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ON SOLVABILITY OF DEGENERATE

LOADED SYSTEMS OF EQUATIONS

L. V. Borel

Abstract. We study loaded linear systems of differential equations that are not solved
with respect to the time derivative. The systems of partial and ordinary differential equa-
tions are examined. Sufficient conditions for the unique solvability of initial boundary
value problems (or initial problems) are obtained for these systems of equations.

Keywords: loaded equation, degenerate evolution equation, integral operator, initial
boundary value problem, algebraic-differential system of equations

Introduction

Let U and V be Banach spaces. Given linear operators L : U → V and M :
DM → V, assume that L is continuous (for brevity we write L ∈ L (U;V)) and M
is closed and densely defined in U; i.e., M ∈ C l(U;V). We consider the Cauchy
problem

u(0) = u0, (1)

for the integro-differential equation

Lu̇(t) = Mu(t) +
T∫

0

K (t, s)u(s) dμ(s), t ∈ [0, T ], (2)

that is not solved with respect to the time derivative, since we suppose that kerL �=
{0}. Here T > 0, K : [0, T ]× [0, T ]→ L (U;V), and μ : [0, T ]→ R is a function of
bounded variation. The equations containing a functional of an unknown solution
(for example a Stieltjes integral in (2)) together with a differential part are often
called loaded [1–4] and they are met when we look for an approximate solution to
a differential equation or study inverse problems for them and in the mathematical
modeling of nonlocal processes.

A function u ∈ C1([0, T ];U)∩C([0, T ];DM) satisfying (2) on [0, T ] as well as (1)
is called a solution to problem (1), (2). Sufficient conditions for the unique solvability
of the Cauchy problem and the generalized Showalter–Sidorov problem for a loaded
equation (2) under the condition of the strong (L, p)-radiality of the operator M [6–
8] are given in [5]. The effectiveness of the results obtained is demonstrated by the
examples of boundary value problems for loaded pseudoparabolic equations. We can
refer not only to articles devoted to degenerate evolution equations with a Fredholm
integral operator as in (2) but also to those with a Volterra integral operator (the
equations with memory) [9–11] or an integral delay operator [12, 13].

The author was supported by the Laboratory of Quantum Topology of Chelyabinsk State
University (Grant 14.Z50.31.0020).
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2 L. V. Borel

The aim of this article is to study some loaded system of equations that are not
solved with respect to the time derivative which arises in applications with the use
of the results of [5].

A brief exposition of the definitions and theorems from [5, 7] is given in Sec-
tion 1. Sufficient conditions for unique solvability of boundary value problems for
a degenerate loaded system of partial differential equations are obtained in Section 2.
Similar results are justified in Section 3 for a degenerate loaded system of equations
for a function of one variable, i.e. for algebraic-differential systems (see [14]).

1. Degenerate Loaded Equations in Banach Spaces

We recall some definitions and theorems employed in the main part of the article
from [5, 7] (see also [6, 8]).

Put
N0 = {0} ∪N, R+ = {0} ∪ R+,

ρL(M) = {μ ∈ C : (μL−M)−1 ∈ L (V,U)},
RL

μ(M) = (μL−M)−1L, LL
μ = L(μL−M)−1.

Let p ∈ N0. An operator M is strongly (L, p)-radial whenever
(i) ∃a ∈ R (a,+∞) ⊂ ρL(M);
(ii) ∃K ∈ R+ ∀μ ∈ (a,+∞) ∀n ∈ N

max
{∥∥(RL

μ (M)
)n(p+1)∥∥

L (U),
∥∥(LL

μ(M)
)n(p+1)∥∥

L (V)

} ≤ K

(μ− a)n(p+1) ;

(iii) there exists a dense subspace
◦
V in V such that

∥∥M(μL−M)−1(LL
μ(M)

)p+1
f
∥∥
V
≤ const(f)

(μ− a)p+2 ∀f ∈
◦
V;

∥∥(RL
μ(M)

)p+1(μL−M)−1∥∥
L (V;U) ≤

K

(μ− a)p+2

for every μ ∈ (a,+∞).
Remark 1. The equivalence of (ii) and (iii) to the slightly more complicated

conditions from [6–8] is demonstrated in [15].

Assume that U0 = ker
(
RL

μ (M)
)p+1 and V0 = ker

(
LL
μ(M)

)p+1
, while U1 is

the closure of the range im
(
RL

μ(M)
)p+1 in U, and V1 is the closure of the range

im
(
LL
μ(M)

)p+1 in V. Denote by Lk (Mk) the restriction of L (M) to Uk (DMk =
DM ∩ Uk), k = 0, 1.

Theorem 1 [7]. Let M be a strongly (L, p)-radial operator. Then
(i) U = U0 ⊕ U1, V = V0 ⊕V1;
(ii) Lk ∈ L (Uk;Vk), Mk ∈ C l(Uk;Vk), k = 0, 1;
(iii) there exist M−1

0 ∈ L (V0;U0) and L−1
1 ∈ L (V1;U1);

(iv) H = M−1
0 L0 is nilpotent of degree at most p;

(v) there exists a strongly continuous resolving semigroup {U(t) ∈ L (U) :
t ≥ 0} ({V (t) ∈ L (V) : t ≥ 0}) of the equation Lu̇(t) = Mu(t). In this case

∀t > 0 U(t) = s- lim
k→∞

(
k(p + 1)

t
RL

k(p+1)
t

(M)
)k(p+1)

,

∀t ≥ 0 ‖U(t)‖L (U) ≤ Keat.
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The projection along U0 onto U1 (along V0 onto V1) is given by the following
formula

P = U(0) = s- lim
μ→+∞

(
μRL

μ (M)
)p+1 (Q = s- lim

μ→+∞
(
μLL

μ(M)
)p+1).

For a strongly (L, p)-radial operatorM , operator-functions K of class Cp+1,0([0,
T ]× [0, T ]; L (U;V)) (continuous and having continuous partial derivatives with re-
spect to the variables of the first argument up to the order p + 1) and functions
μ : [0, T ]→ R of bounded variation are denoted by

∂nK

∂tn
≡ K

(n)
t , V T

0 (μ) max
t,s∈[0,T ]

∥∥K (n)
t (t, s)

∥∥
L (U;V) ≡ Kn(T ),

V T
0 (μ) max

t,s∈[0,T ]
s
∥∥K (n)

t (t, s)
∥∥

L (U:V) ≡ Kn,1(T ),

∥∥L−1
1 Q
∥∥

L (V;U) ≡ C1,
∥∥HkM−1

0 (I −Q)
∥∥

L (V;U) ≡ hk, k = 0, 1, . . . , p,

F (T ) = max
{
C1K(T )

p+1∑
n=0

Kn,1(T ) + h0

p+1∑
n=0

Kn(T ), h1

p+1∑
n=0

Kn(T ), . . . , hp

p+1∑
n=0

Kn(T )
}
.

where T > 0, n = 0, 1, . . . , p + 1. Here V T
0 (μ) is the variation of μ on the seg-

ment [0, T ],

K(T ) = max{K,KeaT} =
{

K, a ≤ 0,
KeaT , a > 0,

with K and a constants from the definition of strong (L, p)-radiality. In view of
Theorem 1(v) ‖U(t)‖L (U) ≤ K(T ) for all t ∈ [0, T ].

Theorem 2 [5]. Assume that M is a strongly (L, p)-radial operator, μ : [0, T ]
→ R is a function of bounded variation, K ∈ Cp+1,0([0, T ] × [0, T ]; L (U;V)),
K

(n)
t (0, s) ≡ 0, n = 0, 1, . . . , p, u0 ∈ DM ∩U1, F (T ) < 1. Then there exist a unique

solution u ∈ C1([0, T ];U) ∩ C([0, T ];DM) to (1), (2).
The problem with the Showalter–Sidorov initial condition

Pu(0) = u0. (3)

often met for degenerate evolution equation is addressed for (2) in [5].

Theorem 3 [5]. Assume that M is a strongly (L, p)-radial operator, μ : [0, T ]→
R is a function of bounded variation, and K ∈ Cp+1,0([0, T ] × [0, T ]; L (U;V)),
u0 ∈ DM ∩ U1, F (T ) < 1. Then there exists a unique solution u ∈ C1([0, T );U) ∩
C([0, T ];DM) to (2), (3).

2. A Degenerate Loaded System
of Partial Differential Equations

Consider the initial-boundary value problem

z1(x, 0) = z10(x), x ∈ �, (4)
zi(x, t) = 0, (x, t) ∈ ∂�× [0, T ], i = 1, 2, 3, (5)
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for the model integro-differential system of equations

z1t(x, t) = �z1(x, t) +
3∑

i=1

T∫

0

k1i(t, s)zi(x, s) dμ(s), (x, t) ∈ �× [0, T ],

z3t(x, t) = �z2(x, t) +
3∑

i=1

T∫

0

k2i(t, s)zi(x, s) dμ(s), (x, t) ∈ �× [0, T ],

0 = �z3(x, t) +
3∑

i=1

T∫

0

k3i(t, s)zi(x, s) dμ(s), (x, t) ∈ �× [0, T ].

(6)

Here � ⊂ Rd is a bounded domain with smooth boundary ∂� and the functions
z10 : �→ R, kji : [0, T ]× [0, T ]→ R, i, j = 1, 2, 3, are given.

Put
H2

0 (�) = {v ∈ H2(�) : v(x) = 0, x ∈ ∂�},

U = V = (L2(�))3, DM =
(
H2

0 (�)
)3
,

L =

⎛
⎝ I 0 0

0 0 I
0 0 0

⎞
⎠ , M =

⎛
⎝� 0 0

0 � 0
0 0 �

⎞
⎠ ,

K (t, s) =

⎛
⎝ k11(t, s) k12(t, s) k13(t, s)

k21(t, s) k22(t, s) k23(t, s)
k31(t, s) k32(t, s) k33(t, s)

⎞
⎠

for t, s ∈ [0, T ]. In this case u(t) = col(z1(·, t), z2(·, t), z3(·, t)). The strong (L, 1)-
radiality of M is demonstrated and the subspaces

U0 = V0 = {0} × L2(�)× L2(�), U1 = V1 = L2(�)× {0} × {0}
and the constants a = 0 and K = 1 are determined in [16]. Hence, K(T ) ≡ 1,
L−1

1 = I, C1 = 1, and

M−1
0 =

(
�−1 0

0 �−1

)
, H =

(
0 �−1

0 0

)
,

M−1
0 (I −Q) =

⎛
⎝ 0 0 0

0 �−1 0
0 0 �−1

⎞
⎠ , HM−1

0 (I −Q) =

⎛
⎝ 0 0 0

0 0 �−2

0 0 0

⎞
⎠

hk =
∥∥HkM−1

0 (I −Q)
∥∥ =

1
|λ1|k+1 , k = 0, 1,

where λ1 is the first eigenvalue (and thus has the least modulus) of the Laplace
operator with the Dirichlet boundary conditions,

Kn(T ) = V T
0 (μ) max

t,s∈[0,T ]
max

i,j=1,2,3

∣∣∣∣∂
nkij
∂tn

(t, s)
∣∣∣∣, n = 0, 1, 2,

Kn,1(T ) = V T
0 (μ) max

t,s∈[0,T ]

{
s max
i,j=1,2,3

∣∣∣∣∂
nkij
∂tn

(t, s)
∣∣∣∣
}
, n = 0, 1, 2.

Hence, Theorem 3 ensures the following claim.
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Theorem 4. Assume that z10 ∈ H2
0 (�), μ : [0, T ]→ R is a function of bounded

variation, kij ∈ C2,0([0, T ]× [0, T ];R), i, j = 1, 2, 3, and

V T
0 (μ)max

{ 2∑
n=0

Kn,1(T ) +
1
|λ1|

2∑
n=0

Kn(T ),
1
|λ1|2

2∑
n=0

Kn(T )
}

< 1.

Then there exists a unique solution z1, z2, z3 ∈ C1([0, T ];L2(�)) ∩C
(
[0, T ]; H2

0 (�)
)

to problem (4)–(6).

A particular case of this statement is the following result:

Corollary 1. Assume that z10 ∈ H2
0 (0, π), kij ∈ C2,0([0, 1] × [0, 1];R), i, j =

1, 2, 3,
2∑

n=0

max
t∈[0,1]

max
i,j=1,2,3

∣∣∣∣∂
nlij
∂tn

(t)
∣∣∣∣ < 1.

Then there exists a unique solution z1, z2, z3 ∈ C1([0, 1];L2(0, π)) ∩ C
(
[0, T ];

H2
0 (0, π)

)
to the problem

z1(x, 0) = z10(x), x ∈ (0, π),

zi(0, t) = zi(π, t) = 0, t ∈ [0, 1], i = 1, 2, 3,

z1t(x, t) = �z1(x, t) +
3∑

i=1

l1i(t)zi(x, 1), (x, t) ∈ (0, π)× [0, 1],

z3t(x, t) = �z2(x, t) +
3∑

i=1

l2i(t)zi(x, 1), (x, t) ∈ (0, π)× [0, 1],

0 = �z3(x, t) +
3∑

i=1

l3i(t)zi(x, 1), (x, t) ∈ (0, π)× [0, 1].

Proof. Here H2
0 (0, π) = {v ∈ L2(0, π) : v(0) = v(π) = 0}. Consider the

previous theorem with d = 1, � = (0, π), T = 1, μ ≡ 0 on [0, 1), μ(1) = 1,
kij(t, s) = li(t) for (t, s) ∈ [0, 1] × [0, 1]. In this case V 1

0 (μ) = 1, λ1 = −1, and
Theorem 4 validates the claim. �

The solvability of the Cauchy problem (5), (6) with the Cauchy data

zi(x, 0) = zi0(x), x ∈ �, i = 1, 2, 3, (7)

is obtained on using Theorem 2 by analogy.

Theorem 5. Assume that zi0 ∈ H2
0 (�), i = 1, 2, 3, μ : [0, T ]→ R is a function

of bounded variation, kij ∈ C2,0([0, T ]× [0, T ];R), i, j = 1, 2, 3, k(0, s) ≡ 0, ∂k
∂t (0, s)≡ 0 for s ∈ [0, T ], and

V T
0 (μ)max

{ 2∑
n=0

Kn,1(T ) +
1
|λ1|

2∑
n=0

Kn(T ),
1
|λ1|2

2∑
n=0

Kn(T )
}

< 1.

Then there exists a unique solution z1, z2, z3 ∈ C1([0, T ];L2(�)) to (5)–(7).
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3. A Loaded Algebraic-Differential System of Equations

By analogy, we can establish sufficient conditions for solvability of simpler sys-
tems of equations furnished with initial conditions for functions of one variable. The
systems are assumed to be algebraic-differential, i.e. they are not solved with respect
to the vector of derivatives.

Assume that B and C are square matrices of order d ∈ N, rangB = k,
k ∈ {0, 1, . . . , d − 1}, K(t, s) is a square matrix of order d ∈ N, depending on
two parameters t, s ∈ [0, T ]. Consider the Cauchy problem

u(0) = u0 (8)

for the following algebraic-differential system of equations for functions of one vari-
able:

Bu̇(t) = Cu(t) +
T∫

0

K(t, s)u(s) dμ(s), t ∈ [0, T ], (9)

where u(t) = col(u1(t), u2(t), . . . , ud(t)), u0 = col(u10, u20, . . . ud0), and μ : [0, T ] →
R is a function of bounded variation . The problem (8), (9) agrees with (1), (2) if
we put U = V = Rd and the action of the operators L, M , and K (t, s) is identified
with multiplication by the matrices B, C, and K(t, s), respectively.

Lemma 1 [17, p. 122]. Assume that there exists α ∈ C such that det(αB −
C) �= 0. Then M is a strongly (L, p)-radial operator for some p ∈ {0, 1, . . . , d− 1}.

In this case the projection P (see [17, pp. 89–90]) can be calculated by the
formula

P =
1

2πi

∫

γ

(λB − C)−1Bdλ

on using residue theory. Under the conditions of Lemma 1 1, Theorem 2 implies
that if u0 ∈ imP , K ∈ Cp+1,0([0, T ] × [0, T ];Rd×d), F (T ) < 1, then there exists
a unique solution to (8), (9).

For definiteness, for d = 3 we consider the problem

ui(0) = ui, i = 1, 2, 3, (10)

u̇1(t) = u1(t) +
3∑

i=1

T∫

0

k1i(t, s)ui(s) dμ(s), t ∈ [0, T ],

u̇3(t) = u2(t) +
3∑

i=1

T∫

0

k2i(t, s)ui(s) dμ(s), t ∈ [0, T ],

0 = u3(t) +
3∑

i=1

T∫

0

k3i(t, s)ui(s) dμ(s), t ∈ [0, T ],

(11)
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close in the form to that of (5)–(7). Arguing as in Section 2, we infer

L =

⎛
⎝ 1 0 0

0 0 1
0 0 0

⎞
⎠ , M = I, (μL−M)−1 =

⎛
⎝

1
μ−1 0 0
0 −1 −μ
0 0 −1

⎞
⎠ ,

RL
μ (M) =

⎛
⎝

1
μ−1 0 0
0 0 −1
0 0 0

⎞
⎠ ,

(
RL

μ(M)
)2 =

(
LL
μ(M)

)2 =

⎛
⎝

1
(μ−1)2 0 0

0 0 0
0 0 0

⎞
⎠ ,

(
RL

μ(M)
)2(μL−M)−1 = M(μL−M)−1(LL

μ(M)
)2 =

⎛
⎝

1
(μ−1)3 0 0

0 0 0
0 0 0

⎞
⎠ .

Hence, the operator I is strongly (L, 1)-radial with the constants a = 1, K = 1,
K(T ) = eT and U0 = V0 = {0} × R × R, U1 = V1 = R × {0} × {0}, L−1

1 = I,
C1 = h0 = h1 = 1.

Statement 1. Assume that ui0 ∈ R, i = 1, 2, 3, μ : [0, T ]→ R is a function of
bounded variation, kij ∈ C2,0([0, T ]×[0, T ];R), i, j = 1, 2, 3, k(0, s) ≡ 0, ∂k

∂t (0, s) ≡ 0
for s ∈ [0, T ], and

V T
0 (μ)

2∑
n=0

max
t,s∈[0,T ]

max
i,j=1,2,3

∣∣∣∣∂
nkij
∂tn

(t, s)
∣∣∣∣ < 1.

Then there exists a unique solution u1, u2, u3 ∈ C1([0, T ];R) to (10), (11).
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THE PSEUDOVOLUME OF

A HYPERBOLIC TETRAHEDRON
E. S. Kudina and A. D. Mednykh

Abstract. Studying the properties of hyperbolic tetrahedra in the three-dimensional
Lobachevsky space, we compare two concepts characterizing them: the volume and the
pseudovolume defined as the square root of the absolute value of the Gram determinant
formed by the edge lengths. In 1877 d’Ovidio conjectured that these two concepts
for hyperbolic tetrahedra coincide up to a natural normalization constant. Later the
conjuncture turned out false; nevertheless, the asymptotic equality holds for infinitesimal
tetrahedra. The classical theorem of Servois asserts that the volume of every Euclidean
tetrahedron equals one sixth the product of lengths of two skew edges by the distance
and the sine of the angle between them. We show that this theorem remains valid for
the pseudovolumes of hyperbolic tetrahedra, but fails for their non-Euclidean volumes.
As a corollary, we find a similar situation for Steiner’s theorem on the conservation of
the Euclidean volume of a tetrahedron under parallel translations of its edges.

Keywords: hyperbolic space, volume, pseudovolume, Servois’s theorem, Steinitz’s the-
orem, Gram matrix

1. Introduction

To calculate the volume of a polyhedron is the classical problem known since
Euclid’s time and still remaining worthy of interest. The reason is largely that the
volume of a three-dimensional manifold is an important geometric invariant. In this
article we consider tetrahedra in hyperbolic space. We compare the volume and the
pseudovolume of a hyperbolic tetrahedron in the three-dimensional Lobachevsky
space. In 1877 the Italian Enrico d’Ovidio conjectured that these two concepts
coincide up to a constant. However, it was shown later that they differ, while the
asymptotic equality holds only for infinitesimal tetrahedra.

By the classical theorem of Servois [1, p. 98], the volume of every Euclidean
tetrahedron equals one sixth the product of the length of its skew edges by the dis-
tance and the sine of the angle between them. An important corollary is Steiner’s
theorem [1, p. 99] asserting that the volume of every Euclidean tetrahedron is pre-
served under parallel translations of its edge along the line which includes it. This
article presents a proof of Servois’s theorem for the pseudovolume of hyperbolic
tetrahedra and constructs an example demonstrating that the theorem fails for the
volume. As a corollary of Servois’s theorem for hyperbolic pseudovolume, we obtain
Steiner’s theorem for the pseudovolume of a hyperbolic tetrahedron.

The authors weer supported by the Russian Foundation for Basic Research (Grants 16–31–
50009 and 15–01–07906).

c© 2015 Kudina E. S. and Mednykh A. D
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2. Preliminaries

As the model of the hyperbolic geometryH3, consider the upper half-space R3 =
{(x, y, t), x, y, t ∈ R, t > 0} endowed with the metric ds2 = (dx2 + dy2 + dt2)/t2.
For all necessary formulas of non-Euclidean geometry, see [2]. We need the following
well-known properties.

Theorem 2.1. The geodesics in H3 are the half-lines and half-circles orthogo-
nal to the xy plane.

Theorem 2.2. The group of orientation-preserving isometries of the Lobachev-
sky space H3 coincides with PSL(2,C) consisting of the Möbius transformations of
the form z → az+b

cz+d , where a, b, c, d ∈ C with ad − bc = 1. The action of these
mappings extends to H3 according to Poincaré’s formula

z + tj → [a(z + tj) + b][c(z + tj) + d]−1, (1)

where j with j2 = −1 is the unit quaternion, z = x+ y i, while z + t j are identified
with the points (x, y, t) of H3.

Theorem 2.3. The distance function ρ on H3 satisfies

cosh ρ(z1 + t1j, z2 + t2j) = 1 +
|z1 − z2|2 + |t1 − t2|2

2t1t2
. (2)

Theorem 2.4. The differential of the volume of a tetrahedron in the hyperbolic
space H3 satisfies Schläfli’s formula

dV = −1
2

∑

k

lkdθk, (3)

where lk and θk are the length of the edge k and the dihedral angle along the edge.

3. The Main Results

We start with the following preliminary result.

Lemma 3.1. Given four distinct points z1, z2, z3, and z4 on the extended
complex plane, there exists a Möbius transformation carrying them to the points
−R, R, − eiϕR , and eiϕ

R , where R > 0 and ϕ is some real number.
Proof. Consider the mapping

T (z) =
z − z1
z − z2 :

z3 − z1
z3 − z2

and denote the cross-ratio of z1, z2, z3, and z4 by Q = T (z4). Then T (z) sends z1,
z2, z3, and z4 to 0, ∞, 1, and Q.

Let us find a Möbius mapping L carrying 0, ∞, 1, and Q to −k, 1
k , k, and − 1

k
for some complex number k.

The appropriate cross-ratios yield

Q =
(

1
2

(
k +

1
k

))2

. (4)

Solving the resulting equation for k, we find one of its roots. The remaining three
roots are −k, − 1

k and 1
k . We can verify directly that the Möbius mapping

L(z) =
−2kz + k(1 + k2)
2k2z − (1 + k2)

(5)

has the required properties.
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Put k = Reiψ. Then the mapping z → e−iψz carries −k, k, − 1
k , and 1

k to −R,
R, − 1

Re2iψ , and 1
Re2iψ . Therefore, the mapping e−iψ ◦L ◦T carries z1, z2, z3, and z4

to −R,R,− 1
Re2iψ ,

1
Re2iψ . Putting ϕ = −2ψ, we obtain the result. �

4. Non-Euclidean Versions of
Servois’s and Steiner’s Theorems

In order to obtain these theorems, we have to express the Gram determinant
of a hyperbolic tetrahedron in terms of the lengths of its skew edges, as well as
the distance and angle between them. To use the most convenient method, realize
a hyperbolic tetrahedron in the upper half-space H3 = {(x, y, t), x, y, t ∈ R, t > 0}
so that the common perpendicular to the skew edges coincides with the vertical
axis Ot.

Fig. 1. A hyperbolic tetrahedron ABCD

Consider an arbitrary hyperbolic tetrahedron ABCD. Extend the side AB
from A to a vertex A′ lying on the absolute and from B to a vertex B′ also lying
on the absolute. Similarly extend the side CD from C to C′ and from D to D′.
Applying if need be the Möbius mapping of Lemma 3.1, without loss of generality
we may assume that A′ = −R, B′ = R, C′ = − eiϕR , and D′ = eiϕ

R .
Denote by O the origin of the Cartesian coordinate system Oxyt and by ϕA,

the angle formed by the rays OA and OA′. Similarly, introduce ϕB , ϕC , and ϕD for
the corresponding angles OBB′, OCC′, and ODD′.

Then we can define the vertices of the tetrahedron using Cartesian coordinates:

A = (R cosϕA, 0, R sinϕA), B = (R cosϕB, 0, R sinϕB),

C =
(

1
R

cosϕC cosϕ,
1
R

cosϕC sinϕ,
1
R

sinϕC
)
,

D =
(

1
R

cosϕD cosϕ,
1
R

cosϕD sinϕ,
1
R

sinϕD
)
.
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Calculate the hyperbolic distance between the vertices using (2) (see Theo-
rem 2.3):

cosh ρ(A,B) =
1− cosϕA cosϕB

sinϕA sinϕB
, cosh ρ(C,D) =

1− cosϕC cosϕD
sinϕC sinϕD

,

cosh ρ(A,C) =
R2 +R−2 − 2 cosϕ cosϕA cosϕC

2 sinϕA sinϕC
,

cosh ρ(B,C) =
R2 +R−2 − 2 cosϕ cosϕB cosϕC

2 sinϕB sinϕC
,

cosh ρ(A,D) =
R2 +R−2 − 2 cosϕ cosϕA cosϕD

2 sinϕA sinϕD
,

cosh ρ(B,D) =
R2 +R−2 − 2 cosϕ cosϕB cosϕD

2 sinϕB sinϕD
.

The Gram matrix of this tetrahedron is

G =

⎛

⎜⎝

−1 − cosh ρ(A,B) − cosh ρ(A,C) − coshρ(A,D)
− coshρ(A,B) −1 − coshρ(B,C) − cosh ρ(B,D)
− cosh ρ(A,C) − coshρ(B,C) −1 − cosh ρ(C,D)
− coshρ(A,D) − coshρ(B,D) − cosh ρ(C,D) −1

⎞

⎟⎠ .

Taking the determinant of G, we find

det(G) = − sin2 ϕ(R4 − 1)2(cosϕA − cosϕB)2(cosϕC − cosϕD)2

4R4 sin2 ϕA sin2 ϕB sin2 ϕC sin2 ϕD
. (6)

The formula sinh2 z = cosh2 z − 1 yields

sinh ρ(A,B) =
cosϕA − cosϕB
sinϕA sinϕB

,

sinh ρ(C,D) =
cosϕC − cosϕD
sinϕC sinϕD

.

Thus,

det(G) = − (R4 − 1)2

4R4 sin2 ϕ sinh2 ρ(A,B) sinh2 ρ(C,D). (7)

Since R = e
ρ
2 , it follows that R4−1

2R2 = sinh ρ. Then (7) becomes

det(G) = − sinh2 ρ sin2 ϕ sinh2 ρ(A,B) sinh2 ρ(C,D). (8)
Note that formulas equivalent to (8), although expressed in slightly different

geometric terms and proved by completely different technique, were obtained in
Fenchel’s book [3, p. 169, Eq. (24)] and in the unpublished manuscript of Mc-
Connell [4].

Recall that we can calculate the pseudovolume of the hyperbolic tetrahedron in
terms of the Gram matrix as Ṽ =

√− det(G). Various authors call this quantity the
amplitude, content, polar sine, and so on. Inserting this expression into (8) yields
the following analog of Servois’s formula for the hyperbolic tetrahedron.

Theorem 4.1. The pseudovolume Ṽ of a hyperbolic tetrahedron, the lengths
of its opposite edges ρ(A,B) and ρ(C,D), as well as the angle ϕ and distance ρ
between these edges are related as

Ṽ = sinh ρ sinϕ sinh ρ(A,B) sinh ρ(C,D). (9)
As a corollary to (9), we obtain Steiner’s theorem for the hyperbolic tetrahedron.

Theorem 4.2. The pseudovolume of a hyperbolic tetrahedron is preserved
when its opposite edges move retaining their lengths along the lines that include
them.
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5. A Counterexample to Steiner’s Theorem

Consider a hyperbolic tetrahedron OABC with three pairwise orthogonal sides
meeting at the vertex O. Go from O along three pairwise orthogonal geodesics on
its edges, which we agree to call the coordinate axes Ox, Oy, and Oz. Assume that
the vertices A, B, and C lie on the corresponding coordinate axes.

Denote by coshx, cosh y, and cosh z the hyperbolic cosines of the lengths of the
side lying on the corresponding coordinate axes Ox, Oy, and Oz. For convenience,
denote the so-constructed tetrahedron (Fig. 2) by T (x, y, z).

ch b ch c

ch a

 ch x

ch y

ch
 z

O

B

A

C

Fig. 2. A hyperbolic tetrahedron OABC with three pairwise orthogonal sides

Pythagoras’s theorem for the hyperbolic right triangles OBC, OAC, and OAB
yields

cosha = cosh y cosh z, cosh b = coshx cosh z, cosh c = coshx cosh y. (10)

The dihedral angles α, β, and γ along the edges BC, AC, and AB of lengths a,
b, and c satisfy [5, p. 130]

cot2 α =
(cosha cosh c− cosh b)(cosha cosh b− cosh c)

(cosh2 a− 1)(cosh b cosh c− cosha)
,

cot2 β =
(cosh b cosh c− cosha)(cosh a cosh b− cosh c)

(cosh2 b− 1)(cosha cosh c− cosh b)
,

cot2 γ =
(cosh b cosh c− cosh a)(cosha cosh c− cosh b)

(cosh2 c− 1)(cosha cosh b − cosh c)
.

(11)

Remark. In the notation of [5], we have A
2 = α, B2 = β, and C

2 = γ.

Construct the desired counterexample as follows. Put x = y = z = u and con-
sider the tetrahedron T1 = T (u, u, u) (Fig. 3). On the axis Oy choose two points D
andD′ symmetric with respect to the plane OAC and lying at the distance u

2 fromO.
Denote this tetrahedron ACDD′ by T2 (Fig. 4). Then T1 and T2 share the edge AC
of length b, with the opposite edges OB and DD′ of length u. Observe that we ob-
tain DD′ from the edge OB by a parallel translation along the Oy axis. Therefore,
the tetrahedra T1 and T2 satisfy the conditions of Steiner’s theorem. Our goal is to
show that they have different hyperbolic volumes.

The proof rests on the two lemmas:
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ch b

ch c

ch a

 ch u

ch u

ch
 u

O

B

A

C
ch b

ch c

ch a

 ch u

ch u/2ch
 u

O

D

A

C

D

Fig. 3. The tetrahedron T1 Fig. 4. The tetrahedron T2

Lemma 5.1. The hyperbolic volume Vol(T1) satisfies

Vol(T1) =
coshu∫

1

f(t) dt, (12)

where

f(t) =
3 cosh−1(t2)

2
√

1 + t2(1 + 2t2)
.

Lemma 5.2. The hyperbolic volume T2 satisfies

Vol(T2) = 2
coshu∫

1

g(t) dt, (13)

where

g(t) =
cosh−1( t

√
1+t√
2

)(2 + t)

2(1 + t+ t2)
√

2 + 2t+ t2
+

cosh−1(t2)(1 − t)
4(1 + t+ t2)

√
1 + t2

.

Proof of Lemma 5.1. Consider the first tetrahedron T1 = T (u, u, u) and put

t = coshu. Then cosh u
2 =
√

1+t
2 . Find the differentials of the angles α, β, and γ.

By (11),

α = β = γ = cosh−1 t√
1 + t2

,

whence
d(α) = d(β) = d(γ) = − dt

(1 + 2t2)
√

1 + t2
. (14)

Calculate the lengths of the corresponding sides lα = a, lβ = b, and lγ = c:

− lα
2

= − lβ
2

= − lγ
2

= −1
2
cosh−1(t2). (15)

Inserting (14) and (15) into Schläfli’s formula (3), we obtain the claim.

Proof of Lemma 5.2. The second tetrahedron T2 consists of two mirror copies
of the tetrahedron T ′2 = T

(
u, u2 , u

)
.
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Find the differentials of the angles α, β, and γ of T ′2. By (11),

α = γ = cosh−1 t√
2 + 2t+ t2

, β = cosh−1 1 + t√
1 + t2

,

whence
d(α) = − 2 + t

2(1 + t+ t2)
√

2 + 2t+ t2
dt,

d(β) =
t− 1

2(1 + t+ t2)
√

1 + t2
dt,

d(γ) = − 2 + t

2(1 + t+ t2)
√

2 + 2t+ t2
dt.

(16)

Calculate the lengths of the corresponding sides:

− lα
2

= −1
2
cosh−1

(
t

√
1 + t

2

)
, − lβ

2
= −1

2
cosh−1(t2),

− lγ
2

= −1
2
cosh−1

(
t

√
1 + t

2

)
. (17)

Schläfli’s formula yields

dVol(T ′2) = − lα
2
dα− lβ

2
dβ − lγ

2
dγ = g(t) dt,

where g(t) is the same as in the statement of Lemma 5.2. Hence, the obvious equality
Vol(T2) = 2 Vol(T ′2) leads to (13).

It is not difficult to see that the functions defined by the integrals (12) and (13)
are distinct. Thus, Steiner’s theorem fails for the hyperbolic volumes of tetrahedra.
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REGULAR POLYGONS AND

POLYHEDRA OVER FINITE FIELDS
T. M. Lavshuk

Abstract. We establish necessary and sufficient conditions for the existence of regular
polygons and polyhedra over finite fields of prescribed characteristic.

Keywords: regular polygon, regular polyhedron over finite field

1. Introduction

This article addresses the realization of regular polygons and regular polyhedra
over the finite field Fp, the prime field of characteristic p. A regular polygon over Fp

is visually quite different from any ordinary one in the plane over R. Only knowing
the rules for constructing this object and conditions for its existence over Fp enable
us to chart further studies concerned with not just polygons. The problem of polygon
construction is important in the theory of Riemann surfaces, to construct which we
identify the edges of a fundamental polygon. To this end, we need to realize polygons
in the Euclidean, hyperbolic, or spherical geometries. A similar problem arises in
the three-dimensional case while constructing manifolds. A more general statement
of the question is to study Riemann surfaces and manifolds over finite fields.

2. Regular Polygons over Fp and Their Realizations

Define a regular polygon (n-gon) over Fp using the concept of regular order n
star. Use Coxeter’s method for constructing its vertices [1], that is, rotate an original
vertex through the angle 2π

n . In the case of a finite field replace the rotation by the
reflection of points about a line.

Definition. If the tuple [l0, l1, . . . , ln−1] of lines is a regular order n star with
the point O of common intersection then the set, obtained by this method, of n
points (which we call the vertices) with the condition that the squared distances
between the adjacent points are congruent modulo p and the lines (which we call
the edges) passing through these points is called a regular polygon over the finite
field Fp.

Let us determine the values of p allowing realization of a regular triangle over Fp

using the theorem on the existence of order 3 star (see [2]).

Theorem (order 3 star). A regular order 3 star exists only when 3 is a nonzero
square.

For a proof, see [2]. Let us establish, using a different approach, a necessary
and sufficient condition for the existence of a regular triangle over Fp.

The author was supported by the Russian Foundation for Basic Research (Grant 15–01–
07906).

c© 2015 Lavshuk T. M.
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Theorem 2.1. A regular triangle over Fp exists if and only if 3 is a nonzero
square.

Proof. Consider three noncollinear vectors
−→
OA,

−→
OB, and

−→
OC in a plane as in

Fig. 1(a), where O is the barycenter of the points A, B, and C. Construct a regular
triangle over R. Without loss of generality, assume that the coordinates of O are
(0; 0). The endpoints of the specified vectors and the lines passing through them
form the regular triangle ABC (Fig. 1(b)).

(a) (b)

Fig. 1. Construction of the regular triangle ABC

It is clear that

|−→OA|2 = |−→OB|2 = |−→OC|2, ∠AOB = ∠BOC = ∠AOC.

This also holds over Fp when we understand the equality of angles as the equality
of the corresponding inner products. Consequently,

−→
OA · −→OB =

−→
OB · −→OC =

−→
OA · −→OC.

The above leads to the system
⎧
⎪⎨

⎪⎩

(
−→
OA)2 = (

−→
OB)2 = (

−→
OC)2,

−→
OA · −→OB =

−→
OB · −→OC =

−→
OA · −→OC,

−→
OA +

−→
OB +

−→
OC = 0.

(1)

It is equivalent to the system
{

(
−→
OA)2 = (

−→
OB)2,

−→
OA · −→OB = − 1

2 (
−→
OA)2.

(2)

If the vectors
−→
OA and

−→
OB have coordinates (x, y) and (s, t) then we can express (2)

as {
x2 + y2 = s2 + t2,

xs + yt = − 1
2 (x2 + y2).

(3)

Solving (3), we express x and y in terms of s and t:
⎡

⎢
⎢
⎢
⎢
⎣

{
x = 1

2 (−s−√3t),

y = 1
2 (
√

3s− t),
{

x = 1
2 (−s +

√
3t),

y = 1
2 (−√3s− t).

(4)

To realize a regular triangle ABC over Fp, the coordinates of each of its vertices
must exist. According to (4), for this condition to hold, we need

√
3 in Fp. We can
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always define s and t as elements of Fp. Consequently, we choose p so that 3 is
a nonzero square. Considering then that two noncollinear vectors constitute a basis
for a plane, we conclude that for each suitable p at least one regular triangle over Fp

exists.
We can make similar conclusions for regular pentagons over Fp and regular

heptagons over Fp by the following theorem [2].

Theorem (order 5 star). A regular order 5 star exists only when there exists
a nonzero number r satisfying the conditions (i) r2 = 5 and (ii) 2(5− r) is a square.

Theorem (order 7 star). A regular order 7 star exists only when there exists
a nonzero number s such that 7− 56s+ 112s2 − 64s3 = 0 and s(1− s) is a square.

It is difficult to recognize regular polygons over Fp visually. For example, take
a regular triangle over Fp and inspect its construction.

Take the vertices A
(− 1

2 ;
√

3
2

)
, B
(− 1

2 ;−
√

3
2

)
, and C(1; 0) of a regular triangle

overR. According to Theorem 2.1 and the results of [3], choose as the characteristic p
the sequence A038874, that is, the primes congruent to {1, 2, 3, 11} modulo 12. As-
suming that p = 11 and recalculating the coordinates of the vertices of the specified
triangle in F11, we obtain A(5; 3), B(5; 8), and C(1; 0).

Now write down the equations of the lines passing through the adjacent vertices:

AB : x = 5, (5)
AC : 8x + 4y + 3 = 0, (6)
BC : 3x + 4y + 8 = 0. (7)

Find all points satisfying (5)–(7) and, together with A, B, and C, mark them in the
lattice F 2

11.

Fig. 2. A regular �ABC over F11

The field Fp lacks any order relation; therefore, for the lines determined by
equations of the form x = a or y = b mark all lattice points satisfying them. For each
line it is convenient to choose different labels (Fig. 2). According to the definition
of regular n-gon over Fp (in our case n = 3), we should verify that the squared
side lengths of �ABC are congruent modulo 11. Using the definition of distance
between points, we obtain

|AB|2 ≡ |AC|2 ≡ |BC|2 ≡ 3 (mod 11).
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Fig. 3. A regular hexagon over F11

Thus, a regular triangle over F11 is realized.
Similarly we realize other regular polygons over Fp. Fig. 3 shows the result of

this realization of a regular hexagon over F11.

3. Regular Polyhedra in F 3
p and Their Realizations

In this section we establish a criterion for the existence of regular polyhedra
in F 3

p , which is the three-dimensional vector space over Fp. We also propose a visu-
alization for the corresponding objects.

3.1. Regular tetrahedra in F 3
p .

Definition. Refer as a regular tetrahedron in F 3
p to a set consisting of four

regular triangles defined over Fp and meeting pairwise along common edges.

Let us find out for which p a regular tetrahedron in F 3
p can be realized.

Theorem 3.1.1. A regular tetrahedron is realized over every finite field Fp.
Proof. Our goal is to show that for each prime p at least one regular tetrahe-

dron in F 3
p exists.

Take three basis vectors
−→
OA,

−→
OB, and

−→
OC of length 1 in the three-dimensional

space. To obtain a regular tetrahedron ABCD over R, joining the endpoints A, B,
and C firstly to each other by lines, we obtain a regular triangle ABC. Then join
them to the point D with coordinates (t, t, t) as shown in Fig. 4.

Impose the equalities

|AB|2 = |BC|2 = |AC|2 = |AD|2 = |BD|2 = |CD|2.
The definition of distance between points yields

|AB|2 = |BC|2 = |AC|2 = 2, |AD|2 = |BD|2 = |CD|2 = 3t2 − 2t + 1.

Consequently,
3t2 − 2t+ 1 = 2.

Solving this equation, we obtain t = − 1
3 or t = 1. Then D has coordinates

(− 1
3 ,− 1

3 ,− 1
3 ) or (1, 1, 1). To realize a regular tetrahedron in F 3

p , it is necessary
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Fig. 4. A regular tetrahedron over R

that the coordinates of all vertices exist. For ABCD they exist in each field Fp.
Therefore, for each p there is always at least one regular tetrahedron realized in F 3

p ,
as required.

Realize in F 3
p the regular tetrahedron with vertex coordinates

A

(

0; 0;
√

2
3
− 1

2
√

6

)

, B

(

− 1
2
√

3
;−1

2
;− 1

2
√

6

)

,

C

(

− 1
2
√

3
;
1
2
;− 1

2
√

6

)

, D

(

− 1√
3
; 0;− 1

2
√

6

)

.

As the characteristic p we can choose the sequence of primes A130063 [3], that is,
the primes congruent to 1 or 23 modulo 24. Assuming that p = 23 and calculating
the vertex coordinates for a regular tetrahedron over F23, we obtain A(0; 0; 20),
B(5; 11; 1), C(5; 12; 1), and D(13; 0; 1).

Using the Wolfram Mathematica package, we construct this regular tetrahedron
in F 3

23 (see Fig. 5).

Fig. 5. A regular tetrahedron over R

The squared distances between adjacent vertices of the constructed tetrahedron
are congruent to 1 modulo 23. The vertices of each facet of the regular tetrahedron
ABCD in F 3

23 lie in one plane, which we check using the coplanarity criterion for
three vectors. This applies to all its facets; furthermore, the planes of all facets are
distinct. Thus, we have realized ABCD in F 3

23.
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3.2. Hexahedra in F 3
p .

Definition. Refer as a hexahedron (cube) in F 3
p to a set of points and lines

forming six squares over Fp of which each pair either meet along a common edge
and two vertices or are disjoint; furthermore, each vertex belongs to three squares.

Let us prove a theorem on realization of a hexahedron in F 3
p , using which we

establish a theorem on realization of other regular polyhedra in F 3
p .

Theorem 3.2.1. A hexahedron is realized over every finite field Fp.
Proof. Taking three mutually orthogonal unit vectors in space, it is easy to

construct a hexahedron over R. The coordinates of their endpoints A, B, C, and O
are known (Fig. 6). The coordinates of the other points are A1(1; 0; 1), B1(1; 1; 1),
C1(0; 1; 1), and D(1; 1; 0).

Fig. 6. A hexahedron over R

Each of them exists over every finite field Fp. Consequently, for every p we can
always construct at least one hexahedron realized in F 3

p .
Observe that we can prove Theorem 3.1.1 using Theorem 3.2.1: inscribe a reg-

ular tetrahedron into a hexahedron. A hexahedron in F 3
p looks as the usual cube

over R.

3.3. Octahedra in F 3
p .

Definition. Refer as an octahedron in F 3
p to a set of points and lines forming 8

regular triangles over Fp, each pair of which either meet along a common side and
two vertices or are disjoint; furthermore, each vertex belongs to four triangles.

Using Theorem 3.2.1, we establish a similar result for octahedra.

Theorem 3.3.1. An octahedron is realized over every finite field Fp for p > 2.
Proof. Take the hexahedron OBDCAA1B1C1 over R constructed in the proof

of Theorem 3.2.1 (see Fig. 6). Inscribe in it an octahedron over R. Its vertices are
the midpoints of the facets of the hexahedron, which exist over every field Fp for
p > 2. Consequently, an octahedron is realized over every field Fp for p > 2.

Fig. 7 shows a realization in F 3
17 of the octahedron with the vertices

A1

(

− 1√
2
; 0; 0
)

, A2

(

0;
1√
2
; 0
)

, A3

(

0; 0;− 1√
2

)

,

A4

(

0; 0;
1√
2

)

, A5

(

0;− 1√
2
; 0
)

, A6

(
1√
2
; 0; 0
)

.
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Fig. 7. An octahedron in F 3
17

3.4. Dodecahedra in F 3
p .

Definition. Refer as a dodecahedron in F 3
p to the set of points and lines form-

ing 12 regular pentagons over Fp, each pair of which either meet along a common
edge and two vertices or are disjoint; furthermore, each vertex belongs to three
pentagons.

Theorem 3.4.1. A dodecahedron is realized over the finite field Fp for p ≡
{0, 1, 4} (mod 5).

Proof. Take the hexahedron over R with the vertices

A1

(
1
2
;−1

2
;
1
2

)

, A2

(
1
2
;
1
2
;
1
2

)

, A3

(

− 1
2
;
1
2
;
1
2

)

, A4

(

− 1
2
;−1

2
;
1
2

)

,

A5

(
1
2
;−1

2
;−1

2

)

, A6

(
1
2
;
1
2
;−1

2

)

, A7

(

− 1
2
;
1
2
;−1

2

)

, A8

(

− 1
2
;−1

2
;−1

2

)

.

Inscribe it in a dodecahedron. Simple calculations yield the coordinates of its
vertices different from the vertices of the hexahedron:

A9

(√
5−1
4

; 0;
√

5+1
4

)

, A10

(
1−√5

4
; 0;

1+
√

5
4

)

, A11

(

0;
√

5+1
4

;
√

5−1
4

)

,

A12

(

0;
√

5+1
4

;
1−√5

4

)

, A13

(

0;
−1−√5

4
;
√

5−1
4

)

, A14

(

0;
−1−√5

4
;
1−√5

4

)

,

A15

(
1−√5

4
; 0;
−1−√5

4

)

, A16

(√
5−1
4

; 0;
−1−√5

4

)

, A17

(−1−√5
4

;
√

5−1
4

; 0
)

,

A18

(−1−√5
4

;
1−√5

4
; 0
)

, A19

(
1+
√

5
4

;
√

5−1
4

; 0
)

, A20

(
1+
√

5
4

;
1−√5

4
; 0
)

.

To realize a dodecahedron in F 3
p , we need the coordinates of all its vertices to

exist in the specified field. The existence of coordinates of the points coinciding with
the vertices of the hexahedron follows from Theorem 3.2.1.

For the existence of the remaining vertices, whose coordinates are obtained
above, we need 5 to be a square modulo p. Consequently, considering that every
three noncoplanar vectors constitute a basis for space, for each p defined by the
sequence A038872 [3], that is, for each prime congruent to {0, 1, 4} modulo 5, there
is always at least one dodecahedron which is realized in F 3

p .
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Fig. 8. A dodecahedron in F 3
11

Fig. 8 shows the realization in F 3
11 of the dodecahedron A1A2 . . . , A20 indicated

in the proof of Theorem 3.4.1.

3.5. Icosahedra in F 3
p .

Definition. Refer as an icosahedron in F 3
p to a set of points and lines forming

20 regular triangles over Fp, each pair of which either meet along a common edge
and two vertices or have only one common vertex or are disjoint; furthermore, each
vertex belongs to five triangles.

Fig. 9. An icosahedron in F 3
11

The icosahedron and dodecahedron are dual polyhedra. We can inscribe an icosa-
hedron into a dodecahedron so that then the vertices of the icosahedron are the
midpoints of the facets of the dodecahedron. Then, excluding the case p = 5, we
can justify the following statement.

Theorem 3.5.1. An icosahedron is realized over the finite field Fp for p > 5
with p ≡ {0, 1, 4} (mod 5).
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To construct an icosahedron in F 3
p , take the icosahedron A1A2 · · ·A12 over the

field R with vertex coordinates

A1

(
5+3
√

5
20

; 0;
−5−√5

20

)

, A2

(−5−3
√

5
20

; 0;
5+
√

5
20

)

, A3

(
5+
√

5
20

;
−5−3

√
5

20
; 0
)

,

A4

(−5−√5
20

;
5+3
√

5
20

; 0
)

, A5

(

0;
5+
√

5
20

;
−5−3

√
5

20

)

, A6

(
5+
√

5
20

;
5+3
√

5
20

; 0
)

,

A7

(−5−√5
20

;
−5−3

√
5

20
; 0
)

, A8

(

0;
−5−√5

20
;
5+3
√

5
20

)

, A9

(

0;
−5−√5

20
;
−5−3

√
5

20

)

,

A10

(
5+3
√

5
20

; 0;
5+
√

5
20

)

, A11

(−5−3
√

5
20

; 0;
−5−√5

20

)

, A12

(

0;
5+
√

5
20

;
5+3
√

5
20

)

.

As the characteristic p we can choose the sequence A038872 [3].
Assuming that p = 11 and calculating the vertex coordinates of an icosahe-

dron over F11, we obtain A1(8; 0; 10), A2(3; 0; 1), A3(1; 3; 0), A4(10; 8; 0), A5(0; 1; 3),
A6(1; 8; 0), A7(10; 3; 0), A8(0; 10; 8), A9(0; 10; 3), A10(8; 0; 1), A11(3; 0; 10), A12(0; 1; 8).

Using the Wolfram Mathematica package, we construct this icosahedron in F 3
11

(see Fig. 9).
We expect to obtain similar results for semiregular polyhedra.
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THE EXISTENCE OF A EUCLIDEAN STRUCTURE

ON THE FIGURE–EIGHT KNOT WITH A BRIDGE
A. D. Mednykh and D. Yu. Sokolova

Abstract. This paper studies the main geometric invariants of the Euclidean conical
manifold whose singular set is the figure-eight knot with a bridge and whose support is
the three-dimensional sphere. We obtain conditions for the existence of this manifold
and calculate its volume and the lengths of its singular geodesics.

Keywords: cone-manifold, Euclidean structure, volume, figure-eight knot

1. Introduction

Koebe’s classical articles [1] established uniformization theorems for the Rie-
mannian surfaces of a prescribed signature. In the modern language this means that
all “good” two-dimensional orbifolds have universal coverings amounting to either
the unit disk or the complex plane or the Riemann sphere. From the viewpoint of
geometry, the latter is equivalent to the assertion that every “good” two-dimensional
orbifold carries either hyperbolic or Euclidean or spherical structure. Recall that
an orbifold is “good” whenever it is neither a sphere with one singular point nor
a sphere with two singular points of distinct orders. The analog in the three-
dimensional case, more complicated to state, is called Thurston’s geometrization
conjecture. It is completely settled by the Russian mathematician Perelman [2–4];
as a particular case, this yielded a solution to the famous Poincaré conjecture.

We can express manifolds and orbifolds with a geometric structure as quotients
spaces X/� , where X is one of the known geometries and � is a discrete group of
isometries acting on X with fixed points in general. In low dimensions all possible
geometries are known. In particular, in the two-dimensional case X = S2,E2,H2,
and in the three-dimensional case it is one of eight model geometries of Thurston:
X = S3,E3,H3, S2 + E1,H2 + E1,N il,S ol, ˜PS L (2,R).

Assume that X is one of the listed three-dimensional geometries. Then the
image of the fixed points of � under the canonical mapping X �→ X/� is typically
a knot, a link, or a knotted graph. Let us illustrate this with one example [5]. Take
X = H3 and � = F2n, where n ≥ 4, that is, the Fibonacci group acting on X
by isometries. Then X/� is the three-dimensional sphere, while the image of the
fixed-point set of X in X/� is a figure-eight knot.

But in general the presence of a geometric structure is not necessarily related to
discrete groups. This leads to conical manifolds, which we can regard as straightfor-
ward generalizations of orbifolds. In turn, in the definition of conical manifold in the

The authors were supported by the Russian Foundation for Basic Research; the first, by
Grant 15–01–07906 and the second, by Grant 16–31–00138.

c© 2015 Mednykh A. D. and Sokolova D. Yu
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following section we only need local uniformization using the geometries mentioned
above.

The goal of this article is to study Euclidean structures on knots and links.
In 1975 Riley discovered [6] examples of hyperbolic structures on some knots and
the complements to some links in the three-dimensional sphere. In the spring of
1977 Thurston presented an existence theorem for a Riemannian metric of constant
negative curvature on a three-dimensional manifold. In practice it turned out that
the complement to each prime knot excluding torus knots and satellite knots admits
a hyperbolic structure. Note the following available results. A Euclidean structure
on the figure-eight knot 41 arises when its conical angle α equals 2π

3 ; this is due
to Thurston [7]. Mednykh and Rasskazov gave in [8] an explicit construction of the
fundamental set for the conical manifold 41(α) in E3. This fundamental set amounts
to a nonconvex polyhedron with 20 sides whose vertices have integer coordinates.
Shmatkov studied in [9] the existence of Euclidean structure on the Whitehead link.
The structure of fundamental polyhedron for the trefoil knot with a bridge was
worked out in [10] and conditions for the existence of Euclidean structure on the
corresponding cone-manifold were found.

In this article we study the main geometric invariants of the Euclidean cone-
manifold whose singular set is the figure-eight knot with a bridge, and the support
is the three-dimensional sphere. We establish conditions for the existence of this
manifold and calculate its volume and the lengths of its singular geodesics.

2. Preliminaries

A three-dimensional cone-manifold is a metric space obtained from a collection
of disjoint 3-simplices in a space of constant sectional curvature k by an isometric
identification of their facets. Furthermore, we assume that the resulting topological
space (the support) is a manifold.

This manifold is equipped with a Riemannian metric of constant sectional cur-
vature k on the union of cells of dimension 2 and 3. In the case k = 0 say that the
corresponding cone-manifold has (or admits) Euclidean structure. Similarly define
cone-manifolds with spherical (k = +1) and hyperbolic (k = −1) structures.

The metric structure near each 1-cell is determined by the conical angle, which
is the sum of dihedral angles for the edges whose identification produces this cell.

Refer as the singular set of a cone-manifold to the closure of all 1-cells the
conical angle around which differs from 2π.

We should also note that a point in the singular set with conical angle α has
a neighborhood isometric to a neighborhood of a point lying on the edge of a wedge
with opening angle α whose sides are pairwise identified by way of rotating the
three-dimensional space about the edge of the wedge. We can visualize a conical
manifold as a three-dimensional manifold with an embedded graph on which the
metric is distorted. Furthermore, if we measure the length of an infinitesimal circle
around a component of the graph then instead of the standard 2πε we obtain αε,
where α is the conical angle along the component of the graph.

Let us define the holonomy group of a geometric orbifold. Take a geometric orb-
ifold O possessing a (G,X)-structure [7]. Consider the associated (G,X)-manifold
M = O \�, where � is the singular set of O. Take regions U1, U2, . . . and mappings
ϕi : Ui → X determining local coordinate systems on M with transition functions

γij = ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj).
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By the definition of (G,X)-manifold, each mapping γij acts locally as an element
of G, so that we can consider γij as a locally constant mapping with values in G.
The composition with ϕj yields a locally constant mapping Ui ∩ Uj → G, which we
also denote by γij .

Suppose now that two charts (Ui, ϕi) and (Uj , ϕj) cover the same point x.
Then we can modify the mapping ϕj (by considering its composition with γij) so
that it coincides with the mapping ϕi near x. Actually, if the intersection Ui ∩Uj is
connected then these mappings coincide on the whole intersection, so that we obtain
a mapping Ui ∩ Uj → X extending ϕi. But, in general, attempting in this fashion
to extend the coordinate mapping to the entire manifold, we arrive at mismatching
values. In order to avoid that, we must pass to the universal covering space.

Choose a basepoint x0 ∈M and a chart (U0, ϕ0) covering it. Take the universal
covering space π : ˜M → M of M . Regard ˜M as the space of homotopy classes of
paths in M beginning at x0 and consider a path α representing a homotopy class
[α] ∈ ˜M (so that α(1) = π([α])). Subdivide α by the intermediate points

x0 = α(t0), x1 = α(t1), . . . , xn = α(tn),

where t0 = 0 and t1 = 1, so that each of the fragments is covered by some chart
(Ui, ϕi). Then, moving along α, we modify the next mapping ϕi to coincide with the
(already modified) mapping ϕi−1 in some neighborhood of xi ∈ Ui−1 ∩Ui. Agreeing
with each another, these charts constitute the analytic continuation of the mapping
ϕ0 along this path. The last of the new coordinate mappings is of the form

ψ = γ01(x1)γ12(x2) . . . γn−1,n(xn)ϕn.

Fixing a base point and an initial mapping ϕn, define the development mapping
D : ˜M → X as the mapping locally specified using the analytic continuation of ϕ0

along each path; that is, D = ϕσ
0 ◦ π in some neighborhood of σ ∈ ˜M .

When initial conditions (basepoint and initial mapping) change, the image of
the development mapping changes under the action of some element of G.

If we endow the space with the universal covering (G,X)-structure induced by
the covering π then the development mapping is a local (G,X)-homeomorphism
between ˜M and X .

Although in the most interesting cases the group G acts on X transitively, this
condition is not necessary for the definition of D. For instance, if the group G is
trivial and the manifold X is closed then the closed (G,X)-manifold is precisely
a finite covering of X with projection D.

Fig. 1. Figure-eight knot
with a bridge

Consider now an element σ of the fundamental
group of M . Analytic continuation along the loop σ
leads to the germ ϕσ

0 , which we can compare with ϕ0
since they are both defined in a neighborhood of the
basepoint. Denote by gσ an element of G with ϕσ

0 =
gσϕ0 and call gσ the holonomy of σ. It is easy to deduce
from the definition of development mapping that D ◦
Tσ = gσ ◦D, where Tσ : τ → στ is the transformation
of the covering induced by σ. Applying this equality
to a product of loops, we infer that the mapping H :

σ → gσ from π1(M) to G is a homomorphism, which we call the holonomy of M .
Its image is called the holonomy group of M . Note that H depends on the choice in
constructing D: when D changes, the image of H is conjugated by an element of G.
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This article studies the cone-manifold O = O(α, α; γ) whose support is the
three-dimensional sphere S3 and the singular set � is the figure-eight knot with one
bridge, which amounts to the graph in Fig. 1.

We can find the fundamental group π1(S3 \�) of the complement to the graph
using Wirtinger’s algorithm. It has two generators. We study the geometric struc-
ture on this cone-manifold.

The cone-manifold is a completion of a metric space with incomplete Euclidean
metric. The value of conical angle α along the knot component is determined by
the completion of the metric space. The latter means that if homeomorphisms
g and h carry a neighborhood of a point of a manifold into balls of the form B3 =
{x ∈ R3 : ‖x‖ < 1} with the surface area element ds2 = dx2 + dy2 + dz2 then
the homeomorphism g ◦ h−1 consists of motions of the Euclidean space. Therefore,
it preserves the Euclidean metric. Furthermore, representing the generators of the
fundamental group by rotation matrices in the Euclidean space, we obtain conditions
for the existence of Euclidean structure on the cone-manifold. To this end, find the
holonomy group of this manifold.

Consider the holonomy mapping ϕ : π1(S3 \�)→ Isom(E3) carrying the gener-
ators s and t of the fundamental group

π1(S3 \ �) = 〈s, t : s�s = �ss〉, where �s = stst−1s−1tsts−1t−1,

of the knot to the linear transformations
S (x) = (x− e3)S + e3, T (x) = (x+ e3)T − e3 (1)

respectively, where e3 = (0, 0, 1), while S and T are rotation matrices.
Following [9], put M = cot α

2 . Then S and T become

S =
1

M2 + 1

⎛

⎝

M2 + cos θ sin θ −2M sin θ
2

sin θ M2 − cos θ 2M cos θ
2

2M sin θ
2 −2M cos θ

2 −1 +M2

⎞

⎠ , (2)

T =
1

M2 + 1

⎛

⎝

M2 + cos θ − sin θ −2M sin θ
2

− sin θ M2 − cos θ −2M cos θ
2

2M sin θ
2 2M cos θ

2 −1 +M2

⎞

⎠ , (3)

where θ is the angle of relative rotation between the singular components.
Assume furthermore that the holonomy mapping carries the element �s into the

rotation through angle γ about the singular component corresponding to the bridge
of the knot.

Refer as the holonomy group of the manifold under study to the group generated
by the rotations S and T through angle α about the singular component of the
fundamental set.

3. Structure of the Fundamental Set for
the Figure-Eight Knot with a Bridge

Let us construct some fundamental set for the manifold O(α, α; γ). Consider
the collection of disjoint 3-simplices in the space of constant zero curvature shown
in Fig. 2, from which the cone-manifold results by way of isometric identification of
facets. The fundamental set is the polyhedron F , with 12 vertices and 20 facets,
which we obtain by gluing simplices along common edges Q0Q1.

This set can be realized in all geometries: S3, H3, and E3. Identify the curvi-
linear facets of F via isometric transformations S and T using the rule

S : P1P0P9P8P7P6 → P1P2P3P4P5P6, T : P4P5P6P7P8P9 → P4P3P2P1P0P9.
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P1

P2P3

P4

P5

P6

P7

P8

P9

P0

Q1

Q0

Fig. 2. The fundamental icosahedron F

4. Realization of the Fundamental
Set in Euclidean Space

Let us describe some geometric realization of the fundamental set O(α, α; γ) in
the Euclidean space. To this end, express the coordinates of its vertices in terms of
certain parameters possessing geometric meaning.

Put X = cos θ
2 and Y = sin θ

2 , where θ is the angle of relative rotation between
the knot components. Then the fixed-point sets of S and T in (1) are the lines

Fix(S ) = (tX, tY, 1), Fix(T ) = (tX,−tY,−1), t ∈ R.

P0

P1

P2P3

P4

P5

P6

P7 P8

P9

x

y

Fig. 3. The rotational axes Fix(S ) and Fix(T ) Fig. 4. The projection of F to the Oxy plane

In the three-dimensional Euclidean space the rotational axes Fix(S ) and Fix(T )
are skew lines perpendicular to the Oz axis and with angle θ between them (Fig. 3).

For the fundamental polyhedron F (see Fig. 2) the pairs of vertices P1, P6 and
P4, P9 lie respectively on the axes Fix(S ) and Fix(T ).
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The figure-eight knot with a bridge has three second-order symmetries. On the
fundamental polyhedron they are realized as rotations about the Ox, Oy, and Oz
axes. In particular, the second-order rotation about the Ox axis leaves the funda-
mental polyhedron invariant. This implies that two vertices of F lie on the Ox
axis.

According to Fig. 4, we can represent the coordinates of the vertices of F as
follows:

P0 = (x, 0, 0), P1 = (tX, tY, 1), P2 = (a, b, c),
P3 = (−a, b,−c), P4 = (−tX, tY,−1), P5 = (−x, 0, 0),
P6 = (−tX,−tY, 1), P7 = (−a,−b, c), P8 = (a,−b,−c),
P9 = (tX,−tY,−1), Q0 = (0, 0, 1), Q1 = (0, 0,−1).

(4)

Observe that P2 = P0S = P6T . Rearrange this as
{

(a, b, c) = (x, 0, 0)S ,

(x, 0, 0)S = (−tX,−tY, 1)T .
(5)

Solving the second equation of this system for x and t and recalling thatX2+Y 2 = 1,
we obtain

x =
5 + 4M2 −M4 − 20X2 − 4M2X2

2MY (1 +M2 − 8X2)
, t =

X(3M2 − 5)
MY (1 +M2 − 8X2)

. (6)

Furthermore, comparing the first coordinates of (x, 0, 0)S and (−tX,−tY, 1)T and
using again the equality X2 + Y 2 = 1, we infer that M and X satisfy

5 + 6M2 +M4 − 60X2 − 12M2X2 + 80X4 = 0. (7)

Inserting (6) and (7) into the first equation of (5), we find the values of a, b, and c:

a =
4M2 − 15X2 − 7M2X2 + 20X4

MY (1 +M2 − 8X2)
,

b =
X(5 +M2 − 20X2)
M(1 +M2 − 8X2)

, c =
M2 + 4X2 − 3
1 +M2 − 8X2 .

(8)

5. The Euclidean Volume of the Cone-Manifold

The following two theorems are the main results of this article.

Theorem 1. If α ∈ [2π3 , π) then for some γ ∈ (0, 2π] the cone-manifold
O(α, α; γ) carries a Euclidean structure. In particular, O(2π

3 ,
2π
3 , 2π) = 41(2π

3 ) is
a Euclidean orbifold whose support is a three-dimensional sphere, and whose singu-
lar set is the figure-eight knot with conical angle 2π

3 .

Proof. It suffices to establish that for each α ∈ [2π3 , π) there exists a poly-
hedron F , described in the previous section, in which the sum of dihedral angles
along the inscribed edges PiPi+1, for i = 0, . . . , 9, equals γ ∈ (0, 2π]. To this end,
put M = cot α

2 and X = cos θ
2 and consider the curve in Fig. 5 defined by (5).

As the main relation between α and θ, the equation (7) of the curve is obtained
from (5). Moreover, as becomes clear below, its part highlighted in Fig. 5 corresponds
to the modeled situation.
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M

X

Fig. 5. Curve of the existence of a Euclidean structure for O (α, α; γ)

Lemma 1. Suppose that M ∈ (0, 1√
3

]

and X ∈ (
√

3+
√

5
8 ,
√

2
3

]

and that the
main relation (7) holds. Then there exists a fundamental polyhedron F (Fig. 2)
determined by the parameters α and θ, where M = cot α

2 and X = cos θ
2 .

Proof. First of all, verify that this polyhedron exists for α = 2π
3 and θ =

2cos−1
√

2
3 . Indeed, in this case the vertices have integer coordinates equal to

P0 = (3, 0, 0), P1 = (2,
√

2, 1), P2 = (1,
√

8, 0), P3 = (−1,
√

8, 0),

P4 = (−2,
√

2,−1), P5 = (−3, 0, 0), P6 = (−2,−√2, 1),

P7 = (−1,−2
√

2, 0), P8 = (1,−√8, 0), P9 = (2,−√2,−1).

Furthermore, F is fundamental for the orbifold 41(2π
3 ) with support S3 and singular

set equal to a figure-eight knot with conical angle 2π
3 . Its structure is described in

detail in [8]. In particular, the oriented volumes Vi of the tetrahedra Q0Q1PiPi+1
for i = 0, . . . , 9 are positive, and the interiors of these polyhedra are disjoint.

Recall that the oriented volume of the tetrahedron T with vertices (xj , yj, zj),
for j = 1, 2, 3, 4, satisfies

VolT =
1
6

det

⎛

⎝

x1 − x4 y1 − y4 z1 − z4
x2 − x4 y2 − y4 z2 − z4
x3 − x4 y3 − y4 z3 − z4

⎞

⎠ .

We can extract the following three forms of the formula for the volume Vi:

V0 = V9 = V4 = V5 =
txY

3
,

V2 = V7 =
2
3
ab,

V1 = V3 = V6 = V8 =
1
3
t(Xb− Y a).

(9)

Consider the regions of the degeneration of Vi using (6), (7) and (8).
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For M ∈ (0, 1√
3
] and X ∈ (

√

3+
√

5
8 ,
√

2
3 ] the oriented volumes Vi keep the signs

and remain positive; consequently, under the conditions of the lemma they cannot
degenerate. Therefore, the condition that Vi > 0 for i = 0, . . . , 9 is equivalent to the
inequality a > 0, where a is given by (8).

Corollary. If the manifold O(α, α; γ) is Euclidean then

cos γ =
1

1953125

(

1
(1 +M2)10

128M2(M2 + 5)2(11M2 − 25)

×(3125− 21875M2 + 1250M4 − 9750M6 − 11175M8 − 2823M10)X2

−169869312
(1 +M2)9

+
254803968
(1 +M2)8

+
23461888
(1 +M2)7

− 136282112
(1 +M2)6

− 10575872
(1 +M2)5

+
56000512
(1 +M2)4

+
2232832

(1 +M2)3
− 14626688

(1 +M2)2
− 4716288

(1 +M2)
+ 1524197

)

.

Proof. Consider the commutator K = STST−1S−1TSTS−1T−1 correspond-
ing to the word �s = stst−1s−1tsts−1t−1. The matrix K amounts to the rotation
through angle γ about some edge PiPi+1 corresponding to the bridge between the
components of the figure-eight knot (see Fig. 1). The trace of the orthogonal ma-
trixK is related to the rotation angle as trK = 2 cos γ+1. Simplifying the expression
cosγ = 1

2 (trK − 1), we obtain the original equality.

Theorem 2. The Euclidean volume of the cone-manifold O(α, α; γ) equals

Vol(O(α, α; γ)) =
8X
√

1−X2(M4 − 50M2X2 + 150X2 − 25)
3M2(1 +M2 − 8X2)2

.

Proof. The Euclidean volume of the cone-manifold O(α, α; γ) equals the vol-
ume of the fundamental polyhedron F depicted in Fig. 2. Therefore, the Euclidean
volume Vol(O(α, α; γ)) amounts to the sum of the volumes Vi of the tetrahedra
Q0Q1PiPi+1, where i = 0, . . . , 9, and P10 = P0, and we can find it using (6),
(8) and (9):

Vol(O(α, α; γ)) =
9
∑

i=0

Vi =
4
3
(ab+ t(Y (x− a) +Xb))

= −16X
√

1−X2(15 + 3M2 − 105X2 + 19M2X2 + 40X4)
3M2(1 +M2 − 8X2)2

.

The remainder of the division of P = 15 + 3M2 − 105X2 + 19M2X2 + 40X4 by
Q = 5+6M2 +M4− 60X2− 12M2X2 +80X4 equals M4− 50M2X2 +150X2− 25.
Since in our case Q = Q(M,X) ≡ 0, we can express the answer as

Vol(O(α, α; γ)) =
8X
√

1−X2(M4 − 50M2X2 + 150X2 − 25)
3M2(1 +M2 − 8X2)2

.

Let us illustrate the results with an example.

6. Example

The table below shows the results of numerical experiments. We also calculated:
—the lengths of singular geodesics �α and �γ , equal respectively to �α = 2t,

where t is given in (6), and �γ =
∑9

i=0 |PiPi+1|.
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Table 1

conical angle α of Euclidean volume Vol(O ) Euclidean lengths

the manifold O = O (α, α, γ), and reduced �α and �γ of singular

parameters X = cos θ
2 , g = cos γ Euclidean volume vol(O ) geodesics of O

α = 2π
3

32
√

2
3 = 15.0849 2

√
6 = 4.89898

X =
√

2
3 = 0.8165, g = 1 1

45
√

2
= 0.01571 20

α = 4π
5 48.5817 9.61766

X = 0.811618, g = −0.6757 0.008185 32.0835

α = 5π
6 11.6288 11.814

X = 0.810809, g = −1 0.006679 38.416

α = 19π
20 834.486 41.1951

X = 0.809175, g = 0.527436 0.00192325 127.838

α = π − 0.02 51707 324.897

X = 0.80902, g = 0.99163 0.000243936 1004.06

—the reduced Euclidean volume vol(O(α, α; γ)) = Vol(O(α,α;γ))
d�2α�γ

, where d is the
shortest distance between singular components; in our model d = |Q0Q1| = 2.

The table data is sorted in the decreasing order of the reduced Euclidean volume
of the cone-manifold O(α, α; γ).
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FINITE GROUPS WITH IRREDUCIBLE

CHARACTERS OF LARGE DEGREE
S. S. Poiseeva

Abstract. We study a nontrivial finite group G with an irreducible complex character �
satisfying |G| ≤ 2�(1)2. We prove that in the case �(1) = p2q, where p > q are distinct
primes, G is a solvable group with an abelian normal subgroup of index p2q. Using the
classification of finite simple groups, we prove that every finite simple nonabelian group
with an abelian Sylow p-subgroup P �= 1 of order at most p2 such that 2|P |3 > |G| is
isomorphic to the group L2(q), where q is either a prime or a prime square.

Keywords: finite group, character, irreducible character degree

Introduction

Let G be a finite group with an irreducible representation over the field of
complex numbers with character �.

In the general case irreducible character degrees hold rather scanty information
on the structure of the group. Thus, it is natural to study the groups whose irre-
ducible character degrees have additional properties and satisfy certain restrictions.

Refer to a finite group G �= 1 possessing an irreducible complex character �
with 2�(1)2 ≥ |G| as an LC(�)-group.

The goal of this article it to study finite LC(�)-groups with �(1) = p2q, where
p and q are distinct primes and p > q.

Since |G| ≤ 2p4q2 < 2p6, where p > q are distinct primes, and the order of
Sylow p-subgroups of G is at least p2, firstly we use the classification of finite simple
groups to describe simple nonabelian groups G with abelian Sylow p-subgroups P
of order p2 such that |G| < 2|P |3.

Vdovin proved [1] that |A|3 < |G| whenever G is a finite simple group not
isomorphic to PSL2(q) and A is its abelian subgroup. Using the classification of
finite simple groups, we obtain the following results.

Theorem 1. Let G be a finite simple nonabelian group with an abelian Sylow
p-subgroup P �= 1 of order at most p2. If 2|P |3 > |G| then G is isomorphic to the
group L2(q), where q is either a prime or a prime square.

Theorem 2. Let G be an LC(�)-group. If �(1) = p2q, where p > q are
distinct primes, then G is a p-solvable group.

In the proof of Theorem 2 we also establish that for |G| �∈ {486, 648} the or-
der |G| equals p2qbm, where (pq,m) = 1. The following theorem describes LC(�)-
groups.

c© 2015 Poiseeva S. S.
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Theorem 3. Let G be an LC(�)-group with �(1) = p2q, where p and q are
distinct primes with p > q. Then G has an abelian normal subgroup M of index p2q.

Assume that all groups are finite. The letters p and q stand for distinct primes
throughout. For the necessary background concerning ordinary and modular rep-
resentations of finite groups, see [2, 3]. Denote the inner product of two characters
χ and ψ of a group G by 〈χ, ψ〉. In particular, if these characters are irreducible
then 〈χ, ψ〉 = δχ,ψ (where δ is the Kronecker symbol). Denote the set of irreducible
characters of a group G by Irr(G).

1. Auxiliary Results

Recall a fundamental result of Clifford on the restriction of an irreducible char-
acter χ of a group G to its normal subgroup N .

Lemma 1 (Clifford). Let N � G and let χ ∈ Irr(G). Let θ be an irreducible
constituent of χN and suppose that θ = θ1, θ2, . . . , θt are the distinct conjugates of θ
in G. Then

χN = e
t∑

i=1

θi,

where e = [χN , θ].
Proof. See Theorem 6.2 of [3].

Lemma 2. Let χ be an irreducible character of G. Let N � G and let θ be
an irreducible constituent of χN . If IG(θ)/N is cyclic then eN (χ) = 1; i.e., χN =∑t
i=1 θi.

Proof. See 9.12 in [4].
Recall Ito’s Theorem on the irreducible character degree (Theorem 6.15 of [3]).

Lemma 3 (Ito). Let N � G be abelian. Then χ(1) divides |G : N | for all
χ ∈ Irr(G).

Below we need the following two theorems of Zenkov [5].

Lemma 4. Let G be a finite group with a Sylow p-subgroup P . If p �= 2 is
not a Mersenne prime then P ∩ P x = Op(G) for some x ∈ G. If Op(G) = 1 then
|P |2 < |G|.

Lemma 5. LetG be a finite group with a Sylow p-subgroup P and with solvable
radical S(G), and assume that |G| = pam with (p,m) = 1, where p is a prime. If
pa ≥ m then one of the following holds:

(1) G includes a characteristic p-subgroup of order > pam−1;
(2) one of the following holds in the quotient S(G) = S(G)/Op(G):
(2a) p = 2, while q = 2n + 1 is a Fermat prime, and S(G) includes a section

isomorphic to (Z2n+1 � Z2n) 
 Z2, for n > 2 and ((Z3 � Z2) 
 Z2) 
 Z2, V9 � SD16,
(V9 � Z8) 
 Z2, (V9 �Q8) 
 Z2 for n = 1;

(2b) p = 2n− 1 is a Mersenne prime and S(G) includes a section isomorphic to
(Z2n � Zp) 
 Zp;

(2c) p = 2 and S(G) includes a section isomorphic to ((V72 � SD25) 
 Z2) 
 Z2;
furthermore, in all three cases (2a), (2b), and (2c) the action is faithful;

(3) p = 2 and the quotient G̃ = G/S(G) includes a section L isomorphic to
one of the groups (((S5 
 Z2) 
 Z2) 
 Z2) 
 Z2, Aut(A6) 
 Z2, Aut(L3(2)) 
 Z2, and
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Aut(L3(4)) 
 Z2; furthermore, each component of L is an isomorphic image of the
corresponding component of E(G̃).

Two auxiliary statements, which we use to study LC(�)-groups with �(1) =
p2q, are justified in [6].

Lemma 6. If G is an LC(�)-group and M is a proper normal subgroup then
the character �M is reducible.

Lemma 7. Let G be an LC(�)-group and letN be the proper normal subgroup
of G. If �(1) = m then (|G/N |,m) �= 1.

Let us present a result of [7] on the solvability of a group with a self-normalizing
Sylow p-subgroup (p > 3).

Lemma 8. If G is a finite group with a Sylow p-subgroup P such that p > 3
and NG(P ) = P then G is solvable.

To estimate the orders of abelian subgroups of simple groups, we need the
following result of Vdovin [1].

Lemma 9. Let G be a nonabelian finite simple group and G � L2(q), where
q = pt for some prime p. If A is an abelian subgroup of G then |A|3 < |G|.

Lemma 10. Let G = G′ be not a p-solvable group, with a Sylow p-subgroup P
of order p > 3, and not normal subgroups of order 2. If |G| < p3 then G � L2(r),
where r = p or r = 2a = p− 1.

Proof. See Corollary 5.2, Chapter VIII of [8].

Lemma 11 (Kazarin). Let G be a finite group and let x ∈ G be an element
of prime order q. If |G : CG(x)| is a power of a prime p then 〈xG〉′ = Op(〈xG〉).
In particular, the commutant of the normal closure of x in G is a p-group.

Proof. See [9].

Proposition 1. Let G be a finite group and let x be an element of G such that
|G : CG(x)| is a power of a prime p. Then [xG, xG] ⊆ Op(G).

Proof. See [10].

2. Proof of Theorem 1

By the classification of finite simple nonabelian groups (see [11] for more details),
all simple nonabelian groups belong to the following families:

I. The classical simple groups of Lie type: Ln(q) for n ≥ 2; Un(q) for n ≥ 3;
S2n(q) for n ≥ 2; P�2n+1(q) for n ≥ 2; P�±2n(q) for n ≥ 4.

II. The exceptional simple groups of Lie type: G2(q), F4(q), E6(q), E7(q), E8(q),
2G3(q), (2F4(q))′, 3D4(q), and 2B2(q), where q is a prime power.

III. The sporadic simple groups.
IV. The alternating groups An for n ≥ 5.
We prove Theorem 1 in steps for all listed groups. Recall that in Theorem 1

the Sylow p-subgroup P �= 1 is of order at most p2.
I. The classical simple groups of Lie type.
While studying Chevalley groups, we denote the order q field by GF (q), and its

characteristic by r.
(a) Suppose that G ∼= Ln(q) with n ≥ 2. It is easy to see that |G| > qn

2−n,
while the greatest prime divisor of the group order is at most qn − 1 < qn. Since



Finite Groups with Irreducible Characters of Large Degree 37

2p6 < p7n, it follows that q7n > qn
2−n. Hence, n2 − n < 7n and n2 − 8n < 0, and

so n < 8.
For n = 7 we have

|G| = 1/dq21(q7 − 1)(q6 − 1)(q5 − 1)(q4 − 1)(q3 − 1)(q2 − 1) > q42,

where d = (7, q−1). Since q7−1 = (q−1)(q6 +q5 +q4 +q3 +q2 +q+1), the greatest
prime divisor of the group order is at most q6 + q5 + q4 + q3 + q2 + q + 1 < 2q6. If
p2|q6 + q5 + q4 + q3 + q2 + q + 1 then p2 < q6 + q5 + q4 + q3 + q2 + q + 1 < 2q6.

Hence, 2(2q6)3 = 24q18 > |G| > q42, which is impossible.
If p2 � q6 + q5 + q4 + q3 + q2 + q + 1 then p | q4 + q3 + q2 + q + 1 because

q5 − 1 = (q − 1)(q4 + q3 + q2 + q + 1). Since q4 + q3 + q2 + q + 1 < 2q4 and q5 − 1
are coprime to all divisors of the group order of the form qi − 1 for i �= 5, it follows
that p2 < 2q4 and p2 | q5− 1. Hence, 2p6 < 2(q5− 1)3 < 2q15 < q42, which excludes
this case.

Suppose that n = 6, and so |G| > q30. Since q5−1 = (q−1)(q4+q3+q2+q+1),
the greatest prime divisor of the group order is at most q4 + q3 + q2 + q + 1 < 2q4.
If p2 | q4 + q3 + q2 + q + 1 then p2 < q4 + q3 + q2 + q + 1 < 2q4. Hence, 2(2q4)3 =
24q12 > |G| > q30, which is false.

If p2 � q4 + q3 + q2 + q+1 then p | q2 + q+1 because q6− 1 = (q3− 1)(q3 +1) =
(q− 1)(q2 + q+1)(q+1)(q2− q+1). Then p < q2 + q+1, and since q2 + q+1 < 2q2
in the factorization of the group order is of degree 2, we have p2 < (2q2)2. Hence,
2p6 < 2(2q2)6 = 27q12 < q30, which excludes this case.

For n = 5 the greatest prime divisor of the group order is also at most q4 + q3 +
q2+q+1 < 2q4, and |G| > q20. If p2|q4+q3+q2+q+1 then p2 < q4+q3+q2+q+1 <
2q4. Hence, 2(2q4)3 = 24q12 > |G| > q20, which is false.

If p2 � q4 + q3 + q2 + q+1 then p | q2 + q+1 because q3−1 = (q−1)(q2 + q+1).
Since q2 + q+ 1 < 2q2 is coprime to all divisors of the group order of the form qi− 1
for i �= 3, it follows that p2 < 2q2 and p2|q3 − 1. Hence, 2p6 < 2(q3 − 1)3 < q20,
which excludes this case as well.

If n = 4 then the greatest prime divisor of the group order is at most q2+q+1 <
2q2, and |G| > q12. If p2 | q2 + q + 1 then p2 < q2 + q + 1 < 2q2. Hence,
2(2q2)3 > |G| > q12, which is false. If p2 does not divide q2 + q + 1 then p | q2 + 1.
Since q2 +1 is coprime to all divisors of the group order of the form qi− 1 for i �= 3,
it follows that p2|q2 +1. So, 2p6 < 2(q2 +1)3 < q12, which excludes this case as well.

If n = 3 then |G| = (1/d)q3(q3 − 1)(q2 − 1), where d = (3, q− 1). Therefore, p2

divides either (q − 1)2 or q + 1 or q2 + q + 1. Straightforward calculations exclude
this case.

Thus, if G � Ln(q) satisfies the hypotheses of Theorem 1 then n = 2.
(b) Suppose that G � Un(q) with n ≥ 3. It is easy to see that |G| > qn

2−n,
while the greatest prime divisor of the group order is at most qn. Since 2p6 < p7n,
it follows that q7n > qn

2−n. Hence, n2−n < 7n and n2− 8n < 0. Therefore, n < 8.
Suppose that n = 7. Then

|G| = 1/dq21(q7 + 1)(q6 − 1)(q5 + 1)(q4 − 1)(q3 + 1)(q2 − 1) > q42,

where d = (7, q+1). Since q7 +1 = (q+1)(q6−q5 +q4−q3 +q2−q+1), the greatest
prime divisor of the group order is at most q6 − q5 + q4 − q3 + q2 − q + 1 < q6. If
p2 | q6 − q5 + q4 − q3 + q2 − q + 1 then p2 < q6 − q5 + q4 − q3 + q2 − q + 1 < q6.
Hence, 2(q6)3 > |G| > q42, which is false. If p2 � q6 − q5 + q4 − q3 + q2 − q + 1
then p|q4 − q3 + q2 − q + 1 because q5 + 1 = (q + 1)(q4 − q3 + q2 − q + 1). Since
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q4 − q3 + q2 − q + 1 < q4 is coprime to all divisors of the group order of the form
qi − (−1)i, it follows that p2 < q4 and p2|q5 + 1. Hence, 2p6 < 2(q5 + 1)3 < q42,
which excludes this case.

Suppose that n = 6, and so |G| > q30. Since q5+1 = (q+1)(q4−q3+q2−q+1),
the greatest prime divisor of the group order is at most q4 − q3 + q2 − q + 1 < q4.
If p2|q4 − q3 + q2 − q + 1 then p2 < q4 − q3 + q2 − q + 1 < q4. Hence, 2(q4)3 =
2q12 > |G| > q30, which is false. If p2 � q4− q3 + q2− q+ 1 then p|q2 + q+ 1 because
q3 − 1 = (q − 1)(q2 + q + 1).

Therefore, p < q2 + q+1. Since q2 + q+1 is coprime to all divisors of the group
order of the form qi − (−1)i for i �= 3, it follows that p2|(q2 + q + 1). Consequently,
2p6 < 2(q2 + q + 1)3 < q30, which excludes this case as well.

For n = 5 the greatest prime divisor of the group order is also at most q4− q3 +
q2− q+ 1 < q4. If p2|q4− q3 + q2− q+ 1 then p2 < q4− q3 + q2− q+ 1 < q4. Hence,
2(q4)3 > |G| > q20, which is impossible. If p2 does not divide q4 − q3 + q2 − q + 1
then p|q2 + 1. Since q2 + 1 is coprime to all divisors of the group order, we have
p2|q2 + 1. Then 2p6 < 2(q2 + 1)3 < q20, which is excluded.

If n = 4 then |G| > q12 and the greatest prime divisor of the group order is at
most q2 +1. If p2 | (q2 +1) then p2 < q2 +1. Hence, 2(q2 +1)3 > |G| > q12, which is
false. If p2 does not divide (q2+1) then p|q2−q+1 because q3+1 = (q+1)(q2−q+1).
Since q2−q+1 < q2 is coprime to all divisors of the group order of the form qi−(−1)i,
it follows that p2 < q2 and p = q. Hence, 2p6 < q12, which excludes this case as
well.

If n = 3 then |G| = (1/d)q3(q3 + 1)(q2 − 1), where d = (3, q+ 1). Therefore, p2

divides either q − 1 or (q + 1)2 or q2 − q + 1. Straightforward calculations exclude
this case.

(c) Suppose that G is isomorphic to S2n(q) or P�2n+1(q) with n ≥ 2. The order
of G equals

1/dqn
2
(q2n − 1) . . . (q2 − 1),

where d = (2, q − 1). If n ≥ 2 then |G| > q2n
2
.

The greatest prime divisor of the order of G is at most qn + 1. If p2|(qn + 1)
then 2(qn + 1)3 < q3n+2 < q2n

2
with n ≥ 3.

For (q, n) = (2, 2) the group G � S4(2) is not simple and S4(2)′ � L2(9).
If p2 � (qn + 1) then p|qn−1 + 1; hence, p2|qn−1 + 1. Therefore, 2p6 < 2(qn−1 +

1)3 < q3n−1 < q2n
2

for n ≥ 3, which excludes this case.
(d) Suppose that G � P�±2n(q), n ≥ 4.
It is easy to see that |G| > q2n

2−2n, while the greatest prime divisor of the order
is at most qn+1. If p2|(qn+1) then 2(qn+1)3 < q3n+2 for n ≥ 4, and so 2p6 < |G|.

If p2 � (qn + 1) then p|qn−1 + 1; hence, p2|qn−1 + 1. Therefore, 2p6 < 2(qn−1 +
1)3 < q3n−1 < q2n

2−2n with n ≥ 4, which excludes this case.
II. The exceptional simple groups of Lie type.
(a) Suppose that G � G2(q). The order of G equals q6(q6−1)(q2−1), and so the

greatest prime divisor of the group order is at most q2 + q+1 < 2q2. If p2|q2 + q+1
then p2 < q2 + q + 1 < 2q2. Hence, 2(2q2)3 = 24q6 > |G|. But |G| > q13, so that
this case is excluded.

If p2 � q2 + q + 1 then p|q2 − q + 1. Since q2 − q + 1 is coprime to all divisors
of the group order of the form qi ± 1 for i �= 3, it follows that p2|q2 − q + 1. Then
p2 < q2 − q + 1 < q2, and so 2p6 < 2q6 < q13, which excludes this case.
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(b) Suppose that G � F4(q), which is of order q24(q12−1)(q8−1)(q6−1)(q2−1).
The greatest prime divisor of the order of G is at most q4 +1. Since 2(q4 +1)6 < |G|,
this case is excluded.

(c) Suppose that G is one of the groups E6(q), E7(q), E8(q), or 2E6(q). The
orders of all these groups are greater than q72, while the greatest prime divisor of
the order is at most q9. Consequently, these groups are also excluded.

(d) Suppose that G �2 G2(q), q3(q3 + 1)(q − 1). Furthermore, q = 32n+1 with
n ≥ 1, while the greatest prime divisor p of the group order is at most q+

√
3q+1 <

2q. Suppose that q > 3. If p2|q +
√

3q + 1 then p2 < q +
√

3q + 1 < 2q. Hence,
2(2q)3 = 24q3 < |G|, which is impossible. If p2 � q+

√
3q+1 then p = q is the greatest

prime divisor of the order of G. Then 2q6 ≥ |G|, so that q = 3 and G � L2(8).3,
which is not a simple group.

(e) Suppose that G � (2F4(q))′, which is of order q12(q6 +1)(q4−1)(q3 +1)(q−
1) > 2q16, where q = 22n+1 and n ≥ 2, while the greatest prime divisor p of the
group order is at most q4 − q2 + 1 < q4. If p2|q4 − q2 + 1 then p2|q4 − q2 + 1 < q4.
Hence, 2(q4)3 = 2q12 < 2q16 < |G|. If p2 � q4 − q2 + 1 then p|q2 + 1. Hence,
p < (q2 +1), and since q2 +1 in the factorization of the group order is of degree 2, it
follows that p2 < (q2 + 1)2. Therefore, 2p6 < 2(q2 + 1)6 < |G|, which excludes this
case as well.

(f) Suppose that G �3 D4(q) which is of order q12(q8 + q4 +1)(q6−1)(q2−1) >
q26, while the greatest prime divisor p is at most q4 − q2 + 1 < q4. If p2|q4 − q2 + 1
then p2 < q4 − q2 + 1 < q4. Hence, 2(q4)3 = 2q12 < |G|.

If p2 � q4 − q2 + 1 then p|q2 + q + 1. Hence, p < (q2 + q + 1), and since
q2 + q+ 1 < 2q2 in the factorization of the group order is of degree 2, it follows that
p2|q2 + q + 1. Therefore, p2 < q2 + q + 1 < 2q2, and so 2p6 < 2(2q2)3 = 24q6 < |G|,
which excludes this case as well.

(g) Suppose that G �2 B2(q) � Sz(q) which is of order q2(q2 +1)(q− 1), where
q = 22n+1 and n ≥ 1. The greatest prime divisor p of the order of G is at most
q+
√

2q+1 < 2q. If p2|q+
√

2q+1 then p2 < q+
√

2q+1 < 2q. Hence, 2(2q)3 < |G|.
If p2 � q+

√
2q+1 then p|q−√2q+1, whence p2|q−√2q+1 and p2 < q−√2q+1 < q.

Therefore, 2p6 < 2q3 < |G|, which excludes this case as well.
III. The sporadic simple groups. All cases are excluded (see [12]).
IV. The alternating groups An with n ≥ 5.
Since |An| = n!/2 ≤ 2n6, it follows that n! ≤ 4n6. On the other hand, it is

known that n! ≥ nn/2. Therefore, nn/2 ≤ 4n6 < n7. Hence, n/2 < 7 and n < 14.
For n = 5, 6 the groups A5 and A6 of orders 60 and 360 appear, which have abelian
Sylow p-subgroups of orders 4 and 9 respectively. Observe that A5 � L2(5) and
A6 � L2(9). All remaining possibilities are excluded.

The proof of the theorem is complete.

3. Proof of Theorem 2

Suppose that G is an LC(�)-group with �(1) = p2q, where p and q are distinct
primes with p > q. Fix this notation.

Since
∑
χ∈Irr(G) χ(1)2 = |G| and 2χ(1)2 ≥ |G|, the character � is a unique

irreducible character of G of the greatest degree; moreover, all values �(g) for g ∈ G
are integer rational numbers.

As [13] established, each irreducible character of an LC(�)-group whose order
is not a power of 2 is a constituent of the character 	 = �2. Observe that Z(G) = 1
and � is faithful.
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Take P ∈ Sylp(G). Since G is an LC(�)-group with �(1) = p2q, where p and q
are distinct primes with p > q, and furthermore, p4q2 < |G| ≤ 2p4q2 and pq||G|, it
follows that |G| = paqbm with a, b,m ∈ N and 2 ≤ a; i.e. the Sylow p-subgroups
of G are of order at least p2. Observe that |G| ≤ 2p4q2 < 2p6 because p > q.

Let us state some upper bounds on the order of Sylow p-subgroups of LC(�)-
groups with �(1) = p2q as the next lemma.

Lemma 12. Suppose thatG is an LC(�)-group with �(1) = p2q, where p and q
are distinct primes with p > q. Then the Sylow p-subgroup P of G is of order at
most p5. If P � G then |G| = 486. If P is not normal in G then |P | ≤ p3.

Proof. Suppose that G is an LC(�)-group with �(1) = p2q, where p > q.
Since |G| ≤ 2p4q2 < p7, it follows that |P | ≤ p6; otherwise, q does not divide |G|. If
|P | = p6 then 2p4q2 < 2p6 because q < p. Hence, |G| = |P | = p6, which is false, as
in this case q does not divide |G|. Hence, |P | ≤ p5.

Suppose that |P | = p5. Since |G| = p5qbm ≤ 2p4q2, where (m, pq) = 1, it
follows that b ≤ 2. But p > q ≥ 2. Consequently, we may assume that b = 1. In
this case pm ≤ 2q. Since for m = 1 we have P � G, it follows that m ≥ 2 and p < q
contrary to the assumption. Therefore, |P | � G and |G| = p5q.

Furthermore, |Z(P )| = p and the order q subgroup Q of G acts nontrivially on
Z(P ). Hence, q | p − 1. There exist p − 1 conjugate characters of G of degree p2q
vanishing on P \Z(P ). Therefore, Q partitions them into length q orbits. Thus, we
have (p− 1)/q characters of G of degree p2q. Since only one degree p2q character is
possible, it follows that q = p− 1. Hence, p = 3, q = 2, and |G| = 486.

Suppose that P � G and |P | = p4. By Lemma 1,

�P = e
s∑

i=1

χi,

where e, s | |G/P | and χi ∈ Irr(P ). Since the order of G/P is coprime to p and
�(1) = p2q, it follows that χi(1) = p2, which leads to a contradiction because the
sum of the squared degrees of the irreducible characters of P in this case is greater
than p4. Therefore, in the case that P is normal its order equals p5.

The proof of Lemma 12 is complete.
The next lemma shows that, when �(1) = 32 ·2, the order of G lies in {342, 486,

504, 648}.
Lemma 13. Suppose thatG is an LC(�)-group with �(1) = p2q, where p and q

are distinct primes with p > q. Then either p > 3 or |G| ∈ {342, 486, 504, 648}.
Proof. Suppose that p = 3. Then q = 2. Therefore, |G| ≤ 34 · 23 = 648, and

furthermore, the order of G is divisible by �(1) = 32 · 2 = 18.
Considering that

|G|
|�(1)| =

23 · 34

2 · 32 ≤ 22 · 32 = 36,

and then that a nonsolvable group of order at most 81 · 8 = 648 has a nonsolvable
composition factor contained in [12], we exclude the factors of this type. Hence,
we conclude that G is solvable and |G| divides one of the numbers 648 = 23 · 34,
342 = 19 · 2 · 32, 486 = 2 · 35, and 504 = 23 · 32 · 7. Applying the GAP [14], we verify
that all these possibilities are realized.

Assume henceforth that p > 3. Verify that the order of P can be equal to p3

only if Op(G) > 1.
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Lemma 14. If Op(G) = 1 then either P = NG(P ) and |P | = p3, or |G| =
p2qbm, where (pq,m) = 1.

Proof. Suppose that Op(G) = 1. Since |G| is divisible by �(1) = p2q, it
follows that |G| = paqbm, where (pq,m) = 1 and a, b,m ∈ N. Lemmas 12 and 13
yield p > 3 and 2 ≤ a ≤ 3. Lemma 4 shows that pa < qbm, and from 2�(1)2 ≥ |G|
we infer that qb−2m ≤ 2p4−a.

Suppose that a = 3 and |G| = p3qbm, where p3qbm ≤ 2p4q2. Then qb−2m ≤ 2p.
Since Op(G) = 1, Lemma 4 yields p3 < qbm ≤ 2pq2. Hence, p2 ≤ 2q2.
Suppose that |NG(P )| = n|P | = np3, where n > 1. Since P ∩ P x = 1 for at

least one x ∈ G by Lemma 4, it follows that

|G| ≥ |NG(P )|+ n2|P |2
d

= np3 +
n2p6

d
,

where d = |NG(P )∩NG(P )x||n. Therefore, p3qbm ≥ np3 +np6, whence qbm > np3.
Since np3 < qbm ≤ 2pq2, it follows that np2 < 2q2, where n > 1; i.e. p2 < q2, which
is impossible.

Thus, for Op(G) = 1 we have NG(P ) = P for |P | = p3 or |G| = p2qbm, where
(pq,m) = 1.

Lemma 15. If G is not p-solvable then Op(G) = 1.
Proof. Suppose that Op(G) > 1. By Lemma 3, all irreducible character de-

grees of G divide |G : Op(G)| whenever Op(G) is abelian. Since G is not p-solvable,
it follows that P is not normal in G. Therefore, either |Op(G)| = p or |Op(G)| = p3.
Verify that in all cases G has a normal subgroup U of order p. If |Op(G)| = p then
this holds.

By Lemma 3, if |Op(G)| = p3 then P is not abelian, and so |Z(P )| = p and U =
Z(P ) �G. Put H = CG(U). Since U �G, it follows that H �G and G/H ≤ Aut(U),
and so it is isomorphic to a cyclic group of order dividing p − 1. Since Z(G) = 1,
it follows that G/H �= 1 and it is a cyclic group. Lemma 7 implies that p − 1 is
a power of q. Clifford’s Theorem (Lemma 1) yields

�H = e
s∑

i=1

χi,

where χi are conjugate irreducible characters, while e and s divide |G/H | = qλ.
Hence, p2q = �(1) = esχi(1). Lemma 2 implies that e = 1 and χi(1) = p2,
s = q. Thus, H has q irreducible characters χi of degree p2; whence, |H | > p4q
and |G| > p4qqλ. Therefore, λ = 1. Since |G| = |H |q < 2p4q2, it follows that
|P |qb−1m = |H | < 2p4q.

If |P | = p4 then qb−1m < 2q. Furthermore, |H : P | = mqb−1 < 2q. For b ≥ 2
we infer that m ≤ 2 and H is solvable, and so is G. If b = 1 then |H : P | = m < 2q.
Recall that q | p − 1. Since p is odd, it follows that q ≤ (p − 1)/2. Therefore,
|H : P | < p and P � H � G. Since P is a characteristic subgroup, P � G and G
is p-solvable contrary to the assumption. Thus, the case |P | = p4 is impossible.

Now |P | = p3 and |H : P | = qb−1m ≤ 2pq. For b = 2 we have |H : P | = qm ≤
2qp, and so m ≤ p. Then P � H , whence P � G and G is p-solvable contrary to the
assumption. Finally, for b = 1 we have |H | = p3m, where m ≤ 2pq.

Observe that |Op(G)| = p and m ≤ 2pq ≤ p(p − 1). Thus, in the group
H̄ = H/Op(G), whose order is less than |P |2, the subgroup Op(H̄) is nontrivial by
Lemma 4; this is a contradiction.

The proof of Lemma 15 is complete.
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Lemma 16. If P = NG(P ) then G is a p-nilpotent group of order p2qbm.
Proof. Lemma 8 shows that G is a solvable group. If |G| = p2qbm, where

(pq,m) = 1, then G is p-nilpotent by Burnside’s Theorem.
Lemmas 12 and 13 imply that |G| = paqbm, where (pq,m) = 1 and 2 ≤ a ≤ 3.

Suppose that a = 3, and furthermore, qb−2m < 2p.
Suppose that 1 �= m ≤ p. If m | |Op′(G)| then for every prime divisor r

of m the group Op′(G)P has a Hall {r, p}-subgroup RP , which is nilpotent, which
contradicts the assumption. Similarly, there exists no normal subgroup K of G
whose order is divisible by r but not by |P |. Since G is solvable, it is also r-solvable.
Hence, Or′,r(G) includes P and so NG(P ) �= P by Frattini’s argument; this is
a contradiction. Therefore, either m = 1 or m > p and it is prime.

If m > p is a prime then qb−2 < 2, whence 1 ≤ b ≤ 2. For b = 1 we arrive
at a contradiction by analogy with the previous case. Therefore, b = 2. Since
P = NG(P ), it follows that for m | |Op′ (G)| the subgroup M of order m is normal in
Op′(G), and so in G as well. In this case H = CG(M) � G and |G/H | | |Aut(M)| =
m − 1. Since m > p and m < 2p, it follows that p does not divide |G/H |. At the
same time, H �= G because Z(G) = 1; this is a contradiction. Consequently, m does
not divide |Op′(G)|.

Thus, either Op′(G) = 1 or q2 = |Op′(G)|.
Suppose that |Op′(G)| = q2. If Q ∈ Sylq(G) is cyclic then the order of G/CG(Q)

divides q − 1 and is not equal to 1. As in the previous case, this leads to a contra-
diction. Thus, Op′(G) = 1.

Theorem 6.3.3 of [2] yields CG(Op(G)) ⊆ Op(G). If |Op(G)| = p then |G| |
p(p − 1), which is a contradiction. If |Op(G)| = p3 then P � G contrary to the
assumption. But if |Op(G)| = p2 then we arrive at a contradiction with Lemma 3.

Thus, we may assume that m = 1 and |G| = p3qb, where qb−2 ≤ 2p. From
|P | = |NG(P )| = p3 we infer that the case |Op(G)| �= 1 leads to a contradiction.
Theorem 6.3.3 of [2] and Lemma 4 imply that |Oq(G)| = qb and p2 < 2q2.

In particular, G is a p-nilpotent group. Observe that Q = Oq(G) is an elemen-
tary abelian group by Lemma 4 (otherwise some order p element induces a trivial
automorphism on Q/	(Q)). Lemma 3 implies that G lacks irreducible characters of
degree p2q; this is a contradiction.

All cases are considered and the proof of Lemma 16 is complete.
Assume henceforth that |G| = p2qbm, where m is coprime to pq and b ∈ N.

Lemma 17. Suppose thatG is an LC(�)-group which is not p-solvable. ThenG
is not simple and every simple section L of G which is not p-solvable is isomorphic
to L2(r), where r is a prime power; moreover, r = p, p2, or p− 1.

Proof. Take a simple LC(�)-group G. Lemma 15 yields Op(G) = 1, and by
Lemmas 14 and 16 the order |G| = p2qbm, where p > q, is (m, pq) = 1.

Recall that �(1) = p2q. By Theorem 1, the group G is isomorphic to L2(r).
Since the order of the Sylow p-subgroups of G divides p2, it follows that r equals p,
p2, or p− 1.

The character tables of these groups are available [15]. None of the groups listed
is an LC(�)-group for any choice of irreducible character �.

Suppose that G has a section S isomorphic to a simple nonabelian group. Since
the order of S equals paqcm′, where a ≤ 2, m′ ≤ m, and c ≤ b, while |G| < 2|P |3,
Theorem 1 implies that S � L2(r), where r is a prime power.

The proof of Lemma 17 is complete.



Finite Groups with Irreducible Characters of Large Degree 43

We now finish the proof of Theorem 2.
Proof of Theorem 2. Lemma 4 and the conditions on G yield

p4q2 < |G| = paqbm ≤ 2p4q2,

where a ≤ 4 by Lemma 12. Since G is not p-solvable, Lemmas 15 and 16 imply that
a = 2, whence qb−2m ≤ 2p2 and qb−2m > p2.

Verify that the composition series of G cannot contain two composition factors
which are not p-solvable. Indeed, by Lemma 17 each factor is isomorphic to the
group L2(r), where r = p, p2, or p− 1. Suppose that G has two composition factors
isomorphic to L2(p). Then

|G| ≥ (1/4)p2(p2 − 1)2,

while |G| < 2p4q2. Since p > 3, it follows that q ≤ p− 1. Hence,

8p4q2

p2(p2 − 1)2
=

8p2q2

(p2 − 1)2
≤ 2p2

(p+ 1)2
< 8.

Considering that Z(G) = 1, while the outer automorphism group of the group
L2(p) is of order 2 for odd p, we conclude that G has an index ≤ 4 subgroup
isomorphic to L2(p)× L2(p).

Since for r = p−1 and p > 3 the number r is a power of 2, we have |L2(p−1)| =
p(p− 1)(p− 2) > |L2(p)|. Therefore, the case that at least one of the groups L2(p)
is replaced by L2(p− 1) is also excluded.

Let us show that the existence of a composition factor of G isomorphic to L2(p2)
is also impossible. Indeed,

|L2(p2)| = (1/2)p2(p4 − 1) > |L2(p)× L2(p)|.
Lemma 15 yields Op(G) = 1. Put M = Op′(G). If CG(M) ⊆M then Lemma 5

implies that |M | ≥ |P |+ 1 = p2 + 1. Since |P | = p2, we obtain

2p4q2 ≥ |G| ≥ |M ||L2(p)|p = (1/2)(p2 + 1)p2(p2 − 1).

Observe that q divides |L2(p)|. Therefore, q ≤ (p+1)/2 and so G coincides with
a subgroup of order (1/2)(p2 + 1)p2(p2− 1). Furthermore, in this case |M | = p2 + 1.
The latter is possible only in the case that P has a unique orbit on M \ {1}. Then
MP is a Frobenius group and P is a cyclic group, which is false.

Thus, CG(M)�G is not p-solvable, but the order ofG is divisible by |M |p|L2(p)|.
Moreover, there is a unique quotient of the group CG(M) which is not p-solvable,

and it is isomorphic to L2(p). Therefore, T � L2(p) or T � SL2(p) is normal in G.
There is a quotient of G isomorphic to Cp, the cyclic group of order p, and the
greatest normal p-solvable subgroup S of G is of p-length 1. It is easy to see that
G/S is isomorphic to L2(p), the automorphism group of L2(q) of order p(p2 − 1).
Thus, we have the following possibilities:

(a) G/S � PGL2(p), q = 2, and |G| ≤ 8p4;
(b) G/S � L2(p), S/M is an extension of Cp by a subgroup of order qμ | (p−1);
(c) G/S � L2(p), |S/M | = p, and q | (p+ 1)/2.
In all cases Theorem 6.3.3 of [2] yields CS(M) ⊆M , and so |M | ≥ p+ 1. Since

Z(G) = 1, the case that a subgroup isomorphic to SL2(p) is normal in G is excluded.
(a) If q = 2 then |G| ≤ 8p4, while |S|2|L2(p)| ≥ (p+ 1)p2(p2 − 1).
Therefore, p ≤ 7. Since in this case the subgroup Op′(G) must be of order at

most 8, we arrive at a contradiction. Case (a) is impossible.
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(b) In this case q ≤ (p−1)/2 and G � S×L, where L � L2(p). Straightforward
calculations yield the bound |M | ≤ 2p− 2. Thus, M includes at most one length p
orbit. In particular, M is an elementary abelian primary group. Hence, an arbitrary
irreducible character degree ψ of the group S = M � Cp � Cd for d dividing p − 1
divides dp. Since p2 > |M |, it follows that ψ(1) ≤ d. According to [15, pp. 262–263],
all irreducible character degrees of L2(p) are at most p+ 1.

By Theorem 3.7.1 of [2], every irreducible character of G is the product of
irreducible characters of S and L. Therefore, G lacks degree p2q characters.

(c) The group G = S × L. Since |G| ≤ 2p4q2, it follows that |S||L| ≤ 2p4q2

and |S| ≤ 4pq2 + 2q. Since L lacks characters of degree greater than p + 1 (see
[15, pp. 262–263]), while each irreducible character degree of G is the product of
an irreducible character degree of L and an irreducible character degree of S, it
follows that an irreducible character of S of degree pq must exist. Therefore, |S| >
p2q2, whence p < 4q. This means that q = (p+ 1)/2.

Recall that qb−2m < 2p2. Since p − 1 divides m in this case, it follows that
m = t(p−1) for some positive integer t. For b = 4 we obtain (p+1)2m < 8p2. Then
m ≤ 7 and p ≤ 8. Easy calculations exclude this possibility.

Suppose that b = 3. Then m ≤ 4(p− 1). In this case |M | = q2m/(p− 1) = tq2,
where t ≤ 4. If t = q = 2 then p = 3, which is already excluded. If t = q = 3
then p = 5. Then p = 5 does not divide |Out(M)|. In the remaining cases S has
an abelian Sylow q-subgroup. Lemma 3 implies that S cannot have an irreducible
character of degree pq.

Suppose that b = 2. Then p2 < m < 2p2. Furthermore, m = t(p− 1) for some
positive integer t. The order of M equals qm/(p−1). If t = q or t = 2q then S lacks
irreducible characters of degree pq. In all other cases the order of S is less than p2q2,
and so b �= 2.

Now b = 1 and |G| = p2qm, where p2q < m < 2p2q and q = (p + 1)/2. In this
case |S| = pm/(p− 1). Since an irreducible character degree must divide the group
order, this implies that S lacks degree pq characters, but then G lacks degree p2q
characters.

All possibilities are excluded and the proof of Theorem 2 is complete.

4. Proof of Theorem 3

Theorem 2 establishes that G is a p-solvable group. In Lemma 12, on assuming
that |G| �= 486, the order of the Sylow p-subgroup P of G is at most p3. Lemmas
14 and 16 show that |P | = p2 for Op(G) = 1.

Lemma 18. Op(G) = 1 and |P | = p2.
Proof. Suppose that U = Op(G) = 1. By Lemma 12, the subgroup P ∈

Sylp(G) is not normal in G.
Lemma 3 implies that |U | �= p2. Therefore, |U | = p. Consequently, H = CG(P )

includes the commutant of G, and by Lemma 7 we have |G/H | = qλ �= 1 and the
group G/H is cyclic. Lemmas 1, 2, and 6 yield

�H =
q∑

i=1

χi,

where χi ∈ Irr(P ).
Since the order of G/H is coprime to p and �(1) = p2q, we have χi(1) = p2.

Therefore, H has q conjugate irreducible characters of degree p2. Since |H | > p4q
and |G/H | = qλ, it follows that λ = 1.
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There is a q-subgroup Q of G not lying in H . It acts by conjugation on the set
of degree p2 irreducible characters of H .

The Galois group acts on the set of degree p2q characters of G. The total
number of degree p2 irreducible characters of H equals p − 1. The orbits of Q
contain q of them. Thus, the number of degree p2q irreducible characters of G is at
least (p− 1)/q. Since we have exactly one character conjugate to �, it follows that
p− 1 = q. Therefore, in this case p = 3 and q = 2, which is excluded in the remark
above Lemma 14. Thus, Op(G) = 1 and |P | = p2.

The proof of Lemma 18 is complete.
Theorem 2 implies that G is a p-solvable group, while by Lemma 18 the Sylow

p-subgroup P of G is an abelian group of order p2. Theorem 6.3.3 of [2] yields
G = Op′,p,p′(G), and furthermore, H = Op′,p(G) = M �P , where M = Op′(G). Fix
this notation for the rest of the proof of Theorem 3.

Lemma 19. If G �= H then |G : H | = q and �H =
∑q

i=1 χi, where χi ∈ Irr(H)
are conjugate characters of H of degree p2.

Proof. Theorem 2 shows that the LC(�)-group G is p-solvable and |G| =
p2qbm, where �(1) = p2q; moreover, (pq,m) = 1. Take P ∈ Sylp(G) and H =
Op′,p(G). Since P is an abelian group of order p2, it follows that P is isomorphic
either to the cyclic group Cp2 or to the elementary abelian group Cp × Cp.

Therefore, G/H ≤ OutG(P ) is a p′-group. Put f = |G : H |. By Lemma 7, the
groupG/H cannot have normal subgroups of prime indices distinct from q. Since the
p′-group OutG(P ) is isomorphic either to a cyclic group of order dividing p− 1 (the
case P = Cp2) or to a group of order dividing (p2−1)(p−1) (the case P ∼= Cp×Cp),
it follows that q divides p± 1.

By Lemma 1 (Clifford’s Theorem),

�H = e
s∑

i=1

χi,

where χi are conjugate irreducible characters of H , and furthermore, esχ1(1) =
p2q, where es divides |G : H |. In particular, (p, es) = 1 implies that es = q and
χi(1) = p2. In any case we have a normal subgroup H1 ≥ H of index q in G. Since
�H1 is reducible by Lemma 7, it follows that �H1 = e

∑q
i=1 χi, where χi(1) = p2.

In particular, |G : IG(χ1)| = q. Therefore,

χG1 =
t∑

i=1

eiφi,

where one of the characters, for instance φ1, equals �, and

t∑

i=1

e2i = |IG(χ1) : H | = f/g.

It is clear that H1 = IG(�). Since H1 has q irreducible characters of degree p2, it
follows that |H1| ≥ (p4q + 1). On the other hand, the subgroup M = Op′(G) is not
centralized by any element of P# in view of Lemma 3 (Ito’s Theorem). Therefore,
|M | > p2, and so |H | > p4. Consequently, from |G| = |G : H | < 2p4q2 we infer that
f = |G : H | < 2q2. Thus, Lemma 7 leaves the following open possibilities:

(a) |G : H | = q2;
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(b) |G : H | = q(q+1), where either q+1 is a power of 2 or q+1 = 3 and q = 2;
(c) |G : H | = q.
But in cases (a) and (b) we have more than one irreducible character of degree

p2q, which is false. Hence, |G : H | = q and the proof of Lemma 19 is complete.

Lemma 20. If G �= H then for every irreducible character χ = χi in the
expansion of �H there exist p2 linear characters ψj conjugate to the character ψ =
ψ1, so that χM =

∑p2

j=1 ψj . The group M is abelian.
Proof. Take an irreducible character ψ of M appearing in the expansion of

the character χM , where χ = χi is an arbitrary irreducible character of H defined
in Lemma 19. According to Lemma 1,

χM = e′
t∑

i=1

ψi,

where ψi are characters conjugate to ψ, while e′ and t divide |H : M | = p2. In par-
ticular,

p2 = χ(1) = e′tψ(1).
Since (|M |, p) = 1, it follows that ψi(1) is not divisible by p. Thus, e′t = p2 and

ψi(1) = 1. In particular, ker(ψi) contains the commutant of M . Hence, ψj(y) = 1
for every j and y ∈ M . Then χ(y) = p2 for every character χ conjugate to χ1. As
a result, �(y) = p2q. Since � is faithful, it follows that y = 1; i.e. M ′ = 1 and M is
an abelian group, as claimed.

Lemma 21. Suppose that G = H and G = M � P , and that G lacks in-
dex q normal subgroups. Then �M =

∑p2

i=1 αi, where αi ∈ Irr(M) are conjugate
characters of M of degree q.

Proof. Take an irreducible character α ∈ Irr(M) of M appearing in the ex-
pansion of �M and consider its inertia group IG(α). By Lemma 1,

�M = e
s∑

i=1

αi,

where αi ∈ Irr(M), while e divides |IG(α) : M | and s divides |G : IG(α)|. Lemma 6
implies that �M is a reducible character, and so s > 1. Since �(1) = p2q = esα(1),
and furthermore, (α(1), p) = 1 (the order of M is not divisible by p), it follows that
es = p2 and α(1) = q. Since s �= 1, it follows that e = 1.

Thus, s = p2. The proof of Lemma 21 is complete.

Lemma 22. If r is a prime divisor of |M | thenM includes a Sylow r-subgroupR
admissible with respect to P .

Proof. The group P acts by conjugation on the set of Sylow r-subgroups ofM .
The number of them is the index of the normalizer of a Sylow subgroup, which is
coprime to |P |. Since the length of every nontrivial P -orbit of the group is divisible
by p, a Sylow r-subgroup admissible with respect to P must exist.

The proof of Lemma 22 is complete.

Lemma 23. The group G = M � P includes the subgroups QP and RP of
orders qbp2 and rαp2 respectively; furthermore, rα|m, where P , Q, and R are Sylow
p-, q-, and r-subgroups of G. In particular, M has Hall {p, q}- and {p, r}-subgroups.

Proof. As we said above, G = M � P , where |M | = qbm and |P | = p2 with
(p, qm) = 1. Since P acts by conjugation on the set of Sylow q-subgroups of M ,
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while the number of them is not divisible by p, it follows that there is a Sylow q-
subgroup Q of M invariant under P . Therefore, G includes the subgroup L = QP of
indexm. Lemma 22 implies that G also includes the subgroup Y = RP of index qbm

rα .
The proof of Lemma 23 is complete.

Lemma 24. If G = H then one of the following claims holds:
1. G = QCG(P ), where |Q| = qb, and moreover, qb > p2.
2. G = RCG(P ), where |R| = rα divides m.
3. G = CG(a)CG(u), where P = 〈a〉 × 〈u〉 is of order p2.

Proof. Recall that |G| = p2qbm and (p, qm) = 1; furthermore, qb−2m < 2p2.
Take R ∈ Sylr(G), where r|m. If P acts nontrivially on R then |R| ≥ p+ 1.
Suppose now that P acts trivially on every Sylow subgroup of G except R.

Lemma 11 shows that G has a normal subgroup Y1 which is the normal closure
of P included in Y = RP . Ito’s Theorem (Lemma 3) implies that P �= Y1. Hence,
without loss of generality we may assume that Y1 = R1 � P = 〈PG〉, where R1 is
a subgroup of R on which P acts nontrivially. In this case G = RCG(P ), so that
claim 2 holds.

If P acts nontrivially, besides R ∈ Sylr(G), on some S ∈ Syls(G), where s|m
and s �= r, then |S| ≥ p + 1, and furthermore, m ≥ |S||R| ≥ (p+ 1)(2p+ 1) > 2p2.
Hence, m > 2p2. Since qb−2m < 2p2, it follows that b = 1. Therefore, |G| = p2qm,
where (m, pq) = 1.

If for every simple r ∈ π(M) the group P acts trivially on some R ∈ Sylr(G)
then G = M × P , which is impossible.

Suppose that for every r �= q the subgroup P acts trivially on some Sylow r-
subgroup of M from M = Op′ (G). Lemma 11 shows that G has a normal subgroup
L1, which is the normal closure of P included in L = QP , of order divisible by p2.
Lemma 3 implies that P �= L1; therefore, L1 = Q1 � P = 〈PG〉, where Q1 ≤ Q.
Then G = QCG(P ); furthermore, qb > p2 and claim 1 holds.

Finally, it is possible that P acts nontrivially on both R and Q, where |Q| = qb

and |R| = rα|m.
It is clear that |R| ≥ 1 + p. If |R| ≥ p2 then m ≥ p2 + 1, and mqb−2 ≤ 2p2

forces qb−2 ≤ 1, so that b = 1 or 2.
But in this case |P | > |Q| and P cannot act nontrivially on Q with the exception

of the case when q = 2 and p = 3. This case is considered above, and we assume
henceforth that b ≥ 3.

Therefore, |R| < p2, and so there exists an order p element acting identically
on R. Furthermore, m ≥ |R| ≥ p+ 1.

Consider L = Q � P . Since by Burnside’s Theorem (Theorem 5.1.4. of [2])
every order p element not centralizing Q must act nontrivially on Q/	(Q), it follows
that |	(Q)| ≤ q.

Therefore, the following cases are possible:
(1)Q is an extraspecial group of order qb, where p divides qb−1−1, and moreover,

	(Q) = Z(Q) = Q′ is of order q and |Q/	(Q)| = qb−1.
In this case b−1 is even. Suppose that b−1 = 2s; then q2s−1 = (qs−1)(qs+1)

is divisible by p. Hence, p ≤ q
b−1
2 + 1 < qb−2; however, qb−2m < 2p2. Then m < p,

which is impossible.
(2) Q is a nonelementary abelian and |	(Q)| = q. Then Q = 〈a〉 × Q1; fur-

thermore, |〈a〉| = q2 and |Q1| = qb−2. It is clear that 〈aq〉 is centralized by P and
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〈aq〉 × Q1 = �(Q) � L. By Maschke’s Theorem there exists Q̃1 of order qb−2 with
〈aq〉 × Q̃1 = �(Q); consequently, P acts trivially on Q, which is excluded.

(3)Q is an elementary abelian of order qb, and furthermore, qb−1−1 ≡ 0(mod p).
Since qb = q(qb−1 − 1) + q = qpt + q and p2 > qb > p, it follows that there
exists an order p element a centralizing Q. Also there exists an order p element u
centralizing R. Moreover, 〈a〉 �= 〈u〉 because Z(G) = 1. Thus, CG(a)CG(u) ≥ G and
P = 〈a〉 × 〈u〉, where ap = up = 1, i.e. claim 3 holds.

The proof of Lemma 24 is complete.

Lemma 25. Let α be an irreducible character of the group M of degree q
appearing in the expansion of �M . Then for K �M the character αK is reducible.

Proof. Lemmas 11 and 24 imply that M is not a simple group. This is obvious
if π(m) = 1. The same holds for π(m) = 2: indeed, if G = RCG(P ) for some Sylow
subgroup R of M , then by Lemma 11 we have a normal subgroup of G included
into M (cases 1 and 2 of Lemma 24). But if no nonidentity element of P centralizes
at least a pair of Sylow subgroups of M , for instance R and S, which P normalizes,
and furthermore, one of them is a Sylow r-subgroup of M , while the second one is
a Sylow s-subgroup, where r �= s ∈ π(m), then m > (p + 1)(2p + 1) > 2p2. Hence,
b = 1 and |G| = p2qm.

In this case P centralizes Q ∈ Sylq(M). Suppose that |π(m)| = 2. Suppose that
CP (R) = 〈a〉. Then |G : CG(a)| is a power of s. By Lemma 11 we conclude that the
subgroup 〈aG〉 is a solvable {p, s}-subgroup, so that M is not simple. If |π(m)| ≥ 3
and P# contains no element the index of whose centralizer is a prime power then
m ≥ 2(p+ 1)3, so that mq−1 > 2p2; this is a contradiction. Thus, in all cases M is
not simple.

Denote by K the greatest proper normal subgroup of M . By Lemma 1,

αK = e
d∑

s=1

λs,

where d and e are positive integers dividing |M : K|, and λs are irreducible characters
of K conjugate with λ1 = λ. Hence, q = α(1) = edλ(1). If αK is irreducible for
every α appearing in the expansion of �M then K has p2 irreducible characters of
degree q. Then its order is at least q2p2 + 1, while

|K| ≤ |M |/(|M : K|) ≤ p2q2 + 1;

this is a contradiction. Hence,

αK =
q∑

s=1

λs,

where λs are linear characters.
The proof of Lemma 25 is complete.

Proof of Theorem 3. Lemma 25 implies that the intersection of the kernels
of the characters λs appearing in the expansion of �K contains the commutant
of K, and so it is trivial. Thus, the subgroup K of G, of index p2q in G, is abelian,
as claimed.

The proof of Theorem 3 is complete.
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PARTICULARITIES OF INFINITE SYSTEMS

F. M. Fedorov, O. F. Ivanova, and N. N. Pavlov

Abstract. Basing on the previous results on infinite Gaussian systems, we study the
key fundamental differences between general infinite systems and finite systems. In par-
ticular, we show that Fredholm’s and Noether’s theorems fail for general infinite systems
of linear algebraic equations. In addition, we refine the row reduction method, show-
ing in particular that it can converge though not to the solution to the infinite system
under consideration. We also indicate that the row reduction method for solving homo-
geneous infinite systems reveals duality. The solution of homogeneous infinite systems
is of a contradictory character as regards finite homogeneous systems. In particular,
we show that a homogeneous infinite system can have a nontrivial solution even if its
infinite determinant is nonzero.

In addition, solving a linear homogeneous infinite system necessarily reduces to
a nonlinear equation, called the characteristic equation, which is impossible for finite
systems.

Keywords: infinite Gaussian system, linear algebraic equations, Fredholm’s theorems,
Noether’s theorem, Gauss transformation, row reduction method, homogeneous systems

Introduction

After more than 200 years of research in infinite systems, their general theory is
still absent, although particular theories are developed for isolated types of infinite
systems [1, 2]. The general theory turned out exceedingly complicated on the one
hand; and on the other hand, it is rather rich and widely applied in many areas of
mathematics, mechanics, and physics. All that forced mathematicians all over the
world to start studying particular classes of infinite systems. Active studies of infinite
systems and the rise of functional analysis practically coincided in time at the end of
the 19th and the beginning of the 20th centuries. The success of functional analysis
and its wide applications in various areas of mathematics and physics predetermined
the application of its methods to study infinite systems. Presently, about the dozen
classes of infinite systems are completely understood: normal systems, regular and
totally regular systems, multiplicative systems, systems with difference indices, and
so on [2]. All these studies successfully applied functional analysis methods, but
their application requires certain restrictive assumptions on the coefficient matrix
and the right-hand side of the infinite system related to infinite systems in normed
spaces. Norm convergence in Banach spaces implies strong convergence.

Thus, all available works [2, 3] admit that the right-hand sides bj are jointly
bounded: bj ≤ B. In addition, the weakest restriction on the coefficients of the
system ai,j which must be imposed amounts to

∑∞
i=1 |di,j | <∞, where ai,i = 1+di,i

for i = j and ai,j = di,j for i �= j. The systems for which these conditions fail a priori

The authors were supported by the Ministry of Science and Education of the Russian Feder-
ation (Grant No. 3047).
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cannot be considered as objects of study, which has eventually led to a critical
situation.

Precisely the development of the theory of periodic infinite systems [1] made
it possible to study infinite systems from general viewpoints and enabled us in the
recent years to push ahead from the crisis.

In all our studies we stick to the concept of weak convergence; more exactly,
the coordinate-wise convergence. Thus, right away we avoid restrictive assumptions
on the coefficients and right-hand sides of an infinite system, sticking only to the
definition of solution to a system.

In this article, basing on the previous results and examples of solutions to
concrete infinite systems, we exhibit the main distinctive features of their solution
as compared to solutions of finite systems. In this regard, we also indicate the
difficulties that might happen while solving them.

For the main facts on infinite systems, matrices, determinants, and minors,
see [1–3].

First of all, let us dwell on the well-known theorems of Fredholm and Noether
on the solutions to finite systems of linear equations.

1. Fredholm’s and Noether’s Theorems

To begin with, consider the question of solvability of a finite system of n linear
algebraic equations with n unknowns. We can express every system as one linear
equation

Ax = b, (1)

where b is a given vector, x is the required solution vector, and A is a linear operator
in the n-dimensional Euclidean space Rn defined by the matrix of the system.

Recall the main facts of linear algebra concerning this finite system [4, 5].
1. Eq. (1) is solvable for every right-hand side if and only if the corresponding

homogeneous equation Ax = 0 admits only the trivial solution x = 0.
2. Eq. (1) is solvable for every right-hand side if and only if the adjoint equation

A∗y = f (2)

is solvable for every right-hand side.
3. The equations Ax = 0 and A∗y = 0 have the same number of linearly

independent solutions.
4. If the homogeneous equation Ax = 0 admits a nontrivial solution then

the inhomogeneous equation (1) is solvable if and only if the right-hand side b is
orthogonal to all solutions of the adjoint homogeneous equation A∗y = 0.

Properties 1, 3, and 4 for finite systems of algebraic equations are reflected in
Fredholm’s theorems.

We should emphasize that properties 1 and 2 hold when the determinant |A|
of the system (1) in nonzero, while property 4, in contrast, is interesting principally
when the determinant |A| is zero.

Note now Noether’s theorems for finite systems [6]: the difference between the
number n of linearly independent solutions to the homogeneous equation Ax = 0
and the number n′ of linearly independent solutions to the adjoint equation A∗y = 0
equals the index κ of the operator A (the index of (1)): n− n′ = κ(A).

What is the situation in the case of infinite systems? Which properties hold and
which do not in the theory of infinite systems? Do some new properties appear? We
can answer these questions only basing on our results. Therefore, consider a concrete
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example of an infinite system. We should emphasize that it arose in mathematical
physics while solving a boundary value problem by the boundary method [7, 8], i.e.,
it is not just some abstract system.

Example 1. Consider the following basic model of heat problem with variable
boundary conditions [7]:

∂T (x, t)
∂t

= α
∂2T (x, t)

∂x2 , 0 < x < 1,

∂T (x, t)
∂x

= 0, x = 0,

T (x, t) = V exp(νt), x = 1,
T (x, t) = 0, t = 0.

(3)

The first stage in solving (3) by the boundary method [8] amounts to solving
the infinite system [7]

∞∑

p=0

(2j + 2p)!
(2p)!

xj+p = V exp(νt)
(
ν

α

)j

, j = 0,∞, b =
ν

α
= const > 0, (4)

where xj = aj(t) and aj(t) are the coefficients of the power series expansion of the
temperature function T (x, t) in the spatial coordinate x.

Clearly, all row series of absolute values of the matrix entries of (4) diverge:
∞∑

p=0

|aj,j+p| =
∞∑

p=0

(2j + 2p)!
(2p)!

=∞, j = 0, 1, 2, . . . ,

In addition, the right-hand sides of (4) for b > 1 are not jointly bounded. Never-
theless, this system has a solution obtained using the row reduction method in the
broad sense [7]:

x(k)
j =

(−1)j+1V exp(νt)
(2j)! cosh

√
ν
α

{[
π(2k + 1)

2

]2j
−
(

− ν

α

)j}

+
(−1)jx0

(2j)!

[
π(2k + 1)

2

]2(j−1)

, k, j = 0, 1, 2, . . . , (5)

where x0 is an arbitrary real number.
Since x0 is arbitrary, we can express the solution to (5) in general form as

x(k)
j =

V exp(νt)
(2j)! cosh

√
ν
α

(
ν

α

)j

+
(−1)jx0

(2j)!

[
π(2k + 1)

2

]2j
= xj + x̃(k)

j , k, j = 0, 1, 2, . . . , (6)

where xj is a particular solution to the inhomogeneous system (4) and x̃(k)
j are solu-

tions to the homogeneous system (4) independent with respect to k, i.e., for b = 0.

It is clear from (6) that for infinite systems in general properties 1–4 of finite
linear equations (1) are violated; even more so, Fredholm’s theorems fail, and there-
fore Fredholm’s alternative as well. In addition, Noether’s theorem breaks down.
Indeed, x̃(k)

j is a nontrivial solution to the corresponding homogeneous system (4),
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even though the infinite inhomogeneous system (4) has a solution, i.e., property 1
fails.

As for property 1, we can give more general arguments. Express an infinite
system also as a linear equation (1), but in matrix form AX = B. Assume that the
infinite determinant |A| exists and is nonzero. However, the existence (or not) of the
inverse matrix A−1 in general is independent of the presence of nontrivial solutions
to the corresponding homogeneous equation. Thus, the solvability of an infinite
system is also independent of the existence of nontrivial solutions to the homogeneous
system. Assume now that at least a left inverse matrix A−1 exists. Then (1) yields
X = A−1B, but the product A−1B need not exist because the corresponding series
may diverge, and then solutions to the system need not exist.

Property 2 also fails. For a Gaussian matrix A the transpose AT , which in our
case is the same as the adjoint matrix A∗, is a triangular infinite matrix. Cook
showed [9] that these matrices have unique inverse matrices. This implies that
the adjoint equation (2) has a unique solution for each right-hand side f because
triangular matrices have finite rows and so they can be multiplied:

(A∗)−1A∗y = (A∗)−1f, y = (A∗)−1f. (7)

However, (1) is not always solvable even if the infinite determinant is nonzero;
we discuss that in detail below in Examples 2 and 3. As (7) implies, the adjoint
homogeneous equation (2) always admits only the trivial solution; consequently, as
Example 1 shows, property 3 fails too. Since the solvability of (1) is independent of
the solvability of the homogeneous adjoint equation (2), it becomes evident that (4)
fails. The solution (6) in Example 1 points out directly at a violation of Noether’s
theorem.

Therefore, for general infinite systems of linear algebraic equations (1) we lose
the solvability theorems, Fredholm’s and Noether’s theorems, and it is impossible to
study (1) using Fredholm or Noether operators A.

The main difference of finite systems from infinite ones is that even if the in-
finite determinant is nonzero the homogeneous infinite system can have nontrivial
solutions, which is impossible for finite systems.

However, certain infinite systems reduce to finite systems, and the prefix “quasi”
was suggested for them.

2. Pseudoinfinite Systems

Along with the prefix “quasi”, introduce the concept of pseudoinfinite systems.
Apparently, this term was applied for the first time to regular infinite systems [3].
Call quasiregular every system in which the regularity condition is satisfied only in
all rows starting at some, i.e., the regularity condition is violated for finitely many
equations. As [3] showed, the existence of a solution to these system reduces to that
for a finite system. By analogy, we can introduce the concept of quasihomogeneous
systems. Quasiperiodic systems appeared in the same fashion [2]. Here we intro-
duce the concept of pseudoinfinite systems, but of a different kind than the above
quasisystems. There exist infinite systems taking an intermediate position between
finite and infinite systems. This is best seen by solving a concrete infinite system.

Example 2. Consider the infinite system with difference indices:
∞∑

p=0

apxj+p = bj , j = 0, 1, . . . , (8)
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where a0 = 1, a1 = a, a2 = a3 = · · · = 0, a = const, b = const, and 1 + ab �= 0. Find
a strictly particular solution to (8), as soon as it exists.

Solution. Observe that the Gaussian system (8) differs substantially from the
general infinite Gaussian system; namely, each equation involves only finitely many
terms (unknowns). In this case only two terms are present. For this reason, two
fundamentally different approaches arise when we apply the row reduction method.
Firstly, we can solve (8) without throwing terms away, but restricting only the
number of equations. Then the finite system has degenerate matrix. Therefore, in
this case it is convenient to use the row reduction method in the broad sense [1, 2].
Secondly, we can close this finite system by throwing away one term just in the last
equation and putting xn = bn. Then it becomes possible to use the row reduction
method in the narrow sense [1, 2], namely, the usual simple reduction.

The infinite system (8) is also attractive in that we can solve it in at least four
different ways. Its general solution is given in [1] as an example of solving periodic
infinite systems:

xj =
bj

1 + ab
+

(−1)jC
aj

, 1 + ab �= 0, j = 0, 1, . . . , (9)

where C is an arbitrary constant.
Secondly, we can consider (8) as a difference equation. The theory of those

appeared in the classical works, for instance in [10]; naturally, applying it, we obtain
the solution (9).

The coefficient matrix A of (8) is

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 a 0 0 . 0 0 .
0 1 a 0 . 0 0 .
0 0 1 a . 0 0 .
. . . . . . . .
. . . . . . . .
0 0 0 0 . 1 a .
0 0 0 0 . 0 1 .
. . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (10)

and its infinite determinant obviously equals 1; i.e., |A| = 1.
Below we solve (8) in two more ways. Firstly, solve (8) using the general theory

of infinite systems [11], according to which a strictly particular solution to an infinite
Gaussian system, whenever it exists, is expressed [11] as

xj = �(j+1) =
∞∑

p=0

(−1)pAp(j)bj+p, j = 0, . . . ,∞. (11)

Furthermore, Ap(j) is defined recursively as

Ap(j) =
p−1∑

k=0

(−1)p−1−kaj+k,j+pAk(j), A0(j) = 1, (12)

where aj+k,j+p are the matrix entries of (10) and �(j+1) is the Cramer determinant,
which is the determinant |A| with column j+1 replaced by the column of right-hand
sides bk = bk of (8).
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Actually, Ap(j) constitute the sequence of principal minors of the determinant

An(j) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

aj,j+1 1 . . . 0 0
aj,j+2 aj+1,j+2 . . . 0 0

. . . . . . .

. . . . . . .
aj,j+n−1 aj+1,j+n−1 . . . aj+n−2,j+n−1 1
aj,j+n aj+1,j+n . . . aj+n−2,j+n aj+n−1,j+n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

; (13)

we put A0(j) = 1, A1(j) = aj,j+1, A2(j) =
∣
∣
∣
∣
aj,j+1 1
aj,j+2 aj+1,j+2

∣
∣
∣
∣, and so on. In our

case Ap(j) are the order p principal minors of the determinant of the matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 1 0 0 . 0 0 .
0 a 1 0 . 0 0 .
0 0 a 1 . 0 0 .
. . . . . . . .
. . . . . . . .
0 0 0 0 . a 1 .
0 0 0 0 . 0 a .
. . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

Calculating this principal minors or using (12), we easily obtain Ap = ap. Then
(11) yields

�(j+1) = bj
∞∑

p=0

(−1)papbp, j = 0, . . . ,∞. (15)

However, this series converges if and only if |ab| < 1, and in this case we find

xj = �(j+1) =
bj

1 + ab
, 1 + ab �= 0. (16)

Inserting this expression into (8), we verify that it is a strictly particular solution
to (8) for |ab| < 1. Therefore, the condition |ab| < 1 is necessary and sufficient for
the convergence of the row reduction method. However, it is obvious that this con-
dition is simultaneously a condition on both the matrix A and the right-hand side b
of (8). Meanwhile, it is known [12] that the linear operator defined by the coefficient
matrix A of the infinite system must be expressible as the sum of a positive definite
operator and a totally continuous operator. Under these conditions A admits reduc-
tion with respect to all orthonormal bases; hence, we obtain a strong condition for
the convergence of reduction. This result is a corollary of strong convergence, which
is convergence in the norm of the space, while we consider weak convergence, which
is coordinatewise convergence, which yields a weaker condition for the convergence
of the row reduction method.

It is obvious that the solution of (9) is independent of |ab| being greater or less
than 1. Together with that, we have the main theorem [11]: an infinite Gaussian
system is consistent if and only if it admits a strictly particular solution. As we
showed above, (8) with |ab| > 1 lacks strictly particular solutions; consequently, the
main theorem shows that it is inconsistent, although (8) has solution (9) for |ab| > 1
as well. Seemingly this is a would-be contradiction, so what is the matter? Applying
the row reduction method to prove the theorem mentioned, we assume that in each
equation (more exactly, in infinitely many equations) we throw away infinitely many
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terms. In other words, we consider the infinite Gaussian system in full form in the
sense that infinitely many equations involve infinitely many unknowns, while (8),
as indicated above, in each equation involves just two unknowns, which makes it
possible to obtain a solution without reduction. This is our fourth approach. Thus,
consider (8) as one recurrence

xj−1 + axj = bj−1, j = 1, 2, . . . . (17)

Solving this for xj , we find

xj =
bj−1 − xj−1

a
. (18)

Repeating this formula j times, we obtain

xj =
1
aj

(
j−1∑

p=0

(−1)p(ab)j−p−1 + (−1)jx0

)

, j > 0, (19)

where x0 is an arbitrary constant.
Express x0 as x0 = 1

1+ab + C, where C is an arbitrary constant. Insert the last
expression into (19) and make simple rearrangements. This yields

xj =
1
aj

(
j−1∑

p=0

(−1)p(ab)j−p−1 +
(−1)j

1 + ab
+ (−1)jC

)

=
bj

1 + ab
+

(−1)jC
aj

, j > 0.

(20)
Thus, we arrive at the solution (9).

Since (−1)jC
aj(1+ab) is a general solution to the corresponding homogeneous system,

it is obvious that the expression

1
aj

(
j−1∑

p=0

(−1)p(ab)j−p−1

)

, j > 0,

is a particular solution to (8) obtained as a consequence of the finiteness of each
equation of (8). Together with that, for |ab| > 1 it is not a strictly particular
solution, although that is so for |ab| < 1, as we showed above. Therefore, the
infinite system (8) behaves partly like an infinite system and partly like a finite
system. Naturally, in the latter case some properties of infinite systems are lost;
in particular, the row reduction method diverges because (19) involves only a finite
sum, while the series, like in (15), is absent.

Now solve the infinite system (8) using the row reduction method in the narrow
sense, i.e., apply simple reduction. In this case, as we said above, by the finiteness
of the equations, throwing away only the last term of the last equation, we obtain
the system of three equations

⎧
⎪⎨

⎪⎩

xn−2 + axn−1 = bn−2,

xn−1 + axn = bn−1,

xn = bn
(21)

with three unknowns xn−2, xn−1, xn. It becomes clear that for arbitrary n ≥ 2
all equations of (21) correspond precisely to the equations of the infinite system (8)
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except for the last. Solving this system, we obtain xn−2 = bn−2 − abn−1 + a2bn,
xn−1 = bn−1 − abn, and xn = bn. Hence, induction yields

xn−j =
j∑

p=0

(−1)papbn−j+p, j = 0, . . . , n.

Reindexing, we finally obtain the reduced solution

n
xj =

n−j∑

p=0

(−1)papbj+p.

Passing to the limit as n→∞ in the last expression, we arrive at the series (15) for
|ab| < 1, which confirms the necessity of applying the row reduction method in the
narrow sense while solving inhomogeneous infinite systems.

Thus, infinite systems with infinitely many finite equations do not fully have
the properties of general infinite systems, but share some features of finite systems.
Hence, we can give them a special name, for instance, semi-infinite or quasi-infinite
systems, and study them separately from general (full) systems. We suggest to
apply the term pseudoinfinite systems and study them separately from general (full)
systems. A typical example of pseudoinfinite system is an infinite system with
a diagonal matrix: the infinite system ajxj = bj , where aj �= 0. Actually, this
system is finite, as it is one equation with one unknown. It is obvious that its
solution is xj = bj

aj
. However, when we treat it as infinite, the results are clearly

absurd already because for |a| > 1 the infinite determinant of this system does not
exist. Therefore, by an infinite system in general we understand a system containing
infinitely many equations with infinitely many nonzero coefficients (aj,i �= 0).

3. The Nonlinear Character of Solutions
to Infinite Homogeneous Systems.

Duality of the Row Reduction Method

In order to demonstrate the nonlinear character of solutions to homogeneous
infinite systems, return to Example 1, more precisely, to solution (6) to (4) in the
homogeneous case (b = 0):

x(k)
j =

x0

(2j)!

[
π(2k + 1)

2

]2j
, k = 0, 1, 2, . . . , j = 1, 2, 3, . . . , (22)

where x0 is an arbitrary real number.
We emphasize that for x0 = 1 this expression yields a basis of an infinite-

dimensional subspace of nontrivial solutions to the homogeneous infinite system (4),
while the solution of type (22) itself for x0 ≡ xk

0 = const is called in [1] the funda-
mental solution to the homogeneous system.

Let us repeat the method for obtaining (22) in more details to answer the
question: What is so special about it? To this end, consider the homogeneous
periodic Gaussian system

∞∑

p=0

aj,j+pxj+p = 0, j = 0, 1, 2, . . . , (23)

where the coefficients aj,j+p satisfy aj,j+p = apaj+p,j+p by the periodicity of this
system, and apply to it the general approach of [11] to studying infinite systems.
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In order to solve (23), firstly we shorten it using the row reduction method in
the broad sense and obtain a solution to the cutoff homogeneous finite Gaussian
system in the form [11]:

n
xj = −Sn−j

n
xj+1, (24)

where

Sn−j =
aj,j+1

aj,j
+

n−j∑

p=2

(−1)p+1aj,j+p

aj,j
p−1∏

k=1
Sn−j−k

, S1 =
an−1,n

an−1,n−1
, j = 1, n− 2. (25)

Here Sn−j is a function of j, i.e., Sn−j = Sn−j(j).
Previously we showed [1, 11] that if the limit lim

n→∞Sn−j(j) = S(j) exists and

we can pass to the limit in (25) termwise then xj = lim
n→∞

n
xj . This enables us to

find a nontrivial solution to (23). Furthermore, the numbers S(j) amount to the so-
called characteristic values of the corresponding nontrivial solution to (23). Solving
the arising recurrence, we obtain the nontrivial solution

xj =
(−1)jx0
j−1∏

k=0
S(k)

, j = 1,∞, (26)

where x0 is an arbitrary real number, and S(j) are unknown characteristic values.
Passing to the limit in (25) yields the system of nonlinear equations

∞∑

p=0

(−1)paj,j+p

aj,j
p−1∏

k=0
S(j + k)

= 0, j = 0, 1, 2, . . . , (27)

for determining S(j), where we put
∏−1

k=0 S(j + k) = 1 for every j to unify notation.
We should note that, inserting (26) into (23), we also obtain (27) because x0 is

arbitrary. If (27) lacks solutions for S(j) then the homogeneous system (23) admits
only the trivial solution.

We should particularly emphasize the following. In fact the applicability of the
row reduction method to homogeneous infinite systems ends with (26) and (27). To
elucidate this point, return to Example 1, or more precisely, to (22).

Since the solutions to systems with periodic and difference indices are isomor-
phic, it suffices to consider a system with difference indices (aj,j ≡ 1) [1]. The
isomorphism goes via the correspondence yj = xj

aj,j
, where yj is a solution to the

periodic system, while xj , to the system with difference indices. Then instead of (23)
we can consider the system (ap = 1

(2p)! ):
∞∑

p=0

1
(2p)!

xj+p = 0, j = 1, 2, 3, . . . . (28)

First of all we are interested in the characteristic values S(j) that determine
independent nontrivial solutions to homogeneous systems. This question is studied
in detail in [13]. Basing on it, we may assume that S(j) = S = const; i.e., the
characteristic values are independent of the index j, as the structure of (28) itself
indicates. Then, (26) obviously initiates the solution

xj =
(−1)jx0

Sj
, j = 1, 2, . . . , (29)
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where x0 is an arbitrary real number. Furthermore, we determine S from the non-
linear equation resulting from (27) expressed as one equation:

∞∑

p=0

(−1)p

(2p)!Sp
= 0. (30)

It is obvious that, basing on this relation, we can define the analytic function

f(x) =
∞∑

p=0

(−1)p

(2p)!
xp (31)

and find its zeroes. In [1] this function is called the characteristic of periodic systems
themselves, and of (4) in particular.

Let us make a digression. For finite systems, applying somehow the row re-
duction method in the broad sense, we obtain the corresponding solution similar to
(24), (25), but with the difference that all parameters involved in it are available,
while S in (29) is an unknown which we should determine from the nonlinear equa-
tion (30). This is the main difference between solving finite and infinite homogeneous
systems, because the new unknown S = S(j) = lim

n→∞Sn−j appears in the infinite
case.

In general, the method for solving (31) is obviously independent of the method
for solving the infinite system (28). Consequently, reflecting the linear character
of solution to the homogeneous infinite system (28), the applicability of the row
reduction method ends with (29) and (31). Therefore, the row reduction method
in the broad sense yields only the structure of a nontrivial solution, when it exists,
and a relation for determining an unknown, which is S in this case. Let is find the
value of S in the case of characteristic f(x). Obviously, (31) for the characteristic
f(x) yields f(x) = cos

√
x = 0. From this we determine all zeroes of the function

f(x) as x′k =
[π(2k+1)

2

]2. Consequently, Sk = 1
x′k

=
[ 2
π(2k+1)

]2. Therefore, taking
the periodicity of (4) into account, we arrive at the solution (22).

We emphasize once again that the row reduction method always converges only
when a nontrivial solution to (23) exists. This assertion is quite simple to interpret.
Suppose that a set {xj}∞0 of numbers constitutes a nontrivial solution to (23). Make
the substitution xj

xj+1
= −S(j). The structure of (23) enables us to assume that

S(j) = S = const, i.e., it is independent of the index j. Then we have xj = −Sxj+1.
Solving this recurrence, we obviously obtain (29). The rest is already known.

However, by chance, the process (25) under certain conditions acts as a nu-
merical algorithm for finding a concrete root of (30); i.e., it reflects the nonlinear
character of solution of (23). In this role the row reduction method does not always
converge, and here we see the duality of the method caused by the duality of solu-
tion of (23). The convergence of the process (25) for finding the zeroes of algebraic
equations of infinite order is studied in more detail in [1, 14, 15]. These articles show
that if the equation (30) has the unique solution with the smallest absolute value
then the process (30) converges to its solution. If there are several zeroes then (25)
does not converge. It is worth noting that (25) generalizes the classical Bernoulli
method for calculating the zero of a polynomial with the greatest absolute value [15].

4. Difficulties in Searching for
Solutions to Infinite Systems

Here we note only those difficulties in solving infinite systems which arise due
to principal differences between finite and infinite systems.
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Consider an infinite system given in operator form (a) or matrix form (b):

(a) Ax = b, (b) AX = B, (32)

where A is a linear operator in matrix form or the matrix itself, x and X are unknown
columns, b and B are columns of right-hand sides.

Therefore, we often treat an infinite system of equations as one linear equation
(32(a)) and solve it using the theory of linear operators. However, this approach
cannot fully solve infinite systems of equations, as strong arguments indicate.

Firstly, as we showed above, Fredholm’s theorem and Noether’s theorem, valid
for finite systems, fail for infinite systems. Considering an infinite matrix as a linear
operator, we obtain only a strictly particular solution to the infinite system, which
in the case of a homogeneous system is only the trivial solution. Together with
that, a detailed solution in the homogeneous case of the system in Example 1 shows
that the matrix A, i.e., the operator A, in fact plays no role in obtaining nontriv-
ial solutions to the homogeneous system. Therefore, no conditions imposed on A
beforehand guarantee the uniqueness of solution.

Secondly, the following difference of infinite systems from finite ones is important
for studying the former. Consider an infinite system (32 (b)) expressed in matrix
form AX = B, where A is a Gaussian matrix, which moreover has a unique inverse
matrix A−1. Then the solution to the system in the finite case is X = A−1B.
However, this solution, always valid for finite systems, is not always a solution to
an infinite system. Consider this assertion on a concrete example.

Take a general infinite system in the Gaussian form (aj,j �= 0):

∞∑

p=0

aj,j+pxj+p = bj , j = 1, 2, 3, . . . . (33)

Without loss of generality we may assume that the Gaussian coefficient matrix A
of (33) has nonzero infinite determinant |A|. Since Gaussian matrices satisfy aj,j �= 0,
formally dividing by the diagonal entries, we obtain a system with diagonal entries
equal to 1, and so nonzero determinant.

Then [11]

xj =
∞∑

p=0

(−1)p
Ap(j)bj+p

aj+p,j+p
+

(−1)jx0
j−1∏

k=0
S(k)

, j = 1, 2, . . . , (34)

is a particular solution to the inhomogeneous Gaussian system (33) similar to the
solution (6) and accounting for a nontrivial solution, if it exists, to the homogeneous
system (33) (with bj = 0 for all j).

Clearly, the series on the right-hand side is a strictly particular solution to (33);
moreover, on the one hand, it equals the infinite Cramer determinant �(j), and on
the other hand, the value of the matrix row of A−1B. The latter follows since the
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infinite inverse matrix A−1 for every Gaussian system (33) is of the form

A−1=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −A1(1) A2(1) . (−1)pAp(1) (−1)p+1Ap+1(1) .
0 1 −A1(2) . (−1)p−1Ap−1(2) (−1)pAp(2) .
0 0 1 . (−1)p−2Ap−2(3) (−1)p−1Ap−1(3) .
. . . . . . .
. . . . (−1)p+1−jAp+1−j(j) (−1)p+2−jAp+2−j(j) .
. . . . . . .
. . . . −A1(p) A2(p) .
0 0 0 . 1 −A1(p + 1) .
0 0 0 . 0 1 .
. . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(35)
It is easy to obtain this expression from (11)–(13).

Return now to Example 2 and take the values a = −10 and b = 1 of the
parameters. Then the coefficients of A−1 for the matrix (10) by (35) are

a′i,j =
{

10j−i, j ≥ i

0, j < i
.

We can also verify this by the straightforward multiplication of A−1 and A. The

formal product A−1B yields the column with entries b̄j =
∞∑

p=0
10pbj+p for j ≥ 1.

However, these series need not converge, for instance, for bj ≡ 1. Then the mul-
tiplication of infinite matrices is impossible by definition; in addition, the infinite
Cramer determinant �(j) does not exist. Consequently, in this case the row reduction
method fails to converge and the question of solving the pseudoinfinite system (8)
remains open. Observe that for a full infinite system (each equation of the system in-
volves infinitely many unknowns) this situation demonstrates that the system under
consideration is not solvable [11]. Suppose now that b = 1/20. Then the last series
converges, the matrix multiplication works and, as we showed above, the solution
to (8) is of the form (16) and equals the Cramer determinant. For b = 1 the matrix
multiplication is impossible; nevertheless, (8) admits the solution (16), but it is not
equal to the Cramer determinant because the latter fails to exist.

Although the row reduction method can converge to the Cramer determinant,
the latter need not satisfy this system; i.e., in this case Cramer’s rule fails.

Example 3. Consider the infinite Gaussian system
∞∑

p=0

xj+p =
bj

(1− b)2
, b �= 1, j = 0, 1, 2, . . . . (36)

Find a strictly particular solution to (36) using (11) and (12). Calculate the
values of Ap(j) from the recurrence (12). Then A1(j) = aj,jA0(j) = 1 and A2(j) =
−A0(j) + A1(j) = 0; consequently, Ap = 0 for p ≥ 2. Taking these values of Ap(j),
we find from (11) that

�(j+1) =
∞∑

p=0

(−1)pAp(j)bj+p = bj − bj+1 =
bj

1− b
<∞

for every fixed j and arbitrary b �= 1; hence, the row reduction method converges,
and the Cramer determinant �(j+1) exists independently of j.
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Let us find the condition for �(j+1) to be a solution to (36), i.e., a sufficient
condition for the existence of a strictly particular solution.

Inserting xj = �(j+1) = bj

1−b into (36) yields

∞∑

p=0

�(j+1+p) =
bj

(1− b)

∞∑

p=0

bp, (37)

but the latter series converges if and only if |b| < 1. Consequently, for |b| < 1 the
system (36) is satisfied, and so xj = bj

1−b is a strictly particular solution.
It is obvious that for |b| ≥ 1 the series in the right-hand side of (37) does

not converge; consequently, no strictly particular solution exists, and so (36) is
inconsistent by the main theorem. Hence, although the infinite determinant �(j+1)

exists, i.e., the row reduction method converges, it cannot be a solution to the
system. In this case Cramer’s rule fails to yield a solution to the infinite system.

Let us also pay attention to another aspect. As observed in [16], an infinite ma-
trix can have infinitely many inverse matrices, which, obviously, leads to additional
difficulties in solving these systems.

Thirdly, solutions to the homogeneous system are independent of the structure
of the infinite determinant of the system. Therefore, if the infinite determinant
is nonzero then the homogeneous system can have a nontrivial solution, which is
impossible for finite systems. The subspace of solutions to a homogeneous system
can even be infinite-dimensional. This circumstance creates additional difficulties in
studying the uniqueness of solutions to infinite systems.

Fourthly, the nonlinear character of solutions to infinite homogeneous systems
comes out only when we solve them by the row reduction method in the broad
sense, i.e., in every cutoff system the number of unknowns is greater by one than
the number of equations. More exactly, we assume that the finite cutoff system
for each n has degenerate matrix. The row reduction method in the broad sense
always converges provided that there exists a nontrivial solution to the homogeneous
system. Furthermore, it reduces the infinite system to a nonlinear (characteristic)
equation. However, under certain conditions it can act as a numerical algorithm for
finding a concrete root of the characteristic equation of the homogeneous system, and
thereby reflect the nonlinear character of its solution. In this role the row reduction
method in the broad sense does not always converge, and this reveals the duality of
this method caused by the duality of solution of the homogeneous system.

Above all, note the contradictory character of solution (34) as compared to the
theory of finite systems in two aspects. Firstly, if the homogeneous system (33) has
a nontrivial solution then its solutions {yj} can be linearly dependent, which con-
tradicts the notions of the theory of finite systems because the determinant of (33)
is nonzero. Secondly, the solution of a linear homogeneous system necessarily re-
duces, as we have seen above, to a nonlinear equation, which cannot happen for
finite systems.

In addition, as we already noted in Section 1, the operator A represented by
the infinite matrix A of (33) is neither a Fredholm operator nor a Noether operator;
thus, the general infinite system (33) cannot be completely understood with the use
of the theory of linear operators of Fredholm or Noether type.
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FORMAL CLASSIFICATION OF GENERIC

GERMS OF SEMI–HYPERBOLIC MAPPINGS
P. A. Shaikhullina

Abstract. We examine germs of a semi-hyperbolic mapping, i.e., two-dimensional holo-
morphic mappings one of whose multipliers is parabolic and the other is hyperbolic.
Some formal classification of generic semi-hyperbolic germs is obtained and a theorem
on semiformal normalization is proven.

Keywords: semi-hyperbolic germ, formal classification, semiformal normalization

Introduction

The problem of an analytic classification of germs of vector fields (mappings)
was stated by Poincaré [1–4]. Its version is the so-called normalization problem,
i.e., the problem of reducing a germ to the simplest form (the normal form) by an
analytic change of coordinates. Both these problems were solved by Poincaré [1–
5], Siegel [6], and Bryuno [7] mainly. Only Siegel-type germs with resonances or
pathologically close to them remain unstudied (see [8]). The essential achievements
were made in the 1980s for these “particular” cases by Yoccoz [9] for the “Liouville”
germs and by Voronin [10], Ecalle [11], Martinet and Ramis [12, 13] for the resonance
germs. It turns out that an obstacles to a normalization of a germ are the so-called
“functional invariants.” And even more, they contain complete information about
the “analytic” type of a germ.

Functional invariants of analytic classification were initially constructed for
germs of parabolic mappings (one-dimensional holomorphisms tangent to the iden-
tity) [10, 11, 14], and for the resonances of saddle [14] and saddle-node [15] germs of
vector fields. After that functional invariants were found in many other problems of
analytic classification [16–19].

One of the methods for constructing functional invariants is as follows: A punc-
tured neighborhood about a fixed (singular) point is covered by sectorial domains.
At each of them we can construct an analytic change of variables normalizing a germ.

The transition functions of an obtained “normalizing” atlas are the required
functional invariant. Hence, the problem on the sectorial normalization, i.e., the
problem on normalization of a germ on a domain for which a fixed (singular) point
is not interior but boundary is the first and most important stage of solving the prob-
lem of analytic classification of resonance germs. As is noted above, such a normal-
ization was realized for one-dimensional resonance mappings and saddle and saddle-
node resonance vector fields. The next objects in complexity are two-dimensional
mappings and three-dimensional vector fields. The germs of two-dimensional map-
pings and three-dimensional vector fields (under very strong constraints separating
subsets of the codimension infinity in the space of germs) are examined in [20] and
the above program for these germs was completely realized there. However, generic

c© 2015 Shaikhullina P. A.
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resonance cases are not studied well. At present, the results on normalization prob-
ably are obtained only for the so-called semi-hyperbolic germs, i.e., the germs of
two-dimensional mappings one of whose multipliers (with the modulus not equal
to zero or 1) is hyperbolic, and the second is parabolic (it is equal to 1). Namely,
the theorem on sectorial normalization of germs for a formal equivalence class of
a particular semi-hyperbolic germ is proven in [15]. In what follows, the transition
functions of a normalizing atlas are assumed to use in functional invariants of an
analytic classifications of germs of the above class. We should observe that the
class treated in [15] consists of germs whose fluxes (of sufficiently high order) are
normalized at all points of their invariant hyperbolic submanifold. The presence of
this “preliminary” normalization is essential for constructing sectorial normalizing
mappings. However, the possibility of such preliminary normalization is not a direct
consequence of the formal reducibility of a germ to its normal form.

Some particular results for germs of semi-hyperbolic mappings about the exis-
tence of a holomorphic (“sectorial”) central manifold are obtained in [21, 22].

At the present article we consider generic semi-hyperbolic germs. We plan to
obtain their analytic classification in accord with the above arguments. The first
step needed for constructing a sectorial normalization is to establish their formal
classification and “preliminary” normalizability.

1. The Classes of the Germs S H and S H 0.
A Theorem on Formal Classification

Definition 1. The germ of a holomorphism F : (C2, 0) → (C2, 0) is referred
to as semi-hyperbolic whenever one of its multiplier is equal to 1 and the latter is
hyperbolic, i.e.,

F (x, y) = (x + · · · , �y + · · · ), where |�| �= 0, 1.

A semi-hyperbolic germ is called generic if the constant c in the decomposition

F (x, y) = (x + cx2 + · · · , �y + · · · )
is not zero.

The class of generic semi-hyperbolic diffeomorphisms is denoted by S H . Note
that F ∈ S H has an invariant analytic submanifold corresponding to a hyper-
bolic multiplier (Hadamard–Perron theorem [23]). It can be straightened by a holo-
morphic change of variables. Hence, without loss of generality, we can assume
that this invariant submanifold is the straight line {x = 0}. The class of germs
F ∈ S H whose invariant submanifold agrees with the straight line {x = 0} is
denoted by S H 0.

Note that a germ of S H 0 is resonance. By the Poincaré–Dulac theorem [8]
a formal change of variables reduces this germ to the form

(x, y) �→ (f(x), yK(x)).

However, further normalization for these germs is also possible. Namely, the first
component x �→ f(x) is a parabolic mapping. The formal classification of parabolic
mappings is well known [10]: in the typical case a formal equivalence class of such
germ is defined only by a numerical modulus. It is convenient to employ the unit
time shift g1

va along the vector field

va(x) =
x2

1 + ax

∂

∂x
, a ∈ C.
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Next, there is an affinity between the results on classification of mappings and vector
fields. A formal classification of vector fields with a singular point of saddle-node
type in the two-dimensional case is exposed in [17]. For generic vector fields with such
a point (the unit time shift along this vector field is a semi-hyperbolic mapping) the
formal classification has three numerical parameter. So for generic semi-hyperbolic
mappings we can take the unit time shifts along the formal normal forms (FNFs) of
saddle-node vector fields from [17] as FNFs. However, it is more convenient for us
to employ other FNFs which as before depend on three parameters. Moreover, in
order to provide a formal classification of germs of semi-hyperbolic mappings from
a classification of saddle-node vector fields, we need to prove a theorem on a formal
inclusion of germs of semi-hyperbolic mappings into the flux which is a nontrivial
task.

Moreover, as before we can note that for further studies of semi-hyperbolic
mappings we need even more than just reducibility to formal normal form. However,
both Poincaré-Dulac and the theorem on a formal inclusion in the flux do not give
necessary results.

Hence, we prove the theorem on formal classification by direct arguments and
obtain the theorem on formal inclusion in the flux (even in a stronger “semiformal”
version) as a simple consequence. In this case we establish essentially stronger result
that a germ of class S H 0 is reducible to the FNF by a semiformal change.

Theorem 1. Let F ∈ S H 0. Then there exist complex numbers a, λ, and β
such that F is formally equivalent to the unit time shift Fa,λ,β = g1

ωa,λ,β
along the

vector field

ωa,λ,β = va(x) + y(λ + βv′a(x))
∂

∂y
, (a, λ, β) ∈ C3, (1)

where va(x) = x2

1+ax
∂
∂x , Imλ ∈ [0; 2π), and Reλ �= 0. Moreover, the normalizing

transform can be chosen to be formal in the variables x and analytic in y. (We call
transformations of this type semiformal).

Remark 1. We demonstrate below that the FNF is unique, i.e., for a given
germ F ∈ S H 0, the parameters a, λ, and β of FNF are defined uniquely and the
normalizing change is unique to within a “superposition” multiplication by the shift
gtωa,λ,β

for a fixed time t ∈ C and the delation (x, y) �→ (x, ky), k �= 0.

Corollary 1. Let Fa,λ,β be a formal normal form of a germ F ∈ S H 0. Then,
for every N ∈ N, there exists a germ G ∈ S H 0 analytically equivalent to F and
such that

G (x, y)− Fa,λ,β(x, y) = O(xN ) as x→ 0.

Corollary 2. For a given germ F ∈ S H 0, we can construct a formal vector
field v with a singular point of saddle-node type such that F = g1

v.

We use two stages to prove the theorem on semiformal classification. In Section 2
(the former stage) we reduce a semi-hyperbolic germ to the so-called preliminary
formal normal form (PFNF) by the method of successive approximations with the
use of semiformal change of variables. On the latter stage in Section 3, a PFNF is
reduced to a polynomial form, and the end of the proof is in Section 4. In Section 5 we
show uniqueness of the formal normal form (and “almost uniqueness” of a normalizing
formal change). Corollaries 1 and 2 are proven in Sections 6 and 7, respectively.
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§ 2. Preliminary Formal Normal Form

Assume that F is a germ of class S H 0 and F is its representative. First,
we transform F to a simpler form. Actually, it is a classical Poincaré–Dulac formal
normal form. However, we justify reducibility to this form by “semiformal” changes
of coordinates.

Lemma 1. There exists a formal change of variables reducing a generic semi-
hyperbolic mapping F from S H 0 to a form called preliminary formal normal
form (PFNF)

F0(x, y) = (f(x), yK(x)), where f(x) = x + x2 + O(x3), K(x) = � + O(x). (2)

A normalizing change of variables in this case can be chosen in the form

(x, y) �→
(∑

i

αi(y)xi;
∑
j

βj(y)xj
)
, i, j = 0, 1, . . . ,

with αi, βj analytic functions defined for all i, j in some fixed neighborhood about
the origin.

Proof. 0. For a germ F of the class S H 0, the line {x = 0} is invariant and
thereby F ({x = 0}) = {x = 0}. Represent the mapping F by its Hartogs series in
the polydisk SrR = {(x, y) : |x| < r, |y| < R} as follows:

F (x, y) = (xa1(y) + x2a2(y) + · · · , b0(y) + b1(y)x + · · · ),
where the functions ai(y), bj(y), i = 1, 2, . . . , j = 0, 1, . . . , are holomorphic. They
satisfy the conditions a1(0) = 1, a2(0) �= 0, b0(0) = 0, b′0(0) = �, and |�| �= 0, 1.
Below we use similar Hartogs series expansions and follow only the parameter R (the
radius of the disk of convergence in which all coefficients of the series are analytic).

The restriction f of F to the line {x = 0} is a hyperbolic mapping y �→ b0(y).
By the Schröder theorem [24], it can be linearized by an analytic change of variables.
Thus, without loss of generality we can assume that b0(y) = �y.

1. Normalization of the coefficient a1. The analytic (on SrR) change of
variables H1(x, y) = (k(y)x, y) reduces F to the form

F1(x, y) = H−1
1 ◦ F ◦H1(x, y) =

(
xa1(y)k(y)

1
k(�y + · · · ) + · · · , �y + · · ·

)
.

We want to choose k(y) such that

a1(y)
k(y)
k(�y)

= 1. (3)

If |�| > 1 then the holomorphic solution to (3) is representable as

k(y) =
∞∏
n=1

a1

(
y

�n

)
.

In the case of 0 < |�| < 1, the holomorphic solution to (3) is the function

k(y) =
∞∏

n=0

1
a1(�n(y))

.
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The convergence of infinite products and their holomorphy in the disk {|y| < R}
follows from the corresponding theorems of complex analysis. Thus, using some
holomorphic (on SrR) change of variables we can assume that the coefficient a1 is
equal to 1. In what follows we suppose that a1 ≡ 1.

Remark 2. Note that after the above change of variables the second parameter
of the polydisk SrR (the radius of convergence of the coefficients of the expansion of
a normalizing mapping into the Hartogs series) remains the same.

2. Normalization of a2 and b1. Consider the transform

H2(x, y) = (x + α(y)x2, y + β(y)x)

and its inverse

H−1
2 (x, y) = (x− α(y)x2 + O(x3), y − β(y)x + O(x2)).

In this case, as x→ 0, we have

F2(x, y) = H−1
2 ◦ F1 ◦H2(x, y)

= (x + x2(α(y) − α(�y) + a2(y)) + O(x3),

�y + x(�β(y)− β(�y) + b1(y)) + O(x2)).

We want to solve the two equations

α(�y)− α(y) = a2(y), (4)

β(�y)− �β(y) = b1(y). (5)

This allow us to simplify the arguments essentially, more exactly, to equate the
corresponding coefficients of the series F2 to zero. Consider (4). Represent a2(y)
and α(y) as a power series, i.e.,

α(y) =
∞∑
k=0

αky
k, a2(y) =

∞∑
k=0

a2,ky
k.

The former series here is the expansion of α and the second converges in the disk
{|y| < R}. Inserting these expressions into the equation and comparing the right-
hand and left-hand sides, we infer

(�k − 1)αk = a2,k, k = 0, 1, 2, . . . . (6)

For every k �= 0, the equation (6) is solvable and a solution for k = 0 exists if and
only if a2,0 = 0. Repeating the same arguments for (5), we obtain the following
expansions of βk and b1,k:

β(y) =
∞∑
k=0

βk(y), b1(y) =
∞∑
k=0

b1,k(y)

and the system
(�k − �)βk = b1,k, k = 0, 1, 2, . . . ,

whose equations are solvable for all k �= 1. For k = 1, a necessary condition of
solvability is that b1,1 is equal to zero. So, making the change of variable of the
above form we can assume that a2 is a constant and b1 has a linear form. Note that
the genericity conditions imply that a2(0) �= 0. Hence, without loss of generality, we
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can assume that a2(y) = const �= 0 and b1(y) = b1,1y. At last, using the additional
transformation (x, y) �→ (mx, y), we can obtain that a2(y) = 1.

Since a2(y) and b1(y) are analytic in the disk {|y| < R}, the series for α(y)
and β(y) converge in this disk. Hence, the transformation H constructed is holo-
morphic on SrR and the remark of the previous section remains valid.

3. Induction. Let the mapping FN−1 on some step be of the form

FN−1(x, y) = (x + x2 + α3x
3 + · · ·+ αN−1x

N−1 + αN (y)xN + O(xN+1);

y(� + β1x + · · ·+ βN−2x
N−2) + βN−1(y)xN−1 + O(xN )),

where α3, . . . , αN−1, β1, . . . , βN−2 are constants and the functions αN (y) and βN−1(y)
are holomorphic on {|y| < R}. We will use the transform

HN (x, y) = (x + α(y)xN , y + β(y)xN−1).

As on the previous step, we can make the coefficient αN to be equal constant and
βN−1 linear in the variable y; the mapping HN (x, y) is holomorphic on SrR and
Remark 2 remains valid.

4. Conclusion. Making the change of variables from the previous section for
every N , we can construct a sequence of changes of variables HN ; each of them
“improves” a pair of “monomials” from the expansion of a normalizable transform
in the Hartogs series. Note that the stabilization of “monomials” in the expansion
of the superposition HN = H1 ◦ H2 ◦ · · · ◦ HN holds. The same holds with the
normalizable mapping FN = H −1

N ◦ F ◦ HN . Hence, the infinite superposition
H = limN→∞HN converges in the space of formal series in the variable x with
coefficients holomorphic in y in the disk {|y| < R} and is an unknown normalizing
semiformal change of variables, since the series FN converge to PFNF (2) in the
same space of series. �

Remark 3. The peculiarities of the construction imply that an infinite super-
position reducing F to PNF is a formal series in the variable x with coefficients
holomorphic in the same neighborhood about the origin .

§ 3. The Second Step of Formal Normalization

Above, we have reduced the generic semi-hyperbolic mapping to (2). The sec-
ondary normalization reducing it to FNF is realized with the help of the change

H(x, y) = (p(x), yq(x)), (7)

p′(0) = 1. (8)

This change reduces PFNF (2) to the form F̃ = H−1 ◦ F0 ◦ H = (f̃(x), K̃(x)y),
where

f̃(x) = p−1 ◦ f ◦ p, K̃(x) = K ◦ p · q

q ◦ f̃ . (9)

Remark 4. The values

f ′′′(0) = f̃ ′′′(0), K(0) = K̃(0), K ′(0) = K̃ ′(0) (10)

do not change after the change of coordinates (7), (8) (which are invariants of formal
classification of generic semi-hyperbolic mappings). The latter is obvious for the
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second and third equalities and the first is demonstrated in [10] (but can be easily
checked by the direct calculations).

Recall that f is a generic parabolic mapping and f̃ is the adjoint of f . The
formal classification of parabolic mappings implies ensures (see [10]) there exists
a constant a and a formal coordinate change of p(x) reducing f to f̃ = g1

va(x),
where g1

va(x) is a unit time shift along the vector field (1). Moreover, for f(x) of
the form f(x) = x + x2 + · · · (the first component of the mapping (2) satisfies this
condition), the change p(x) satisfies (8). Next, assign ϕ = log q and k = log

(
˜K

K◦p
)
.

In this case the second equation in (9) takes the form

−ϕ ◦ f̃ + ϕ = k. (11)

Lemma 2. For every formal parabolic mapping f̃ and a function k(x) such
that k(0) = k′(0) = 0, there exists a unique formal solution ϕ(x) to (11) such that
ϕ(0) = 0.

Proof. Let

f̃ = x + cx2 + · · · , c �= 0, k(x) =
∞∑
j=2

kjx
j ; ϕ(x) =

∞∑
j=1

ϕjx
j .

Inserting these expansions in (11), we infer
∞∑
j=1

ϕjx
j −

∞∑
j=1

ϕj(x + cx2 + · · · )j =
∞∑
j=2

kjx
j .

Equating the coefficients of xj , j = 1, 2, . . . , we arrive at the infinite system of
equations

−c(j − 1)ϕj−1 + · · · = kj , j = 2, 3, . . . ,

where the dots stand for summands depending on ϕs with the numbers s less than
j − 1. Since c �= 0 for a generic parabolic mapping, these equations are solvable
successively. It gives the existence and uniqueness as well of a formal solution. �

Lemma 3. For all parabolic diffeomorphisms f(x) = x + x2 + · · · and p(x) =
x+ · · · and all K and K̃ satisfying (10), there exists a formal solution q to the second
equation of the system (9) such that q(0) = 1. This solution is unique (to within
a multiplication by a constant ). In particular, every mapping F ∈ S H 0 of the
form (2) is reducible to the form

F̃a,λ,b(x, y) =
(
g1
va(x), y(� + bx)

)
, � = eλ

by a formal change of the form (7).
Proof. The former claim results from Lemma 2 and the latter from the for-

mer. �

§ 4. The End of the Proof of the
Theorem on Formal Classification

Let Fa,λ,β = g1
ωa,λ,β

(x, y) be the unit time shift along the vector field ωa,λ,β. We
can solve the system of equations

{
ẋ = va(x),
ẏ = y(λ + βv′a(x)).
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Let (x(t), y(t)) be its solution with the initial data (x(0) = x0 and y(0) = y0). We
have

x(t) = gtva(x0),
dy

dx
= λy

1
va(x)

+ yβ
v′a(x)
va(x)

.

In this case,
dy = λy dt + d(y log va(x)),

and

y(t) = y0e
λt

(
va(x0)
va(x(t))

)β

.

Assigning fa = g1
va , we infer

Fa,λ,β(x0, y0) = (fa(x0), eλy0(f ′a(x0))β).

At last, if
� = eλ, �(x) = �(f ′a(x))β ,

then Fa,λ,β = (fa(x), y�(x)).
Calculate the invariants (10) for Fa,λ,β which are the parameters a, � = eλ, β.

By Lemma 3, Fa,λ,β is reduced to F̃a,λ,β by a change of the form (7). In accord with
the constructions of this and previous sections, the initial mapping F by semiformal
changes is reduced to some form F̃a,λ,β . Hence, the initial mapping F can be reduced
to the form Fa,λ,β by semiformal changes of variables. The theorem on formal
classification is proven.

§ 5. Uniqueness of FNF and
Normalizing Formal Coordinate Change

Assume that F = Fa,λ,β and F ′ = Fa′,λ′,β′ are two formal normal forms from
the theorem on formal classification and the formal coordinate change H conjugates
F and F ′, i.e.,

H ◦ F = F ′ ◦H. (12)

Note that the lines {x = 0} and {y = 0} are invariants for the formal normal forms
(the former line is their common invariant hyperbolic submanifold and the latter the
central manifolds). Hence, the coordinate change H must preserve them. In this
case the change H is of the form

H(x, y) = (xa(x, y); yb(x, y)), (13)

where a(x, y) and b(x, y) are formal power series and a(0, 0) · b(0, 0) �= 0. Therefore,
the formal mapping h(x) = xa(x, 0) conjugates the mappings fa(x) and fa′(x), i.e.,

h ◦ fa = fa′ ◦ h. (14)

Due to uniqueness of FNF of parabolic mappings [10], the parameters a and a′ coin-
cide. Similarly, the formal diffeomorphism g(y) = yb(0, y) conjugates the restrictions
of F and F ′ to the line {x = 0} and thus

g(�y) = �′g(y). (15)

Differentiating (15) with respect to y and taking y = 0, we obtain � = �′ and
the condition Imλ, Im λ′ ∈ [0; 2π) validates the inequality λ = λ′. Comparing the
coefficients of x2 in (14) in accord with the equality a = a′, we have

h′(0) = a(0, 0) = 1. (16)
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Inserting (13) in (12) and calculating the coefficient of xy in the second component
of the equality obtained, we derive from (16) that β = β′. The proof of uniqueness
of FNF is completed. To study the question of uniqueness of a normalizing change,
is suffices to examine formal coordinate changes preserving FNF. Thus, we need to
find all formal changes H(x, y) satisfying (12) (in the case of F = F ′). Repeating
the above arguments and using the same notations, we establish the same equalities
(14) and (15), where a = a′, � = �′. The equality (14) implies that h commutes
with fa. As is demonstrated in [10], all mappings h formally commuting with fa
have the form h = gtva for some t ∈ C. Consider the mapping Ht = gtωa,λ,β

; since
F = g1

ωa,λ,β
, Ht and F commute, i.e., Ht ◦ F = F ◦ Ht. In this case H−1

t ◦ H
commutes with F . So without loss of generality, we can assume that h = id (we can
achieve it replacing H with H−1

t ◦H).
Next, (15) validates the linearity of g: g(y) = ky, k �= 0. The linear mapping

L : (x, y) �→ (x, ky) also commutes with the FNF F . Repeating the above arguments,
we can assume that the mapping g coincides with the identity. At last, inserting
(13) in (12) and using the condition “H = id on the straight lines {x = 0} and
{y = 0},” sequentially equating the coefficients of the powers xk (i.e., we actually
repeat arguments of Section 2–4 and solving relevant (homogeneous in our case)
equations), we obtain that H ≡ id. Two corrections of the normalizing change made
above ensure its uniqueness to within a dilation along the y-axis and a shift along
the vector field ωa,λ,β.

§ 6. Proof of Corollary 1

Let H(x, y) = (H1(x, y), H2(x, y)) be a normalizing formal change constructed
in the theorem on a formal classification. Note that every of the series Hj(x, y),
j = 1, 2, is representable as

Hj(x, y) =
∞∑
k=0

cjk(y)x
k,

where the functions cjk(y) are holomorphic in some fixed neighborhood of the origin.
Consider the change

HN (x, y) = (H1N (x, y), H2N (x, y)),

where

HjN (x, y) =
N∑

k=0

cjk(y)x
k.

It is holomorphic and takes the germ F in the germ of the required form.

§ 7. Proof of Corollary 2

Assume that F is an arbitrary germ in S H 0, Fa,λ,β = g1
ωa,λ,β

is its FNF,
and H is a semiformal change of coordinates conjugating F and Fa,λ,β : H ◦ F =
Fa,λ,β ◦H . Assume also that H−1 takes the vector field ωa,λ,β in the vector field ω:
H ′ · ω = ωa,λ,β ◦H . In this case, F = g1

ω and the proof is completed.
Remark 5. Since the converse of the semiformal change is also semiformal, the

above vector field ω is “semiformal” and so its components are expandable in the Har-
togs series (in the powers of x) with coefficients analytic in some fixed neighborhood
about the origin.
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RIGHT–HAND SIDE AND THE LOWEST

COEFFICIENTS IN PARABOLIC EQUATIONS

Ling-De Su

Abstract. We propose a numerical scheme to solve the inverse problem of determining
two lower coefficients that depends on time only in the parabolic equation. The time
dependence of the right-hand side of a parabolic equation is determined using addi-
tional solution values at points of the computational domain. For solving the nonlinear
inverse problem, linearized approximations in time are constructed using standard fi-
nite difference procedures in space. The results of numerical experiments are presented,
confirming the capabilities of the proposed computational algorithms for solving the
coefficients inverse problem.

Keywords: inverse problem, finite difference method, parabolic partial differential equa-
tion, identification of the coefficients

In this paper, we consider the inverse problem of finding the two coefficients γ(t)
and f(t) in the following equation

ut − uxx + γ(t) · u = f(t) · g(x, t), (1)

where g(x, t) is a known analytic function, the solution u(x, t) and the two coeffi-
cients γ(t) and f(t) are unknown.

Many inverse problems arise in engineering and mathematical sciences [1–4]. In
a direct problem, it is required to find a solution that satisfies some given partial
differential equation and some initial and boundary conditions. Different from direct
problem, in inverse problems, the master equation, initial conditions and boundary
conditions are not fully specified, instead, some additional information is available.

There are various kinds of inverse problems in physics: coefficient inverse prob-
lems (in which the equation is not specified completely as some equation coefficients
are unknown), boundary inverse problems (in which boundary conditions are un-
known), and evolutionary inverse problems (in which initial conditions are unknown)
[5, 6]. In this paper, we focus on the inverse problem of the parabolic equations is
an inverse coefficient problem.

Many inverse problems are formulated as non-classical problems for PDEs. In
other words, most standard numerical methods cannot achieve good accuracy in
solving this problems. In solving these problems approximately, emphasis is on the
development of stable computational algorithms that take into account peculiarities
of inverse problems [7, 8]. Several regularization methods have been developed for
solving ill-conditioning problems [8–10].

c© 2015 Ling-De Su
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Much attention is paid to the problem of determining the lower coefficient of
a parabolic equation of second order. The existence and uniqueness of the solution
for such an inverse problem and well-posed of this problem in various functional
classes were examined [11, 12]. Numerical methods for solving the problem of the
identification of the lower coefficient of parabolic equations are also considered in
many works [13–15].

In this paper, we consider the problem of determining the two lower coefficient
that depends only on time. Approximation in space is performed using standard
finite difference. The main features of the nonlinear inverse problem are taken into
account via a proper choice of the linearized approximation in time. Linear problems
at a particular time level are solved on the basis of a special decomposition into new
standard elliptic problems.

The layout of the article is as follows: In Section 1, we briefly introduce the
formulation of the problem. In Section 2, we introduce the method and apply this
method to the time-dependent problems. The results of numerical experiments are
presented in Section 3. Section 4 is dedicated to a brief conclusion. Finally, some
references are introduced at the end.

1. Formulation of the Problem

Let � be a bounded domain with a smooth boundary ∂�. The direct problem
is formulated as follows:

ut − uxx + γ(t) · u = f(t) · g(x, t), x ∈ �, 0 < t � T, (2)

with initial condition
u(x, 0) = u0(x), x ∈ �, (3)

and the Dirichlet boundary condition

u(0, t) = �1(t), u(l, t) = �2(t), 0 < t � T, (4)

where γ(t), f(t), g(x, t) and �i(t) (i = 1, 2) are known functions, u(x, t) is the
solution of the second order parabolic equation (2), and the initial condition u0(x)
is known.

In this paper, we consider the coefficient inverse problem, in (2), where the co-
efficients γ(t) and f(t) are unknown. The additional conditions are often formulated
as: ∫

�

u(x, t)ω(x) dx = ϕ(t),
∫

�

u(x, t)χ(x) dx = ψ(t), 0 < t � T, (5)

where ω(x) and χ(x) are weight functions. Specifically, choosing ω(x) = δ(x − x∗)
and χ(x) = δ(x − x∗∗), (x∗, x∗∗ ∈ �), where δ(x) is the Dirac δ-function, from (5),
we get

u(x∗, t) = ϕ(t), u(x∗∗, t) = ψ(t), 0 < t � T. (6)

The inverse problem of finding u(x, t), γ(t), and f(t) from problems (2)–(4)
and additional conditions (5) or (6) is well-posed. The corresponding conditions
for existence and uniqueness of the solution are available in the above-mentioned
articles.

In this paper, we consider only the numerical solution of these inverse prob-
lems with one dimension, omitting the theoretical issues of the convergence of an
approximate solution to the exact one.
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2. The Computational Algorithm

The inverse problem (2)–(5) (or (2)–(4), (6)) is nonlinear. The standard ap-
proach is based on the simplest approximations in time and involves the iterative
solution of the corresponding nonlinear problem for the evaluation of the approxi-
mate solution at a new level. In this article, we apply such approximations in time
that lead to linear problems for evaluating the solution at the new time level.

2.1. The inverse problem. We consider the inverse problem (2)–(4), (6)
where � = [0, l]. To solve the parabolic problem numerically, we introduce the grid
in space

ωh = {x | xi = ih, i = 0, 1, 2, . . . ,M, Mh = l},
for the time we also have

ωτ = {tn | tn = nτ, n = 0, 1, 2, . . . , N, Nτ = T }.
For all but boundary grid nodes, we use the operator D written as

Du = −u(x+ h, t)− 2u(x, t) + u(x− h, t)
h2 , x ∈ ωh.

Finite difference approximations in space are employed. Using the fully implicit
scheme for approximation in time and the operator D, the notation un = u(x, tn),
tn+1 = tn + τ (n = 0, 1, 2, . . . , N − 1), we obtain the following variational problem:

un+1 − un
τ

+Dun+1 + γn+1 · un = fn+1 · gn+1, x ∈ ωh, (7)

the initial condition
u(x, 0) = u0(x), x ∈ ωh, (8)

and the boundary conditions

u(0, t) = �1(t), u(l, t) = �2(t), t ∈ ωτ , (9)

the additional conditions (6) take the form:

un(x∗) = ϕn, un(x∗∗) = ψn, n = 0, 1, 2, . . . , N. (10)

We use the following decomposition for the solution un+1 at the new time level

un+1(x) = yn+1(x) + γn+1vn+1(x) + fn+1wn+1(x). (11)

To find yn+1(x), inserting (11) in (7), we employ the equation

yn+1 − un
τ

+Dyn+1 = 0, n = 0, 1, . . . , N − 1, x ∈ ωh, (12)

with the boundary conditions y(0, t) = �1(t), y(l, t) = �2(t).
The functions vn+1(x) and wn+1(x) are determined from

vn+1

τ
+Dvn+1 = −un, n = 0, 1, 2, . . . , N − 1, x ∈ ωh, (13)

wn+1

τ
+Dwn+1 = gn+1, n = 0, 1, 2, . . . , N − 1, x ∈ ωh, (14)

with the boundary condition v(0, t) = v(l, t) = 0 and w(0, t) = w(l, t) = 0.
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To evaluate γn+1 and fn+1, the addition conditions (10) are used; inserting (11)
into (10), we get

γn+1vn+1(x∗) + fn+1wn+1(x∗) = ϕn+1 − yn+1(x∗),

γn+1vn+1(x∗∗) + fn+1wn+1(x∗∗) = ψn+1 − yn+1(x∗∗),
(15)

where x∗, x∗∗ ∈ [0, l] and x∗ �= x∗∗. To solve γn+1 and fn+1 from (15), we assume
vn+1(x∗)wn+1(x∗∗)−vn+1(x∗∗)wn+1(x∗) �= 0, where vn+1 and wn+1 are determined
from (13) and (14).

Thus, the computational algorithm for solving the inverse problem (2)–(4), (6)
based on the linearized scheme (7)–(10) involves the solution of three standard grid
elliptic equations for the auxiliary functions yn+1(x) from equation (12), vn+1(x)
form equation (13) and wn+1(x) from equation (14), the further evaluation of γn+1

and fn+1 from (15), and the final calculation un+1(x) from the relation (11).

2.2. The solutions of yn+1(x), vn+1(x), and wn+1(x). To calculate
un+1(x) = yn+1(x) + γn+1vn+1(x) + fn+1wn+1(x), n = 0, 1, . . . , N − 1, we should
find yn+1(x), vn+1(x) and wn+1(x) from (12)–(14).

To find yn+1(x), vn+1(x) and wn+1(x), using the notation yni = y(xi, tn), tn+1 =
tn + τ , n = 0, 1, 2, . . . , N − 1, xi = xi−1 + h, i = 1, 2, . . . ,M , converting (12)–(14) to
the following forms with the boundary conditions:

yn+1
i+1 −

(
2 +

h2

τ

)
yn+1
i + yn+1

i−1 +
h2

τ
uni = 0, i = 1, 2, . . . ,M − 1,

yn+1
0 = �1(tn+1), yn+1

M = �2(tn+1),
(16)

vn+1
i+1 −

(
2 +

h2

τ

)
vn+1
i + vn+1

i−1 + h2uni = 0, i = 1, 2, . . . ,M − 1,

vn+1
0 = vn+1

M = 0,
(17)

wn+1
i+1 −

(
2 +

h2

τ

)
wn+1

i + wn+1
i−1 + h2gn+1

i = 0, i = 1, 2, . . . ,M − 1,

wn+1
0 = wn+1

M = 0.
(18)

Using the following decompositions for the solutions yn+1
i , vn+1

i , and wn+1
i :

yn+1
i = αn+1

i · yn+1
i+1 + βn+1

i , vn+1
i = αn+1

i · vn+1
i+1 + γn+1

i ,

wn+1
i = αn+1

i · wn+1
i+1 + δn+1

i , i = M − 1,M − 2, . . . , 0,
(19)

and yn+1
M = �2(tn+1), vn+1

M = wn+1
M = 0.

By combining (16)–(19), we can get:

αn+1
i =

1
2 + κ− αn+1

i−1
, βn+1

i =
κuni + βn+1

i−1

2 + κ− αn+1
i−1

,

γn+1
i =

h2uni + γn+1
i−1

2 + κ− αn+1
i−1

, δn+1
i =

h2gn+1
i + δn+1

i−1

2 + κ− αn+1
i−1

,

i = 1, 2, 3, . . . ,M.

(20)

with the conditions α0 = γ0 = δ0 = 0 and β0 = �1, where κ = h2

τ . From (20) we
can get all the α, β, γ and δ, so we can get all the solutions of y, v, and w.
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3. Numerical Examples

In this section we present numerical results to test the efficiency of the new
scheme for solving the coefficient inverse problems. In the example, we put x ∈ [0, 1]
with the conditions

u0 = 5 exp(−100(x− 0.5)2), g(x) = 4(1− x)x,
u(0, t) = u(1, t) = 0, 0 < t � T.

(21)

The coefficients γ(t) and f(t) are taken in the forms

γ(t) = − t3

1 + exp (ζ1(t− 0.7T ))
, f(t) =

0.1(T − t)
1 + exp (ζ2((T − t)− 0.8T ))

. (22)

We consider the inverse problem with h = 1
M , τ = T

N , M = 200, N = 400. The
observation points are x∗ = 0.5 and x∗∗ = 0.1. The solution of the direct problem at
the observation point are depicted in Fig. 1(a), the solution at the final time moment
(T = 0.5) is presented in Fig. 1(b), with ζ1 = 1000, ζ2 = 250.
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The solution at the observation points.

x
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The solution u at T=0.5.

u

Fig. 1. The solution at the observation point and the solution at T = 0.5

We also give the solution of γ(t) (Fig. 2(a)) and f(t) (Fig. 2(b)) of the inverse
problem with ζ1 = 1000, ζ2 = 250. The graphs show the very good accuracy and
efficiency of the new approximate scheme.
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The solution f(t) of inverse problem.
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Fig. 2. The exact and numerical solutions of the inverse problem
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The solution γ(t) of the inverse problem with different ζ1 are present in Fig. 3(a).
For large ζ1 (see Fig. 3(a)), γ(t) approaches discontinuous functions with a discon-
tinuity point at t = 0.7T .

The solution f(t) of the inverse problem with different ζ2 are present in Fig. 3(b).
For large ζ2 (see Fig. 3(b)), f(t) also approaches discontinuous functions with a dis-
continuity point at t = 0.2T .
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Fig. 3. The solutions of the inverse problem with different variables

4. Conclusions

In this paper, we proposed a numerical scheme for solving the inverse problems
by the finite difference method. The numerical implementation using the linearized
approximations in time and standard finite difference procedures in space, based on
a decomposition of the approximate solution, where the transition to a new time
level involves the solutions of three standard elliptic problems. Numerical solutions
of the model problem demonstrate the convergence of the approximate solution of
the inverse problem.

5. Acknowledgments

Professors V. I. Vasil′ev and P. N. Vabishchevich carefully reviewed this paper.
As a result of their careful analysis, this paper was improved. The author expresses
his thankfulness to them for helpful constructive comments.

REFERENCES

1. Colton D., Ewing R., and Rundell W. Inverse Problems in Partial Differential Equations.
Philadelphia, PA: SIAM, 1990.

2. Engl H. W. and Rundell W. Inverse Problems in Diffusion Processes. Philadelphia, PA: SIAM,
1995.

3. Conca C., Manasevich R., Uhlmann G., and Vogelius M. S. Partial differential equations and
inverse problems // Contemp. Math.. 2004. V. 362. P. 410.

4. Muller T. G. and Timmer J. Parameter identification in partial differential equations // Int.
J. Bifurcation Chaos Appl. Sci. Eng.. 2004. V. 14, N 6. P. 2053–2060.

5. Samarskii A. A. and Vabishchevich P. N. Numerical Methods for Solving Inverse Problems of
Mathematical Physics. Utrecht: VSP, 2007.

6. Jiang T. S., Li M., and Chen C. S. The Method of particular solutions for solving inverse
problems of a nonhomogeneous convection-diffusion equation with variable coefficients //
Numerical Heat Transfer. Part A: Applications. , 2012. V. 61. P. 338–352.



80 Ling-De Su

7. Hansen P. C. The L-curve and its use in the numerical treatment of inverse problems //
Computational Inverse Problems in Electrocardiology (ed. P. Johnston). (Adv. Comput. Bio-
eng. Ser.). Southampton: WITPress, 2000. P. 119–142.

8. Hansen P. C. Regularization tools: a Matlab package for analysis and solution of discrete
ill-posed problems // Numer. Algorithms. 1994. V. 6, N 1. P. 1–35.

9. Hansen P. C. and O’Leary D. P. The use of the L-curve in the regularization of discrete
ill-posed problems // SIAM J. Sci. Comput.. 1993. V. 14, N 6. P. 1487–1503.

10. Hao D. N. A mollification method for ill-posed problem // Numer. Math.. 1994. V. 68, N 4.
P. 469–506.

11. Isakov V. Inverse Problems for Partial Differential Equations. Berlin: Springer-Verlag, 2006.
(Appl. Math. Sci.; V. 127).

12. Prilepko A. I., Orlovsky D. G., and Vasin I. A. Methods for Solving Inverse Problems in
Mathematical Physics. Berlin: Marcel Dekker, 2000.

13. Dehghan M. An inverse problem of finding a source parameter in a semilinear parabolic
equation // Appl. Math. Modelling. 2001. V. 25, N 9. P. 743–754.

14. Chan T. F. and Tai X. C. Level set and total variation regularization for elliptic inverse
problems with discontinuous coefficients // J. Comput. Phys.. 2004. V. 193, N 1. P. 40–66.

15. Vabishchevich P. N., Vasil ′ev V. I., and Vasil ′eva M. V. Computational identification of the
right-hand side of a parabolic equation // Comput. Math. Math. Phys.. 2015. V. 55, N 9.
P. 1015–1021.

September 18, 2015

Ling-De Su
Ammosov North-Eastern Federal University
Institute of Mathematics and Information Science, Yakutsk, Russia
sulingde@gmail.com



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


