λ from the source and the last, at 300λ. It is
clear from Fig. 5 that at short distances the effects of multiple scales are considerably
smaller than at long distances. As the receiver moves away from the source of
waves, the picture changes substantially. Energy is considerably redistributed into
the domain of low frequencies.

Inspecting the experimental data in the field near the Shugo volcano (the
Krasnodar region of Russia), we came across a feature of the wave field related
to the appearance of a series resonances in the low-frequency range. Furthermore,
the resonance shifts monotonely to lower frequencies as the distance registration
increases [17], which lacks an intuitive physical explanation. This phenomenon can
be simply explained by the multi-scale effects (lumpiness) of the medium. It is clear
from Fig. 5 that the frequency of a multi-scale wave decreases monotonely as dis-
tance grows. This fully explains the effect of monotone decrease in the frequency
with the growth of distance detected in practice.

The analytical method for modeling is developed for a wide range of geophysics
media, including elastic, inelastic, anisotropic, anisotropic-inelastic, porous, ran-
domly inhomogeneous and so on. The sources in the descriptions of seismic, seismo-
logical, and vibrational processes can be concentrated and distributed [18]. Since the
solution is given by analytical expressions, we can do calculations at long distances
on ordinary computers without the need of high-performance computing technology.

Moreover, the analytical method can serve for numerical control of the accuracy
of finite-difference methods. Comparison between analytical and mesh methods is
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made in [19]. It turns out that in mesh methods, to make artifact-free calculations,
we should take not just a small meshsize of the difference scheme, but it must also
decrease inversely proportionally to the increase of the record duration (growth of
the spatial and temporal scales).

REFERENCES

1. Fatyanov A. G. Nonstationary Seismic Wave Fields in Inhomogeneous Anisotropic Media with
Energy Absorption. Novosibirsk, 1989. (Preprint/VTs; N 857).

2. Fatianov A. G. and Mikhailenko B. G. A method for computing nonstationary wave fields
in nonelastic stratified-inhomogeneous media // Dokl. Akad. Nauk SSSR. 1988. V. 301, N 4.
P. 834–839.

3. Nevsky M. V. Quasianisotropy of Velocities of Seismic Waves [in Russian]. Moscow: Nauka,
1974.

4. Molotkov L. A. The Matrix Method in the Theory of Wave Propagation in Layered Elastic
and Fluid Media [in Russian]. Leningrad: Nauka, 1984.

5. Fatianov A. G. A semi-analytical method of solving the direct dynamic problems in layered
media // Dokl. Akad. Nauk SSSR. 1990. V. 310, N 2. P. 323–327.

6. Fat ′yanov A. G. Mathematical modeling of wave fields in media with curvilinear boundaries //
Dokl. Earth Sci.. 2005. V. 401a, N 3. P. 437–439.

7. Galkin I. N. and Shvarev V. V. The Structure of the Moon [in Russian]. Moscow: Znanie,
1977.

8. Nakamura Y., Dorman J., Duennebier F., Lammlein D., and Latham G. Shallow lunar struc-
ture determined from the passive seismic experiment // Moon. 1975. V. 13. P. 57–66.

9. Latham G., Ewing M., Press F., Sutton G., Dorman J., Nakamura Y., Toksoz N., Wiggins R.,
Derr J., and Duennebier F. Apollo 11 passive seismic experiment // Geochim. Cosmochim.
Acta. 1970. V. 34. Suppl. 1. P. 2309–2320.

10. Kozlov E. A. Identification and Suppression of Multiple Reflections in Seismic Prospecting
[in Russian]. Moscow: Nedra, 1982.

11. Fatianov A. G. and Mikhailenko B. G. Numerically-analytical method for calculation of theo-
retical seismograms in layered-inhomogeneous anelastic media // Geophysical Data Inversion
Methods and Applications. Berlin: Free University of Berlin, 1989. P. 499–530.

12. Alekseeva M. V. Mathematical Simulation of a Seismic Field in a Multilayered Elastic Media
(in the Framework of the Ray Method). Novosibirsk, 1987. 60 p. (Preprint/VTs; N 729).

13. Aki K. and Richards P. Quantitative Seismology [Russian translation]. Moscow: Mir, 1983.
14. Klyatskin V. I. Stochastic Equations Through the Eye of the Physicist [in Russian]. Moscow:

Fizmatlit, 2001.
15. Shapiro V. E. and Loginov V. M. Dynamical Systems Under Random Influences [in Russian].

Novosibirsk: Nauka, 1983.
16. Alekseev A. S., Glinskii B. M., Kovalevskii V. V., Fatyanov A. G. et al. The Methods for

Solving the Direct and Inverse Problems of Seismology, Electromagnetism, and Experimental
Studies of the Problems for Studying Geodynamic Processes in the Crust and Mantle of the
Earth. Novosibirsk: Izdat. SO RAN, 2010.

17. Glinskii B. M., Sobisevich A. L., Fat ′yanov A. G., and Khairetdinov M. S. Mathematical sim-
ulation and experimental studies of the Shugo mud volcano // J. Volcanology and Seismology.
2008. V. 2, N 5. P. 364–371.

18. Fatyanov A. G. Direct and inverse problems for a tensor of seismic moment in layered media //
Dokl. Akad. Nauk SSSR. 1991. V. 317, N 6. P. 1357–1361.

19. Fatyanov A. G. and Terekhov A. V. High-performance modeling acoustic and elastic waves
using the Parallel Dichotomy Algorithm // J. Comput. Phys.. 2011. V. 230. P. 1992–2003.

September 3, 2015

Novosibirsk

A. G. Fatyanov
Institute of Computational Mathematics and Mathematical Geophysics
Novosibirsk, Russia
fat@nmsf.sscc.ru



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


